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Abstract: Alloys of cobalt chromium have been used for decades to create frameworks for removable
partial dentures. While cobalt chromium has multiple advantages, such as strength and light weight,
the casting process is laborious and requires special care to ensure that human error is minimized.
Furthermore, the display of metal clasps in these frameworks may be considered a limitation at
times, especially with esthetically demanding patients. The introduction of digital technology to
manufacturing in dentistry has brought forward new methods of fabricating cobalt chromium
frameworks, some of which eliminate the casting process. Moreover, the development of high-
performance polymers for use as removable partial denture frameworks brings multiple advantages,
but raises concerns over design guidelines and principles. This review examines alternatives to
conventionally cast frameworks so that clinicians may make evidence-based decisions when choosing
framework materials and fabrication methods in the rapidly advancing world of digital dentistry.

Keywords: removable partial dentures; RPD frameworks; dental materials; CAD/CAM; milling; 3D
printing; digital dentistry

1. Introduction

The United Nations predicts that by mid-century, individuals over the age of 60 will
represent approximately 32% of the global population [1]. With the geriatric population on
the rise, the prevalence of partial edentulism has increased proportionally [1,2]. According
to the American College of Prosthodontists, more than 120 million people in the United
States are missing at least one tooth [3]. In Japan, the Survey of Dental Diseases revealed
that 81% of the elderly population are missing some or all of their natural dentition [4].
Today, partially edentulous patients, like most others, are esthetically aware and present to
the dental clinic seeking not only restoration of function, but also improved esthetics [5,6].
Cast metal removable partial dentures, fabricated from different alloys, have been used
to treat the partially edentulous patient for decades. Although initially made from alloys
of type IV gold, cobalt and nickel chromium alloys have been used for the fabrication of
cast frameworks since the 1930s [7,8]. Cobalt chromium alloys are composed of cobalt
(60–65%), chromium (27–30%), and molybdenum (5–6%) along with traces of other metals
that may include nickel [7]. These alloys have become increasingly popular as they not only
have a lower cost and excellent mechanical properties, but are also one-half the density
of gold-based alloys [8]. As a result, frameworks fabricated from cobalt chromium are
significantly lighter and stronger.

One of the limitations of cast metal frameworks is the inevitable display of metal
clasps, which may be deemed unesthetic by some patients (Figure 1). While avoiding or
minimizing metal display may be possible by utilizing design features, such as rotational
paths of insertion, precision attachments, and implants, this is not always feasible as it
usually incurs extra cost and meticulous lab work. Recently, new materials have been
introduced by manufacturers to address esthetic concerns and laboratory-based errors.
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Figure 1. Traditional cast cobalt chromium framework with conventional infrabulge and cast 
circumferential clasps. Display of such clasps may be deemed unesthetic by patients. 

Traditional methods of casting removable partial denture frameworks have been 
well documented. However, the fit of finished castings may not be exact [9]. Shrinkage of 
the metal during casting is a potential source of inaccuracy, with variable shrinkage 
among different alloys. Cobalt chromium, for example, has an average casting shrinkage 
of 2.3% [10]. Manipulation of the same alloys at different casting temperatures and 
dimensions also affects shrinkage and subsequent fit [11]. Investment materials used in 
casting cobalt chromium frameworks must have a direct compensatory effect to address 
casting shrinkage. Each investment material has a unique set of expansion parameters that 
impact the fit of clasp assemblies, minor connectors, and major connectors [10]. 

The rough, as cast, surface of the framework necessitates finishing and polishing 
prior to finalization. Finishing procedures that are not done meticulously may alter the 
framework to affect fit as well as the physical properties of the cast alloy [10]. In a three-
part article, Rudd and Rudd describe 243 different errors that could occur during the 
fabrication of a removable partial denture [12–14]. Although many of the described errors 
were clinical, the vast majority were laboratory based. 

Digital technology and the rapid development of computer aided manufacturing 
methods and novel materials have created alternatives to cast removable partial denture 
frameworks [15]. Additive and subtractive computer aided design and manufacturing 
(CAD/CAM) protocols are being developed to overcome casting limitations and inaccuracies. 
Concurrently, various resin-based polymers have been introduced to the market to address 
the increasing demand for more esthetic clasp assemblies. This review seeks to clarify 
common terminology and examine alternatives to cast metal frameworks, to allow clinicians 
to make evidence-based decisions when choosing framework materials and fabrication 
methods. 

2. Methods 
The key terms of RPDs, RPD framework, partial denture framework, partial dentures, 

3D printing, printed, milling, milled, acetal, PEEK, Valplast, Duraflex, Ultaire AKP, aryl 
ketone polymer, polyaryletherketone, polyamide, and polyoxymethylene were used 

Figure 1. Traditional cast cobalt chromium framework with conventional infrabulge and cast circum-
ferential clasps. Display of such clasps may be deemed unesthetic by patients.

Traditional methods of casting removable partial denture frameworks have been
well documented. However, the fit of finished castings may not be exact [9]. Shrinkage
of the metal during casting is a potential source of inaccuracy, with variable shrinkage
among different alloys. Cobalt chromium, for example, has an average casting shrinkage of
2.3% [10]. Manipulation of the same alloys at different casting temperatures and dimensions
also affects shrinkage and subsequent fit [11]. Investment materials used in casting cobalt
chromium frameworks must have a direct compensatory effect to address casting shrinkage.
Each investment material has a unique set of expansion parameters that impact the fit of
clasp assemblies, minor connectors, and major connectors [10].

The rough, as cast, surface of the framework necessitates finishing and polishing
prior to finalization. Finishing procedures that are not done meticulously may alter the
framework to affect fit as well as the physical properties of the cast alloy [10]. In a three-part
article, Rudd and Rudd describe 243 different errors that could occur during the fabrication
of a removable partial denture [12–14]. Although many of the described errors were clinical,
the vast majority were laboratory based.

Digital technology and the rapid development of computer aided manufacturing
methods and novel materials have created alternatives to cast removable partial denture
frameworks [15]. Additive and subtractive computer aided design and manufacturing
(CAD/CAM) protocols are being developed to overcome casting limitations and inaccu-
racies. Concurrently, various resin-based polymers have been introduced to the market
to address the increasing demand for more esthetic clasp assemblies. This review seeks
to clarify common terminology and examine alternatives to cast metal frameworks, to
allow clinicians to make evidence-based decisions when choosing framework materials
and fabrication methods.

2. Methods

The key terms of RPDs, RPD framework, partial denture framework, partial den-
tures, 3D printing, printed, milling, milled, acetal, PEEK, Valplast, Duraflex, Ultaire
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AKP, aryl ketone polymer, polyaryletherketone, polyamide, and polyoxymethylene were
used separately or jointly in a comprehensive search of electronic databases that included
PubMed/MEDLINE, SCOPUS, and Google Scholar. Relevant original or review articles
published between 1 January 2012 and 1 January 2022 were identified. This was followed
by citation mining for relevant articles. Articles published in non-peer reviewed journals
and those written in languages other than English were excluded. Additionally, articles
that did not focus on the removable partial denture frameworks in particular were ex-
cluded. Identified articles were carefully screened for eligibility. A total of 67 articles were
considered and are discussed within the different sections and subsections of this review.

3. The Digital Manufacturing Process
3.1. Milled Frameworks

The term milled removable partial denture frameworks in the reviewed studies has a
wide array of applications and meanings. Milling is a subtractive manufacturing process
that utilizes burs operating on multiple axes to machine materials within certain param-
eters, based on a digitally designed file [16]. Five-axis milling machines are needed to
create complex three-dimensional objects, such as denture bases and partial denture frame-
works [17]. The milling process has become increasingly popular with the introduction of
resin-based polymers in lieu of cobalt chromium for removable partial denture frameworks
(Figure 2). Most novel polymers are manufactured as pucks or discs that undergo milling to
produce the final denture frameworks. Generally, they require minimal adjusting, finishing,
and polishing after completion of the milling process. Frameworks milled from various
polymers are described in this review.
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frameworks from blocks of metal is technically difficult. This has been attributed to the 
extensive wear of burs that occurs during the milling process, particularly with base metals 
[18]. The term “milled cobalt chromium/titanium framework” generally describes a 

Figure 2. Milled polymer-based frameworks with supports in place. After removal of the supports,
frameworks require finishing and polishing prior to beginning tooth setting.

Despite the mention of “milled cobalt chromium frameworks” and “milled titanium
frameworks” by some studies and manufacturers, the milling of removable partial denture
frameworks from blocks of metal is technically difficult. This has been attributed to the
extensive wear of burs that occurs during the milling process, particularly with base
metals [18]. The term “milled cobalt chromium/titanium framework” generally describes a
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framework pattern that was milled from wax or resin, invested, and cast in a conventional
manner. Milled patterns eliminate the laborious task of creating a refractory cast from
the master cast and forming the wax pattern by hand. Further, milling renders a pattern
that is consistent in size and thickness based on the software design [17]. Therefore, these
frameworks represent a hybrid method of fabrication as they are cast from a CAD/CAM
milled pattern.

3.2. 3D Printed Frameworks

In contrast to milling, 3D printing is an additive manufacturing process that utilizes
printing processes, materials, and technologies and to synthesize the final product. 3D
printing technologies may be employed directly or indirectly to fabricate removable partial
denture frameworks.

Stereolithography (SLA) and digital light processing (DLP) are two of the most com-
monly used processes for resin printing [19]. Both SLA and DLP printers work in a similar
fashion in which light is directed at a transparent resin tank at specific coordinates based
on the digital file. The framework is built layer by layer as curing progresses. The main
difference between the two is the light source. SLA printers employ an ultraviolet laser
beam to cure the photopolymers, whereas DLP printers use short wavelength light that
is carefully guided through a liquid crystal display panel or digital micromirror device to
cure the resin layers [19,20]. DLP printers are generally faster and result in less waste and
lower operating costs when compared to SLA printers [20]. 3D printing technology may be
used to fabricate resin patterns that are ultimately invested and cast using conventional
methods. The term “3D printed metal framework” is often used to describe this hybrid
technique. The term “3D printed” may be used to describe frameworks made by other
methods of additive manufacturing such as laser sintering [21]. While these frameworks are
technically 3D printed, in that a 3-dimensional model is fabricated from an alloy powder,
the interchangeable use of nomenclature may be confusing. In this review, 3D printing
with a SLA or DLP printer shall describe the printing of a non-metal (i.e., resin) framework,
or a castable resin pattern.

Selective laser sintering (SLS) and selective layer melting (SLM) are additive manu-
facturing techniques wherein high energy laser beams, guided by a 3D model, sinter or
melt metal powders together, layer by layer, to create a solid object [20,22]. Contrary to 3D
printed castable resin patterns, laser sintering and melting techniques represent methods of
direct “printing” of frameworks. Both SLS and SLM techniques employ similar concepts
with the difference being the complete melting of the metal alloy powder in SLM. Con-
sequently, SLM manufacturing produces accurate and extremely dense frameworks with
minimal porosities [22]. SLS is more commonly used in dental applications and utilizes
different materials, such as wax, thermoplastic polymers, ceramics, and metal alloys [22,23].
Both techniques are used for the additive manufacturing of metal frameworks and are
gaining popularity as they reduce laboratory steps and eliminate errors associated with the
casting process [20].

4. Digital Frameworks: Common Materials and Properties
4.1. Cobalt Chromium

Cobalt chromium alloys are biocompatible and have many desirable mechanical prop-
erties for the fabrication of removable partial denture frameworks. Therefore, it comes as no
surprise that digital technology is being employed in an attempt to overcome the limitations
of the casting process. As mentioned, there are multiple methods of fabricating a cobalt
chromium framework using CAD/CAM. The hybrid method begins with digital design
of a framework, followed by either milling or 3D printing of a resin or wax pattern that is
invested and cast using conventional methods. SLS and SLM are alternative techniques
that rely on a fully digital workflow.

Multiple studies have compared the fit of frameworks made from milled/3D printed
resin patterns to each other, as well as to conventional cast frameworks [17,24–27]. Al-
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though results varied among studies, the authors agreed that the three methods resulted
in frameworks that are within clinically acceptable limits. When comparing milled and
printed patterns, Snosi et al. found that milled patterns improved the fit of occlusal rests, as
well as overall framework fit [17]. This agreed with a second study that found that milled
patterns that were cast demonstrated significantly better fit as compared to conventional
cast frameworks, cast frameworks from 3D printed patterns, SLM frameworks and direct
laser sintered frameworks prior to finishing and polishing [25]. Interestingly, however,
these findings changed after polishing. Milled then cast frameworks still showed signif-
icantly better fit than conventionally cast and SLM frameworks but were comparable to
frameworks from direct laser sintering and 3D printed patterns. This highlights the impact
that careless manual finishing and polishing may have on fit [10]. Further, it is noteworthy
to mention that conventionally cast frameworks took the longest time to finish and polish,
with an average of 2 h. In contrast, milled then cast frameworks required an average of 1 h
to finish and polish [25].

Two studies that compared SLS frameworks to 3D printed then cast patterns showed
superior fit of the SLS frameworks [28,29]. This was not the case when SLS was compared
to conventional casting. Although both methods were within the clinically acceptable range
(50–311 µm), conventionally cast frameworks showed superior fit and accuracy [26]. An-
other study that compared the fit of retentive clasps and different techniques for framework
fabrication found distinct differences in terms of accuracy, with the milled/printed cast
patterns exhibiting the highest discrepancies [18].

Manufacturing techniques affected the fit and accuracy of the major and minor connec-
tors [25,26]. When comparing conventional, SLS, and 3D printed cast patterns, Soltanzadeh
et al. found that the poorest fit was within the anterior strap of the major connector of 3D
printed resin patterns [26]. Another noteworthy finding was that only conventionally made
frameworks showed no visible rocking on the cast. This was attributed to the support pro-
vided by the refractory cast for the wax pattern. Without this support, milled or 3D printed
patterns may be subjected to distortion during investment and casting procedures [25].

Although studies did not show consistent results with regard to superiority, the
accuracy and fit of digitally designed and manufactured frameworks appear to be within
the clinically acceptable range (Figure 3).

4.2. Titanium

Titanium is considered a core material in dentistry as it boasts several desirable
characteristics, many of which are similar to cobalt chromium [30]. It is biocompatible,
resistant to corrosion, ductile, and has a low density, which makes it significantly lighter
than other metals [30,31]. Despite its light weight, titanium exhibits excellent mechanical
strength. Commercially pure titanium is classified into grades I–IV, with grade IV titanium
being recommended for the fabrication of removable partial denture frameworks [32]. Early
interest in titanium subsided as a result of the challenges associated with its casting [30,31].
While some of these limitations remain, advances in material science and technology have
made it possible to fabricate removable partial denture frameworks from commercially
pure titanium [30,31]. Some studies show that cast cobalt chromium and cast titanium
frameworks exhibit similar clinical fit, porosity, and surface roughness [30]. In the world of
computer aided manufacturing, both milling and SLS/SLM of titanium frameworks have
been reported.

Milled titanium removable partial denture frameworks undergo a process that is
similar to that of cobalt chromium, wherein a wax or resin pattern is milled, invested,
and then conventionally cast [33]. Milling of frameworks from titanium discs has also
been attempted. However, the poor machinability of titanium when compared to other
dental alloys necessities longer milling times and results in significant wear of cutting
tools [34,35]. Worn burs result in an inevitable decline in milling accuracy, as well as
increased material waste. As with milling cobalt chromium, these limitations render the
process highly inefficient.
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Figure 3. Finished cobalt chromium removable partial denture with wrought wire clasps. While
framework fabrication methods vary, the steps of tooth setting, acrylic resin processing, and final
finishing and polishing remain the same.

Multiple studies assessed the properties of titanium alloys, particularly Ti6-Al4-V,
fabricated using SLS [36]. However, these studies investigated titanium from a material
science perspective, and no studies were found that evaluated additively manufactured
titanium removable partial denture frameworks [37]. Two studies evaluated the fit and
retentive qualities of laser sintered titanium clasps. Tan et al. compared SLM, milled, and
conventionally cast titanium clasps [38]. They found that although SLM clasps had signifi-
cantly higher initial retentive forces, laboratory cycling significantly diminished retention,
and all SLM clasps fractured at 4000 cycles. The authors concluded that laser sintering
of titanium should be improved prior to clinical applications [38]. In contrast, Takahashi
et al. found that laser sintered titanium clasps provided similar retention to cast titanium
clasps [39]. Further, they noted that cast titanium clasps tended to have a larger decrease in
retentive capabilities with repeated insertion and removal. The different outcomes may
have been influenced by handling and polishing protocols, as the additive manufacturing
of titanium produces rough surfaces as a result of the large particle size used [33].

4.3. Polyoxymethylene (POM)

While cobalt chromium alloys fulfil the requirements for partial denture frameworks,
compromised esthetics due to the display of metal clasps is a common complaint amongst
patients. Improving clasp esthetics is a challenge for restorative dentists [40]. As a result
of increased esthetic demand and awareness, research has been on focused on finding
alternatives to metal clasp assemblies. One such material, polyoxymethylene (POM), is a
thermoplastic technopolymer made of chains of alternating methyl groups linked together
by oxygen molecules [41]. It is more commonly known as acetal resin. Acetal is biocompati-
ble and has been successfully used for total hip replacements [42], temporomandibular joint
reconstructions [43], and other medical applications. Smith first suggested the possibility
of using acetal resin as a denture base material in 1962 [44]. Marketed since 1986, it has
been promoted as an esthetic clasp material that may be attached to a cast framework and
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as a denture base material [45]. Currently, acetal resin is available in 20 different shades,
17 of which are compatible with the VITA shade guide (VITA Zahnfabrik; Bad Säckingen,
Germany), as well as three different pink or gingival shades [45]. It is manufactured in
small pellets that can be used for injecting or pucks for wet or dry milling (Figures 4 and 5).
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Acetal clasp arms may be color matched to the patient’s tooth shade. Material testing of
these clasps has demonstrated high wear resistance and impact strength, flexibility, elastic
rebound, and resistance to most solvents and oils [45,46]. As a clasp arm, the flexibility
of acetal resin allows placement in retentive undercuts that may not be suitable for cobalt
chromium alloys [45]. A study by Meenakshi assessing clasp deformation showed that the
initial retentive capabilities of cobalt chromium clasps were superior to acetal resin clasps.
However, cobalt chromium clasps lost retention after approximately 730 cycles, while the
retentive capabilities of acetal resin clasps did not diminish over the testing period [47].
In contrast, other studies have shown significantly greater deformation in acetal clasp
assemblies over a three-year period when compared to those made from metal alloys [48].
To address this issue, Turner et al. suggested new specifications for acetal clasp arms. Their
study showed that an acetal clasp that is 5 mm in length and 1.4 mm in cross sectional
diameter would exhibit the same modulus of elasticity as a cobalt chromium clasp that is
15 mm in length and 1 mm in diameter [49]. Another study by Fitton et al. confirmed that
acetal clasps require a greater cross-sectional area than metal clasps to provide adequate
retention [41]. One acetal manufacturer specifies a length of 12 mm, thickness of 1.9 mm
tapering to 1.25 mm, and width of 2.8 mm tapering to 2.2 mm at the tip (Figure 6). Clasps
made to these specifications required a 1 kg force to displace the clasp tip by 0.5 mm, which
was deemed as adequate retention for a removable partial denture [41].
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Figure 6. Although size and taper of clasp arms vary between materials and manufactures, coverage
of the abutment teeth significantly increases with polymer-based clasps.

The greater cross-sectional diameter required for acetal clasp assembly results in the
coverage of a larger surface area of an abutment tooth as compared to metal clasps. In-
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creased coverage of tooth surfaces may promote increased food and plaque accumulation
with subsequent gingival inflammation and periodontal disease [41]. In a study comparing
microbial adhesion to acetal resin and cobalt chromium frameworks, it was noted that the
soft tissue beneath acetal frameworks harbored more microorganisms. In comparison, the
intaglio surfaces of cobalt chromium frameworks retained higher levels of microorganisms.
This study recommended the use of metal-based frameworks for patients with gastrointesti-
nal and pulmonary diseases to help minimize the risk of potential infection, as tissue debris
and microorganisms may be eliminated with the removal and cleansing of the denture [50].

No studies were found that compared the fit of frameworks fabricated from acetal
resin to those made from cobalt chromium or other polymers.

4.4. Polyamide

Polyamides, or nylons, represent another class of thermoplastic polymers. Due to
its crystalline structure, nylon’s properties include high strength, heat resistance, and
significant flexibility [51]. Watt first suggested using polyamides as a denture base material
in 1955 [52]. Since then, different companies have produced nylon denture base materials,
each with their own method of molding and polymerization. Marketed under many brand
names, including Lucitone FRS, Deflex, Flexite Supreme, and others, it is perhaps most
commonly known to clinicians by the brand name Valplast (Figure 7).
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Figure 7. 3D printed polyamide (Valplast) removable partial denture. The prosthesis lacks rest seats
and clasp assemblies and relies on engaging retentive undercuts of the remaining teeth.

Multiple studies have been conducted to compare the flexural strength of nylon to
other partial denture materials [53–56]. The results of these studies showed that nylon
partial denture bases exhibit the lowest flexural strength overall. In a related study, Tak-
abayashi found that polyamides failed to meet the ISO standard for Type III denture base
materials which requires more than 65 MPa of flexural strength [54]. He attributed nylon’s
low flexural strength to the absence of an aromatic ring within the polyamide structure
which allows water molecules to penetrate the polymeric structure. Despite its low flexural



Prosthesis 2022, 4 193

strength, nylon demonstrates significant resistance to fracture, toughness, and resistance
to stresses through deflection. This property allows nylon to provide sufficient retention
by engaging undercuts on remaining teeth, thereby eliminating the need for clasp assem-
blies [51]. A study by Wadachi et al. showed that polyamide partial dentures exerted
significantly higher forces on the supporting soft tissue compared to other resins [57]. This
is likely due to the material’s flexibility and the lack of tooth support, as rests seats are not
usually incorporated in polyamide partial dentures. Subsequently, the authors suggested
that nylon be reinforced with metal substructures [57].

Disadvantages of nylon-based partial dentures include color instability, surface rough-
ness, and subsequent microbial adhesion. In comparison to other resins, polyamide partial
dentures showed the greatest color changes when soaked in curry and coffee [54]. Simi-
lar staining occurred when nylon-based partial dentures were soaked in beverages that
included red wine and cola [58]. Studies on surface roughness showed that polyamide
produced rougher surfaces when compared to PMMA, both before and after polishing [59].
Polyamides surfaces proved to be softer and more easily damaged with a scratch test when
compared to PMMA [60].

Multiple studies have shown that the polymerization shrinkage of nylon is greater
than that of PMMA, but that water sorption may cause it to expand [61,62]. However,
the expansion that occurs does not equal polymerization shrinkage, and is therefore not
compensatory [61]. The water sorption properties result in dimensional instability that
affects the fit of nylon removable partial dentures [51]. No studies were found that compare
the fit of polyamides to cobalt chromium or other metal alloys.

4.5. Polyaryletherketone Polymers (PAEK)

Several high-performance polymers have been developed in an attempt to overcome
the limitations of currently available materials. Most if not all of these polymers are derived
from the polyaryletherketone (PAEK) family. These polymers are composed of aryl, ether,
and ketone molecules that are arranged in different polymeric arrangements to form various
amorphous and semi-crystalline structures. PEEK is perhaps the most well-known member
of the PAEK family currently used for dental applications [63,64]. While the medical and
dental literature cites many studies on PEEK resins, data is limited on other PAEK polymers.
This review will attempt to cover some of the available studies on these polymers.

4.6. Aryl Ketone Polymers (AKP)

Solvay Dental 360 released a high-performance aryl ketone polymer (AKP) marketed
under the name Ultaire AKP. According to the manufacturer, Ultaire AKP has high impact
and flexural strengths, which are superior to other available removable partial denture
materials [65]. In contrast to polyamides, Ultaire AKP is resistant to water sorption and re-
sists cleaner-induced surface roughness. The manufacturer claims that its elastic properties
result in clasps that outperform those made from cobalt chromium in fatigue testing [65].
Marie et al. compared the deformation and retention of Ultaire AKP clasps to cobalt
chromium clasps [66]. They found that although cobalt chromium clasps had higher reten-
tive values, there was a reduction in retention with time due to permanent deformation.
Ultaire AKP clasps showed lower but consistent retentive forces over 15,000 cycles and
underwent minimal deformation even when subjected to non-ideal paths of removal.

Ultaire AKP was further evaluated against polyetherketoneketone (PEKK), another
polymer from the PAEK family [67]. Clasps from Ultaire AKP, PEKK and cobalt chromium
were tested under similar 15,000 cycles in a fatigue test to assess retention and deformation.
As with previous studies, both Ultaire AKP and PEKK clasps demonstrated significantly
lower retention when compared to cobalt chromium. Fluctuating retentive values were
noted for all three groups. Cobalt chromium clasps demonstrated the highest retentive
values after 15,000 cycles. Baseline retentive values for polymer clasps were maintained,
thus supporting their clinical use for removable partial dentures [67].
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When comparing biofilm formation and microbial adhesion to Ultaire AKP and cobalt
chromium frameworks, an in vitro study showed that Ultaire AKP resulted in significantly
reduced Candida albicans and Streptococcus mutans biofilm attachment at 6 h [65]. A biofilm
consisting of a Streptococcus mutans/Streptococcus sanguinis mixture proved to be less differ-
entiated on Ultaire AKP as compared to cobalt chromium and POM. The authors concluded
that Ultaire AKP may be an attractive removable partial denture framework material since
it has excellent mechanical properties while promoting less microbial adhesion, particularly
of cariogenic Streptococci [65].

4.7. Polyetheretherketone (PEEK)

Polyetheretherketone, or PEEK, is another synthetic, thermoplastic polymer with a
semi-crystalline structure [68]. It has been used in orthopedics for many years as a spinal
cage and joint replacement material [69,70]. In dentistry, PEEK has been studied as a
potential material for dental implants, implant abutments, fixed crowns and bridges, and
removable partial denture components [71]. PEEK has been shown to be biocompatible,
wear resistant, water insoluble, and shows low reactivity with other materials. It has a
modulus of elasticity that is similar to enamel, dentin, and human bones, and has a low
plaque affinity compared to metals and other resins [71,72]. These properties suggest PEEK
as an alternative material for the fabrication of removable partial denture frameworks.

Peng et al. conducted a finite element analysis study to assess PEEK as a material
of choice for the fabrication of clasp assemblies [72]. As with acetal resin, the authors
found that clasp specifications recommended for cobalt chromium alloys did not apply
to PEEK clasps. They found that PEEK clasps made having a width of 3 mm, a thickness
of 2.25 mm at the base and a taper ratio of 0.5 that engage a 0.50 mm undercut provided
acceptable retentive and mechanical properties. PEEK and cobalt chromium clasps cycled
to simulate a 10-year clinical use life span showed varying deformation profiles in early
cycles, but no significant differences in the long-term deformation of either material [72].
Clinical reports of cobalt chromium frameworks using PEEK clasp assemblies showed no
complications and very little color or texture changes during follow-ups at six months and
two years [73,74].

Removable partial denture frameworks milled out of PEEK have also been examined
by multiple authors. One study compared milled PEEK frameworks to cobalt chromium
frameworks made by different methods including the lost wax technique, milled/printed
castable patterns and selective laser melting. The results showed that PEEK frameworks
showed the lowest distortion and best fit [18]. In a finite element analysis, Chen et al.
compared the mechanical function of frameworks made from cobalt chromium alloys,
titanium alloys (Ti-6Al-4V) and PEEK. In this study, PEEK frameworks exerted lower
stress on the periodontal ligaments of abutment teeth and showed a more uniform dis-
tribution of masticatory forces as compared to metal alloy frameworks. However, they
noted higher stresses and displacement of supporting tissues beneath distal extension
PEEK frameworks [75]. Another study comparing residual ridges of patients with distal
extension PEEK removable partial dentures to edentulous patients not wearing a prosthesis
showed no significant three-dimensional differences [76]. These findings suggest that PEEK
frameworks may have a reduced impact on supporting soft tissues and alveolar bone, and
that they may help to preserve residual ridges in edentulous patients. It must be noted
that this was a short-term study lasting only one year. Several case reports showed high
patient satisfaction and occlusal stability with PEEK frameworks [77,78]. Interestingly,
patients who had previously worn partial dentures with cobalt chromium frameworks
reported reduced retention upon insertion of their newly made PEEK removable partial
dentures. Some authors have suggested engaging deeper undercuts, such as 0.50 mm, or
using bulkier clasps to enhance retention, if necessary [49,72,78].

A randomized controlled trial was conducted to compare oral health related quality
of life (OHRQoL) in partially edentulous patients treated with cobalt chromium and PEEK
removable partial dentures. The study found that both materials significantly improved
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OHRQoL after four weeks, six months, and one year [68]. While patient satisfaction
scores were better for PEEK removable partial dentures, the differences in scores were
not statistically significantly. Further, periodontal examinations revealed no difference in
periodontal probing depths, gingival bleeding indices or plaque indices between the two
materials. The trial concluded that PEEK removable partial dentures and cobalt chromium
partial dentures had a similar effect on the periodontium [68]. As with previous studies on
PEEK removable partial dentures, the trial had a short follow-up period of one year as well
as a small sample size of 26 patients.

Table 1 provides an overview of the digitally fabricated framework materials discussed
in this review.

Table 1. An overview on the different removable partial denture framework materials, their method
of fabrication and mechanical properties.

Framework Material Fabrication Method Properties

Cobalt chromium
Conventional lost wax technique High strength, heat resistance and light weight with

favorable resistance to wear, corrosion, and staining.Milled/3D printed castable patterns
SLS and SLM

Titanium
Conventional lost wax technique Biocompatible, resistant to corrosion, ductile, light weight

and high strength.Milled/3D printed castable patterns
SLS and SLM

Acetal
Injection molding Biocompatible, high wear resistance and impact strength,

low thermal conductivity, and marked flexibility.Milling

Polyamide Injection molding High strength and fracture resistance, heat resistance, stress
deflection and significant flexibility.3D printing

PAEK (AKP) Milling High impact and flexural strength, resistance to water
sorption and better resistance to microbial adhesion.

PEEK Milling Biocompatible, unreactive with other materials, wear
resistant, and has a modulus of elasticity that is similar to
dentin and bone.

5. Considerations and Limitations
5.1. Design Principles and Guidelines

A review of case reports and studies involving digitally fabricated polymer frame-
works reveals that rests are often omitted from clasp assemblies. Rigid rests are critical
components of framework design as they provide vertical support to resist settling of the
denture and subsequent impingement of underlying soft tissue [79]. Even when incor-
porated, rests made from flexible polymers will not effectively transmit vertical forces to
the abutment teeth unless they are of adequate thickness [80]. This is seldom possible
without aggressively preparing abutment teeth, and rests are therefore omitted. Conse-
quently, many of the reported complications seen with polymer-based removable partial
denture frameworks stem from poor removable partial denture designs and deviation from
established principles [4].

To minimize plaque retention and metal display, design principles for metal clasp arms
specify minimal abutment tooth contact and the importance of maintaining an adequate
distance between the clasps and free gingival margins. In contrast, due to their inherent
flexibility, attaining adequate retention with polymers requires clasp arms of greater di-
mension. This increases abutment tooth contact and may locate clasps closer to gingival
margins. Polymer clasp dimension recommendations varied among studies, making it
difficult to objectively compare outcomes. Further, it remains questionable whether wider
and thicker polymer-based clasps provide better esthetic outcomes despite matching the
shade of abutment teeth (Figure 8).
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5.2. Rigidity of the Major Connector

Major connectors join components of the removable partial denture on opposite sides
of the arch. Major connectors must be rigid to provide cross arch stability and provide
resistance to the forces of mastication [81]. Rigidity is diminished in major connectors made
from polymers with low flexural moduli. A study assessing chewing capabilities with
PMMA, acetal, and polyamide removable partial dentures found that a lower modulus of
elasticity was associated with reduced chewing ability and food fragmentation levels [82].
The authors attributed this finding to the lack of rigidity of acetal and polyamide. Flexible
materials may attain greater rigidity with appropriate dimensional modifications. The
question then becomes how thick a major connector should be to attain sufficient rigidity,
and what implications would the increased material bulk have on patient comfort, weight
of the prosthesis, and interference with speech and deglutition.

5.3. Repair and Bonding

It is well established that the ongoing process of ridge resorption is not halted by the
use of conventional removable partial dentures. As resorption progresses, cobalt chromium
frameworks with heat processed acrylic resin denture bases may be relined using heat or
self-curing acrylic materials. Relining these removable partial dentures is predictable and
requires no special surface treatment as PMMA forms a strong chemical bond with itself.
The composition of the polymers discussed may make bonding with acrylics or composites
difficult due to a lack of chemical bonding. Peng et al. investigated methods of bonding
denture base acrylic (PMMA) to PAEKs using various surface treatments [83]. They found
that sandblasting and priming the PAEK material prior to bonding denture acrylic provided
shear bond strength that fulfilled clinical guidelines. Other studies have examined bond
strength to different polymers, but no definitive guidelines or recommendations for long
term bonding have been made [84–89].
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5.4. Clinical Studies and Long-Term Follow-Up

In this review, the majority of studies on digital frameworks and removable partial
dentures made from technopolymers were in vitro in nature. There is a lack of clinical
studies or trials with long term follow-up using sintered titanium or polymers as removable
partial denture frameworks. Further, the information currently available regarding the
mechanical and chemical properties of thermoplastic polymers may not apply to clinical
settings [4]. Consequently, it is unknown how durable these partial denture frameworks
will be, and what complications may arise in the long term. Critical issues, such as
debonding, peeling, or discoloration at the junction between thermoplastic polymers and
acrylic, have not been studied [4]. Further, none of the studies assessed the stability of
polymer-based clasps and frameworks. Poor stability, defined as the excessive movement
under function, is the most common complaint amongst removable partial denture users.
The lack of definitive long-term clinical studies combined with the lack of adequate design
principles should make clinicians cautious when using the aforementioned polymers for
definitive prostheses.

As the CAD/CAM and material science worlds advance, research efforts should
perhaps be directed towards studying alternative design principles that may be better
suited to the properties of newly developed polymers. Some authors, for example, have
suggested obtaining support and resistance to vertical displacement from components
placed above the survey line [80]. Different clasp assembly designs that engage both above
and below the survey line have been introduced [80,90]. The impact of clasp design on
load distribution with polymers such as PEEK has been shown to be substantial. When this
was studied further, certain clasp designs displayed similar load distribution patterns to
removable partial dentures designed with the RPI concept [91]. Such findings highlight
the importance of carefully assessing the mechanical and chemical properties of novel
framework materials. By doing so, clinicians are able to advantageously utilize these
unique properties to fulfil fundamental principles of removable partial denture design.

6. Conclusions

Digital technology has revolutionized the removable partial denture fabrication pro-
cess. The development of alternative methods, such as SLS and SLM, for the additive
construction of cobalt chromium and titanium frameworks is promising as they reduce
fabrication errors and inaccuracies. The introduction of esthetic thermoplastic polymers as
potential framework materials has challenged many aspects of the design and fabrication of
removable partial dentures. Within the limitations of this review, the following conclusions
can be drawn:

1. While promising, clinical studies on additively manufactured titanium frameworks
are required to determine their overall fit, function, and impact on supporting abut-
ment teeth.

2. Clasp arms made from thermoplastic polymers require additional bulk to serve
as retainers.

3. The inherent flexibility of novel polymers limits their use as major connectors, minor
connectors, and rest seats.

4. Removable partial dentures made from novel polymers are difficult to reline and repair.
5. Currently, removable partial dentures made from thermoplastic polymers are best

used as interim prostheses as long-term evidence of their function is lacking.
6. Future improvements in high performance polymers and digital manufacturing meth-

ods may help to address the need of the growing partially edentulous population.
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