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Abstract: The solutions to the radial Schrédinger equation for a pseudoharmonic potential and
Kratzer potential have been studied separately in the past. Despite different reports on the Kratzer
potential, the fundamental theoretical quantities such as Fisher information have not been reported.
In this study, we obtain the solution to the radial Schrodinger equation for the combination of
the pseudoharmonic and Kratzer potentials in the presence of a constant-dependent potential,
utilizing the concepts and formalism of the supersymmetric and shape invariance approach. The
position expectation value and momentum expectation value are calculated employing the Hellmann-
Feynman Theory. These expectation values are then used to calculate the Fisher information for
both position and momentum spaces in both the absence and presence of the constant-dependent
potential. The results obtained revealed that the presence of the constant-dependent potential leads
to an increase in the energy eigenvalue, as well as in the position and momentum expectation values.
Additionally, the constant-dependent potential increases the Fisher information for both position and
momentum spaces. Furthermore, the product of the position expectation value and the momentum
expectation value, along with the product of the Fisher information, satisfies both Fisher’s inequality
and Cramer—Rao’s inequality.

Keywords: bound state; wave equation; eigensolution; fisher information; potential model

1. Introduction

The utility of potential systems in quantum mechanics spans a wide spectrum, encom-
passing solutions for both bound states and scattering states, as well as various theoretical
quantities such as Fisher information, Shannon entropy, variance, Tsallis entropy, Rényi
entropy, and information energy. Diverse physical potential models have been employed
to derive energy spectra for different systems, resulting in varying outcomes. For instance,
when considering the sodium dimer, the energy predictions from the Yukawa potential
differs from those generated through the Woods-Saxon potential. Such discrepancies arise
due to the distinct physical natures and parameterization of these potential models. In the
realm of quantum systems, atomic interactions are often modeled using potential energy
functions, which greatly influence the properties exhibited by different systems. These
potential functions, particularly those falling within the class of exponential-type potential
models, effectively describe diatomic molecules and provide numerical values that align
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with observed data. Many of these energy potential functions have been adapted for
suitability by Jia et al. [1] and are commonly explored through appropriate approximation
schemes. This exploration has piqued the interest of numerous authors and researchers,
particularly in nonrelativistic quantum mechanics, where the ro-vibrational spectra of di-
verse quantum systems have been extensively studied [2-17]. For instance, Njoku et al. [18]
studied the Hua potential model under the nonrelativistic system. These authors obtained
the bound state solutions of the Schrodinger equation for the Hua potential model. The
authors numerically examined the effect of the equilibrium bond length on the energy eigen-
value for different quantum states. They further extended their study to the calculation of
thermodynamic properties, investigating the effects of the maximum quantum state and the
temperature parameter on the partition function and other thermodynamic properties such
as mean energy, specific heat capacity, entropy, and free mean energy. Yasuk et al. [19] stud-
ied the Schrodinger equation for a noncentral potential system, employing a combination
of radial and angular potential models. Using the method of the separation of variables,
these authors calculated the energy equation and the wave function of the system using the
Nikiforov-Uvarov method. They obtained special cases of the noncentral potential, such as
the Coulomb and Hartmann ring-shaped potentials, and compared the results with those
in the existing literature. In ref. [20], Okon et al. studied the solutions of the Schrodinger
equation for a combination of the Hulthén and an exponential Coulomb-like potential
model using the parametric Nikiforov—Uvarov method. They examined the behavior of the
energy of the combined potential as well as the subset potential for various quantum states
and angular momentum quantum states. The energy of the Hulthén potential rises as the
quantum state increases. Similarly, the energy rises as the screening parameter increases for
the same Hulthén potential. Yahya and Issa [21] obtained the solutions of the Schrodinger
equation for improved Tietz potential and improved the Rosen—-Morse potential model
using the methodology of the parametric Nikiforov—Uvarov method. They studied the
energy eigenvalue and the wave functions of the two potentials separately. These authors
examined the relationship between the energy and the deformed parameter. They also
examined the effect of the angular momentum number on the energy of the improved
Rosen-Morse potential model at different quantum numbers.

However, there exists another category of potential models tailored toward investigat-
ing bound state problems and related quantum systems that are not in the exponential form
or Poschl-Teller form. Notably, among these models are the pseudoharmonic potential and
the Kratzer potential. The pseudoharmonic potential integrates elements of the harmonic
potential model, the inverse potential system, and a constant term, and is thereby capable
of reproducing solutions from these three distinct potential models. Unlike many other
models, the physical nature of the pseudoharmonic potential discourages the application
of approximation schemes. Proposed by Davidson [22], the pseudoharmonic potential
was specifically devised to elucidate the roto-vibrational states of diatomic molecules. On
the other hand, the Kratzer potential serves as a molecular potential used to elucidate
molecular structures and atomic interactions. Its widespread application has primarily
centered around bound states within the molecular domain. Because of the applications
of these potentials, several authors have reported the potentials separately in the field of
Physics. Among the reports on the pseudoharmonic potential and the Kratzer potential
are the work of Oyewumi and Sen [23], who studied the pure pseudoharmonic potential
in the context of bound states and applied their study to diatomic molecules. In ref. [24],
Oyewumi et al. studied a D-dimensional system of pseudoharmonic potential and con-
structed ladder operators. Sever et al. [25] obtained energy spectra for the pseudo-harmonic
potential and generated numerical values for some molecules with the first six quantum
states. Ikhdair and Sever [26], in their study, calculated the exact polynomial eigensolutions
of the Schrodinger equation for the pseudoharmonic potential. In the study, they obtained
exact bound-state energy eigenvalues and the corresponding eigenfunctions analytically.
The energy states for several diatomic molecular systems were calculated numerically for
various principal and angular quantum numbers. Through a proper transformation, the
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problem was also solved and made very simple using the known eigensolutions of the
anharmonic oscillator potential. Das and Arda [27], in one of the articles studied, deduced
the exact analytical solution of the N-dimensional radial Schrodinger equation with pseu-
doharmonic potential using a Laplace transform approach. The authors examined the
variation in the spatial dimensions against the energy of the system. Recently, the exact
solutions of the k-dependent Schrodinger equation with quantum pseudo-harmonic oscil-
lator and its applications to the thermodynamic properties in normal and superstatistics
were obtained by Okorie et al. [28]. The pseudoharmonic potential is generally used to
describe the roto-vibrational states of diatomic molecules, nuclear rotations, and vibrations.
The Kratzer potential also received different reports on the nonrelativistic models. Some of
the reports on the Kratzer potential include the work of Bayrak et al. [29], who studied the
radial Schrodinger equation with the Kratzer potential and obtained the exact analytical
solutions to the Kratzer potential using the asymptotic iteration method. They generated
numerical values for some molecules using their spectroscopic constants. Despite the
extensive reporting on the Kratzer potential, its utilization concerning Fisher information
remains underexplored to the best of our understanding. Motivated by the interest in Fisher
information for nonexponential-type potentials, the current study aimed to scrutinize the
applicability of Fisher information in a scenario involving a combination of the pseudo-
harmonic potential and the Kratzer potential, alongside a constant-dependent potential.
The effects of the constant dependent potential and the potential parameters on the Fisher
information will be examined numerically to verify the Cramer-Rao inequality and Fisher
inequality. The Fisher information for the combination of these potentials will be obtained
using expectation values. The specific form of the potential model under investigation is
physically represented as [22]

2
_p(r_Te
o =o(L-2), )
while the Kratzer potential is given as [30]
2r r2
) = -2 - %), @

where D, is a dissociation energy,  is the internuclear distance, and . is an equilibrium
bond separation. These two potentials take the form of molecular potential due to their
possession of parameters with physical meanings. The combination of Equations (1) and (2)
with a constant-dependent potential is given as

V(r) = Vi(r) + Va(n)](1 + 7). 3)

The parameter (77) is known as the constant-dependent potential.

The nonrelativistic solutions for Equation (3) will be obtained using a supersymmetric
approach. The pseudoharmonic potential and the Kratzer potential have been reported by
different authors for some models.

2. Bound State Solutions

To obtain the solutions of the redial potential system in Equation (3), the radial
Schrédinger equation with nonrelativistic energy E, 1, reduced Planck constant 7, the
reduced mass of the molecule , and the radial wave function R,, 1 (r) is given as

ﬁz dZRn,$ (1’)
2u dr?2

1

+ (V(r) + 2]/11,2)12”,1(7’) = EnliRnli(T). 4)



Quantum Rep. 2024, 6

187

danli (7’)

T (—A(Enli —2D,(1+7)) +

Substituting the radial potential system in Equation (3) into Equation (4), we obtain a
second-order differential equation of the form

2AD2(1+1) +3(3+1)

+ 3

AD(1+y)r*  2ADere(1+17)
r2 r

)Rm(r) =0. (5

where A = % The supersymmetric approach suggests the ground state wave function for
the next step. Thus, the ground state wave function is written as

Rog(r) = exp(~ [ WO ), ©

where W(r) is referred to as a superpotential function in supersymmetry quantum me-
chanics. The ground state wave function corresponds to the two partner Hamiltonians
given as

PN 2
Hy = AAt= -4 4 v, (r) -
Ho=AtA=-% v () [
where p
A=L —W(r) }
i+ 1 8
At =—4L —W(r)

In substituting the ground state wave function into Equation (5), the resulting solution
appears as a differential equation of the form

AD,(1 2 2M1.De(r. —r)(1 1
~A(Eg —2De(147)) + ety | 2AreDe(re f)(r2+17)+$(1+ ) ©)
where the superpotential W(r) is proposed as follows:
W(r) =6 — 61" (10)

The two terms 6y and 67 in Equation (10) represent constants in the proposed su-
perpotential, which will soon be determined. The superpotential is proposed based on
the interacting potential and the nature of the Riccati equation in Equation (9). This will
ensure that the property of the left-hand side and the right-hand side of Equation (9) are
the same. In substituting Equation (10) into Equation (9) and conducting subsequent math-
ematical manipulations and simplifications, the values of the superpotential constants in
Equation (10) are obtained as follows:

“14\/(142)* +-8AD2 (1 + 1)

6 = ADer.(1+ 1)6; ", (12)
08 = ~A(Eyp +2Dere(1 1)) — 613/ A 1Dar (1 4 ). (13)

With the aid of Equations (7), (8), and (10), the partner potentials in supersymmetry
quantum mechanics can be constructed as

dW(r)

2000, 6:1(6; — 1)
2 2 oY1 1\Y1
[/+(7’) =W (1’) + P 90 p + 2 , (14)
dW(T’) 29091 91 (01 + 1)
— W2 _p2
V_(r) = W(r) o= 65 . + R (15)

Equations (14) and (15) are family potentials and they satisfy the shape invariance
condition through the mapping of the form 6; — 0; +n, 6; = ap. It is deduced that
a1 = f(ag) = ap + 1, where a; is a new set of parameters uniquely determined from the old
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set a9, and R(aq) is a residual term that is independent of the variable r. Since 4y = a9 + 1
and by recurrence relation, a, = ap 4+ n. From the shape invariance approach, we can
write [31-33]

R(ay) = Vy(ag,r) —V_(ay,1), (16)
R(a) = Vy(ay,r) — V_(az, 1), (17)
R(az) = Vi (ap,r) —V_(az,1), (18)
R(an) = Vi(ay_1,7) — V_(an,1). (19)

The energy level can be obtained using
n
E,1 = Y, R(ax) = R(a1) + R(az) + R(a3) ... + R(an). (20)
k=1

From Equation (20), we obtain the complete energy eigenvalue equation as

2u*D2r2(1+ 1)

1 1.\2 2h [uD.(1 1
5 <n +5+ 2A> o % <2n +1+ 2A> — 2D, (21)
e

A= \/(1 +2)% 4+ 8AD2(1 + 7). (22)

3. Calculation of Expectation Values

Here, we calculate the position and momentum expectation values using the Hellmann—
Feynman Theorem. The Hellmann-Feynman Theorem relates the derivative of the total
energy with respect to a parameter to the expectation value of the derivative of the Hamilto-
nian with respect to the same parameter [34-37]. If the spatial distribution of the electrons is
determined by the solution of the Schrodinger equation, then the forces in the system can be
calculated using classical electrodynamics. If the Hamiltonian H for a particular system is
a function of some parameter v with the eigenvalue and eigenfunctions denoted by E,, 1 (v)
and R, 1(v), respectively, then we can find the various expectation values provided that the
associated normalized eigenfunction R, 1(v) is continuous with respect to the parameter

v. Then,
aEm(v) B aH(v)
v <R”'¢(U) TS R”'i(v)>’ )
and 2 2 2 2 2
_ ra mIg+1) LA N
H= 2u dr? + 2u 12 +De fe T De roor) @4

The various expectation values can now be calculated.
(I): Expectation value <r2>. To obtain the expectation value of r2, we set v = D,,
and then,

22,2 2
(R) =2 ihaV2 _ 4PDire(tn)” ) 25)
A Iz I2A

(I1): Expectation value (p?). Setting v = 1, we obtain the following expectation value:

(26)

_ 4P (1+7)° (1 _4D.r2(1 +17)> L V2D(1+1) (ﬁ2A1 N 4Azr§) A A2
B R2AZ '

2 ANgh? u Apr? AR 2

4. Fisher Information

Fisher information is a concept in information theory that measures the amount of
information that is available in a given system. In a quantum system, Fisher information is
a probabilistic measure of uncertainty in a system. According to Gibilisco and Isola [38], a
family of inequalities, related to the uncertainty principle, has been recently proved [39]. It
is known that Heisenberg and Schrédinger uncertainty principles give lower bounds for
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the product of variances. Gibilisco et al. [40] proved an uncertainty principle in Schrodinger
form where the bound for the product of variances depended on the area spanned by the
commutators and with respect to an arbitrary quantum version of the Fisher information.
According to refs. [41,42], for quantum mechanical systems, the Fisher information-based
uncertainty relation has been used as an alternative to the Heisenberg uncertainty relation
(HUR). Therefore, for a system with physical parameters 6 and p(r, ) [41,42],

/drp(r,e) =1, (27)

where p(r, 0) accounts for the details of the probability density. The examination of Fisher
information occurs in two distinct parts, namely, Fisher information in the position space
and Fisher information in the momentum space. The expressions for Fisher information in
both the position and momentum spaces can be written as follows:

< do(r 2
1) = [ 55| %2 ar,

N o [ (28)
1) = [ 5 [52] dp.

where p(r) is the probability density for the position space, and p(r) is the probability
density for the momentum space. The implication of Equation (28) is that a concentrated
density yields a higher quantity, offering a local change in density where the system
can be more effectively described from an information-theoretic perspective. In terms of
expectation values, the Fisher information for both the position space and the momentum
space can thus be expressed as follows [43-46]

I(p) = 4(p?) — 2(2L + 1)|m|(r2),
I(y) = 4(r*) —2(2L+1)|m|[{p~2) } (29)

where L is the total angular momentum, and m is the magnetic quantum number. In the
absence of the magnetic quantum number 1, the terms after the minus sign of Equation (29)
vanishes, and then, the Fisher information for the position space and the Fisher information
for the momentum space in Equation (29) can be written in the following form:

I(p) = 4(p?),
1) = a2 } (30)

To check the validity of the product of expectation values as a Cramer—Rao inequality,
Dehesa et al. [44], gave the following conditions:

)2 (L+1) (), }
2 (el [ o
These imply that

1(0) = 4(1 - 555 ) (%), } (32)

2
1(7) > 4(1- 25 ) ()
When m = 0, the product of Equation (32) can be written as

1(0)1(7) = 16(p*)(r*). (33)

The minimum bound for the Fisher product [43] is given by

I(p)I(y) > 36. (34)
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In using Equations (21) and (34), the minimum bound of the product of the position
and momentum expectation becomes

(7)) =3 e

In substituting Equations (25) and (26) into Equation (30), the Fisher information for
the position space and the momentum space, respectively, becomes

Ho) = 1613D22(1 + 17)? 1 4Dri(1+479) N 4v2D,(1+7) [ h2Aq N 4012\ A2 A 36)
P 1212 12 AAHZ 1 A2 " AR iz

_ 8y (ﬁAZ\/E  42D%2(1+ ;7)2>. -

I -

5. Discussion

Table 1 presents the energy eigenvalues of the combination of the pseudoharmonic
potential and the Kratzer potential for various quantum numbers and angular momentums
in the absence and presence of the constant-dependent potential for two different values
of the dissociation energy. The energy of the combined potentials responds positively to
an increase in each of the dissociation energy, quantum number, angular momentum, and
constant-dependent potential. This implies that an increase in the dissociation energy,
quantum number, angular momentum, or constant-dependent potential increases the
energy of the interacting potential system. From Table 1, it is noted that as the angular
momentum increases, the energy difference between successive angular momenta increases.
In Table 2, the energy of the combination of the pseudoharmonic potential and the Kratzer
potential for various quantum numbers and equilibrium bond lengths in the absence and
presence of the constant-dependent potential is presented. The numerical values in Table 2
show that the equilibrium bond length varies inversely with the energy of the interacting
potential. However, the quantum number and the angular momentum respectively vary
directly with the energy of the system. In Table 3, we present the energy eigenvalue of the
interacting potential for various dissociation energies and constant-dependent potentials at
the ground state and the first excited state. The energy of the combined potential model
increases as the dissociation energy and the constant-dependent potential respectively
increase. The energy of the system also increases as the quantum number and the angular
momentum respectively increase.

Table 1. Energy eigenvalue for various quantum states and angular momentum with y = 2 =1
and 7, = 0.25 in the absence and presence of constant-dependent potential for two values of the
dissociation energy.

=0 7=0.5
n £
D, =5 D, =10 D,=5 D, =10
0 0 19.1915543 30.2367130 29.9096370 50.2267069
1 26.8693976 38.6168018 38.0538010 58.8074820
2 37.5880690 51.8488919 50.2771052 73.2878939
3 49.3042587 67.2542617 64.1033929 90.9334004
1 0 43.8601841 64.5835661 59.8627152 91.8404299
1 51.8866789 73.5761120 68.5040080 101.195400
2 62.7622893 87.2096164 81.0061110 116.302626
3 74.5398554 102.806150 94.9538017 134.292068
2 0 68.9627325 99.8304090 90.4917350 134.751205
1 77.0734494 109.000745 99.2664182 144.358222
2 88.0004415 122.777346 111.864086 159.703767
3 99.8033288 138.455898 125.862895 177.845801
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Table 1. Cont.

=0 7=05
n 14
D.=5 D, =10 D.=5 D, =10
3 0 94.1756967 135.354381 121.312779 178.109873
1 102.316428 144.594507 130.137638 187.822519
2 113.265083 158.434548 142.776689 203.277995
3 125.080290 174.154043 156.800703 221.497925

Table 2. Energy eigenvalue for various quantum states and equilibrium bond length with y = A =1

and D, = 5 in the absence and presence of constant-dependent potential for s— wave and §— wave.

=0 7=0.5
n Te
£=0 £=1 £=0 £=1
0 0.5 12.4202881 14.5803237 21.9178843 24.0760055
1.0 9.39252710 9.91579930 18.2993918 18.8139539
15 8.44361600 8.66857060 17.1549376 17.3764753
2.0 7.98103440 8.10491030 36.3343188 16.7170015
1 0.5 24.3346767 26.7141787 25.2162768 38.7409248
1.0 15.1059713 15.6968954 21.6715263 25.7961769
1.5 12.1681436 12.4202881 19.9405623 21.9178843
2.0 10.7362083 10.8734364 16.5947227 20.0746906
2 0.5 36.6586629 39.1157627 51.3010558 53.8062866
1.0 21.0620459 21.6877923 32.4241376 33.0409857
1.5 16.0437357 16.3126127 26.3605159 26.6233344
2.0 13.5932412 13.7395803 23.3994205 23.5421470
3 0.5 49.1359643 51.6272352 66.4978821 69.0498216
1.0 27.1474431 27.7929105 39.8011807 40.4404751
15 20.0143131 20.2940459 31.1657135 31.4398758
2.0 16.5207835 16.6735512 26.9411554 27.0902716
4 0.5 61.6833974 64.1920084 81.8076698 84.3845319
1.0 33.3080324 33.9654942 47.2832585 47.9369683
1.5 24.0475954 24.3346767 36.0520860 36.3343188
2.0 19.4986801 19.6561126 30.5450424 30.6990056
5 0.5 74.2674019 76.7857329 97.1793420 99.7706981
1.0 39.5153037 40.1804755 54.8339773 55.4973648
1.5 28.1239350 28.4161668 40.9968719 41.2850021
2.0 22.5134945 22.6743939 34.1964520 34.3541585

Table 3. Energy eigenvalue for various values dissociation energies and constant-dependent potential

with y = A =1 and r. = 0.25 at the ground state and first excited state.

n=0 n=1
D, Ul
£=0 =1 £=0 =1
1 0 4.18168780 6.0217369 9.72050810 11.6301374
1 8.50000000 10.5510171 16.2222222 18.4038820
2 12.5793525 14.7015198 21.9412282 24.2349788
3 16.5379816 18.6878788 27.2631497 29.6126984
4 20.4202881 22.5803237 32.3346767 34.7141787
5 24.2487113 26.4107479 37.2301178 39.6259364
2 0 6.50000000 8.55101710 14.2222222 16.4038820
1 14.5379816 16.6878788 25.2631497 27.6126984
2 22.2487113 24.4107479 35.2301178 37.6259364
3 29.7921099 31.9479971 44.6521671 47.0601538
4 37.2291330 39.3742236 53.7304216 56.1377674
5 44.5908154 46.7242693 62.5667333 64.9679851
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Table 3. Cont.

n=0 n=1
D, 1
£=0 £=1 £=0 £=1
3 0 8.57935250 10.7015198 17.9412282 20.2349788
1 20.2487113 22.4107479 33.2301178 35.6259364
2 31.5215665 33.6722999 47.2265378 49.6351901
3 42.5908154 44.7242693 60.5667333 62.9679851
4 53.5303880 55.6472139 73.4925650 75.8806382
5 64.3780215 66.4800000 86.1265502 88.5000000
4 0 10.5379816 12.6878788 21.2631497 23.6126984
1 25.7921099 27.9479971 40.6521671 43.0601538
2 40.5908154 42.7242693 58.5667333 60.9679851
3 55.1551611 57.2668299 75.7320533 78.1153066
4 69.5701085 71.6631972 92.4238854 94.7875816
5 83.8790804 85.9565223 108.781987 111.126964
5 0 12.4202881 14.5803237 24.3346767 26.7141787
1 31.2291330 33.3742236 47.7304216 50.1377674
2 49.5303880 51.6472139 69.4925650 71.8806382
3 67.5701085 69.6631972 90.4238854 92.7875816
4 85.4430187 87.5169397 110.829779 113.170292
5 103.197567 105.255816 130.865107 133.184707

The numerical values for the Fisher information in position space and momentum
space, as well as their product in the absence and presence of the constant-dependent
potential, are presented in Tables 4 and 5. In Table 4, the Fisher information in position
space and the quantum number vary inversely with each other, but the Fisher information
in momentum space varies directly with the quantum number. The Fisher information
in both position space and momentum space in the presence of the constant-dependent
potential is higher than its counterpart produced in the absence of the constant-dependent
potential. The minimum bound for the Fisher product in the absence of constant-dependent
potential is 111.4298232, while in the presence of the constant-dependent potential, the
minimum bound is 339.29054. These values are above the standard value of 36. Thus,
the results in Table 4 satisfy the Fisher inequality given in Equation (34). The variation of
the Fisher information shows that a decrease in the Fisher information in position space
corresponds to an increase in Fisher information in momentum space. This implies that
a diffused density distribution in the configuration space is associated with a localized
density distribution in the momentum space. In Table 5, the Fisher information in position
space and in momentum space for various values of the equilibrium bond separation is
presented in the absence and presence of the constant-dependent potential. In this Table, the
Fisher information in position space varies directly with the equilibrium bond separation
both in the presence and absence of the constant-dependent potential. However, in the
momentum space, the Fisher information varies indirectly with the equilibrium bond sepa-
ration. The minimum bound for the Fisher product in the absence of constant-dependent
potential is 51.4913757, while in the presence of the constant-dependent potential, it is
212.949992. The values of the minimum bound also confirm that the results in Table 5
satisfy the Fisher inequality. The result shows that a diffused density in the configuration
space corresponds to the localized density in the momentum space. The variation in the
Fisher information against the quantum state in Table 4 is contrary to the variation in Fisher
information against the equilibrium bond separation in Table 5 but satisfies the Fisher
inequality in both cases. In Table 5, a strongly localized distribution in the momentum
space corresponds to a widely delocalized distribution in the position space. The results
obtained obey Heisenberg’s uncertainty principle. The position and momentum expecta-
tion values and their product for various values of the angular momentum number are
presented in Table 6 for the absence and presence of the constant-dependent potential.
It is noted that as the position space expectation value varies directly with the angular
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momentum, the momentum space expectation value varies inversely with the angular
momentum number. As observed in Tables 4-6, the results with the constant-dependent
potential are higher than the results without constant-dependent potential. The product of
the expectation values for the presence and absence of the constant-dependent potential
is greater than the standard value of 2.25. The minimum bounds for the products of the
expectation values in the absence and presence of the constant-dependent potential are
3.9027949 and 12.1497115, respectively. These results satisfy Cramer—Rao’s inequality for
the product of expectations. Table 7 presents Fisher information for both position space and
momentum space and their product in the absence and presence of the constant-dependent
potential for various angular momenta. The Fisher information for the position space in
both the absence and presence of constant-dependent potential respectively increases as
the angular momentum increases. However, the Fisher information for the momentum
space in the absence and presence of constant-dependent potential respectively decreases
as the angular momentum increases. The product of the Fisher information satisfies the
Cramer-Rao inequality but decreases with an increase in the angular momentum. The
variation in energy against the quantum number is shown in Figure 1. The energy of
the combined pseudoharmonic potential and Kratzer potential varies linearly with the
quantum number. Figure 2 shows the variation in the Fisher information against the dis-
sociation energy for various quantum states. The Fisher information for the momentum
space decreases for all the quantum states studied as the dissociation energy increases.
At D, = 5, Fisher information for the momentum space at different quantum states in-
tercept each other, as shown in Figure 2a. In Figure 2b, the Fisher information for the
position space decreases monotonically as the dissociation energy increases. The varia-
tion in the Fisher information for the momentum space decreases monotonically as the
angular momentum increases, as shown in Figure 3a. At a higher angular momentum,
the Fisher information for the momentum space for various quantum states tends to be
equal. In Figure 3b, the Fisher information for the position space increases as the angular
momentum increases.

Table 4. Fisher information for position space and momentum space in the absence and presence of
constant-dependent potential for various quantum states and the Fisher productwithy = h=1=1,
re = 0.5,and D, = 2.5.

=0 7 =0.5
n
Ip) I(7) Lp)I{y) Lp) Ky) Kp)I{y)

0 12.9965839 85737778  111.4298232  21.5583462  15.7382452  339.2905400
1 11.8185475  15.2579808  180.3271707  19.6777166  23.7495543  467.3369980
2 11.2615469  22.1905981  249.9004614  18.7115540  32.1266502  601.1395518
3 109565616  29.2240214  320.1947901  18.1551929  40.6676667  738.3293339
4 10.7720175  36.3056214  391.0847898  17.8069278  49.2919216  877.7376907
5 10.6520394  43.4130476  462.4374938  17.5749107  57.9626756  1018.688851
6 105697147  50.5355353  534.1461897  17.4127458  66.6613706  1160.757499
7 10.5108053  57.6673891  606.1306983  17.2950190  75.3778408  1303.661192
8 104672122  64.8053694 6783315540  17.2068853  84.1061482  1447.204844
8 104340553  71.9475241  750.7044447  17.1392093  92.8426388  1591.249420
10 104082527  79.0926206  823.2159806  17.0861231  101.584965  1735.693225
11 10.3877810  86.2398494  895.8406674  17.0437192  110.331565  1880.460203
12 10.3712673  93.3886615  968.5587745  17.0093145  119.081364  2025.492369
13 10.3577538  100.538674  1041.354832  16.9810180  127.833606  2170.744768
14 10.3465556  107.689612  1114.216560  16.9574657  136.587746  2316.182020

—
6]

10.3371727  114.841276  1187.134100  16.9376539 145.343382  2461.775909
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Table 5. Fisher information for position space and momentum space at the ground state for various
equilibrium bond separations and the Fisher product in the absence and presence of constant-
dependent potential with y = h =] =1and D, = 2.5.

=0 7=0.5

Lp) Ky) Kp)I{vy) p) I{y) Kp){v)

1.0 6.3749475 6.7680001 43.1456451 13.9837226 13.7463577  192.2252527
1.5 12.0910640 6.2814977 759499903  20.5118296 13.1590415  269.9160160
2.0 14.6231981 6.0423780 88.3588904  23.4211406 12.8653865  301.3220276
2.5 16.0247585 5.8983477 94.5195968  25.0442629 12.6881230  317.7646874
3.0 16.9078176 5.8018537 98.0966833  26.0739294 12.5694080  327.7338557
3.5 17.5129218 5.7326651 100.395716  26.7834340 12.4843480  334.3737107
4.0 17.9525752 5.6806283 101.981906  27.3012806 124204164  339.0932721
45 18.2860804 5.6400719 103.134809  27.6955632 12.3706163  342.6111838
5.0 18.5475457 5.6075771 104.006792  28.0056349 12.3307320  345.3299783
5.5 18.7579355 5.5809594 104.687276  28.2557876 12.2980723  347.4917179
6.0 18.9308264 5.5587579 105.231880  28.4618122 12.2708384  349.2502995
6.5 19.0753897 5.5399585 105.676868  28.6344110 12.2477829  350.7080500
7.0 19.1980391 5.5238356 106.046812  28.7810910 12.2280132  351.9355594
7.5 19.3033929 5.5098559 106.358913 289072717  12.2108738  352.9830473
8.0 19.3948598 5.4976189 106.625548  29.0169624 12.1958730  353.8871873
8.5 19.4750097 5.4868181 106.855836  29.1131925 12.1826340  354.6753683
9.0 19.5458162 5.4772149 107.056635  29.1982930 12.1708638  355.3684483

e

Table 6. Position expectation value and momentum expectation value at the ground state for various
angular momentum quantum states and their product in the absence and presence of constant-
dependent potential with y = A =1, 7, = 0.5, and D, = 2.5.

7=0 7=0.5
(%) (r?) () (p?) () (r?) () (p?)
0 2.0753109 4.2441101 8.8078482 3.9027949 6.5411490 25.5287631
1 2.1434445 3.2491460 6.9643639 3.9345613 5.3895866 21.2056588
2 2.4796239 2.3486134 5.8236779 4.2100767 4.1263248 17.3721438
3 3.0345051 1.7624127 5.3480505 4.7530480 3.1895560 15.1601125
4 3.7149293 1.3858907 5.1484858 5.4798280 2.5445494 13.9436929
5 4.4660484 1.1325692 5.0581087 6.3206480 2.0942879 13.2372565
6 5.2591091 0.9534294 5.0141894 7.2328358 1.7693011 12.7970647
7 6.0785638 0.8212049 4.9917465 8.1913537 1.5265679 12.5046576
8 6.9155189 0.7201144 4.9799647 9.1811818 1.3396688 12.2997429
9 7.7645982 0.6405721 49737848 10.192968 1.1919700 12.1497115
10 8.6223893 0.5764852 4.9706794 11.220659 1.0726518 12.0358600
11 9.4866342 0.5238228 4.9693156 12.260199 0.9744445 11.9468833
12 10.355785 0.4798244 4.9689582 13.308778 0.8923155 11.8756286
13 11.228746 0.4425416 4.9691872 14.364399 0.8226858 11.8173877
14 12.104725 0.4105633 4.9697553 15.425605 0.7629492 11.7689537
15 12.983131 0.3828440 4.9705140 16.491312 0.7111670 11.7280766

Table 7. Fisher information for both position space and momentum space at the ground state for
various angular momentum quantum states and their product withy =2 =1,7, = 0.5,and D, = 2.5
in the absence and presence of the constant-dependent potential.

=0 7=0.5

I(p) I(y) I(p)I(7) I(p) I(y) I(p)I(v)

8.30124380 16.976441 140.925571 15.6111797  26.1645959  408.4602096
8.57377780 12.996584 111.429823 15.7382452  21.5583462  339.2905400
9.91849550 9.3944536 93.1788457 16.8403066 16.5052993  277.9543004
12.1380204 7.0496510 85.5688076 19.0121919 12.7582239  242.5618001

@WnN = o
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Table 7. Cont.

=0 7=05

I(p) I(y) I(p)I(y) I(p) I(y) I(p)I(y)
4 14.8597170 55435626  82.3757720  21.9193120  10.1781975  223.0990871
5 17.8641936 45302766  80.9297386 252825921 837715150  211.7961041
6 21.0364363  3.8137178  80.2270307  28.9313433  7.07720460  204.7530351
7
8

24.3142550 3.2848197 79.8679439 327654146  6.10627160  200.0745216

27.6620757 2.8804576 79.6794347  36.7247270  5.35867530  196.7958870
9 31.0583928 2.5622883 79.5805565  40.7718702  4.76788000  194.3953836
10 34.4895572 2.3059406 79.5308712  44.8826362  4.29060710  192.5737593
11 37.9465368 2.0952913 79.5090499  49.0407939  3.89777810  191.1501323
12 41.4231385 1.9192976 79.5033319  53.2351111  3.56926200  190.0100570
13 449149846 1.7701664 79.5069946  57.4575959  3.29074340  189.0782028
14 48.4188988 1.6422531 79.5160843  61.7024212  3.05179690  188.3032599
15 51.9325232 1.5313761 79.5282236 659652465  2.84466800  187.6492262
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Figure 1. Variation in energy against the quantum number with 4 = & =1, r, = 0.25, and D, = 5 for
three values of the angular momentum number.
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6. Conclusions

The solutions for the combination of the pseudoharmonic potential and Kratzer poten-
tial were obtained, and the effects of the constant-dependent potential and the potential
parameters on the energy, expectation values, and Fisher information were observed. It was
demonstrated that, in the presence of constant-dependent potential, the dissociation energy,
quantum number, and angular momentum respectively increase the energy eigenvalue
of the system, while the equilibrium bond length reduces the energy. The variation in the
quantum number against the Fisher information was found to be contrary to the variation
in the equilibrium bond length against the Fisher information. The constant-dependent
potential increases the position expectation value but decreases the momentum expectation
value. It was discovered that certain parameters increase the Fisher information in posi-
tion space and decrease Fisher information in momentum space, while some parameters
decrease the Fisher information in position space and increase the Fisher information in
momentum space. The effect of the potential parameters on the energy and Fisher informa-
tion in the absence of the constant-dependent potential is the same as in the presence of
the constant-dependent potential. The presence of the constant-dependent potential only
increases the quantities studied.
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