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Abstract: Intelligent Transportation Systems (ITS), such as Green Light Optimal Speed Advisory
(GLOSA) systems, can be used to reduce the energy consumption in modern vehicles. In particular,
GLOSA systems provide driving strategies that can decrease both energy consumption and travel
time. In this paper, we present a new method to calculate the optimal driving speeds based on
traffic light data. To this end, a detailed formulation for the optimization problem is presented
for a multi-segment route, based on an electric vehicle (EV) and traffic light models in an urban
environment. Since this formulation results in a nonconvex optimization problem, a relaxation
procedure is applied with a low calculation time. By using this procedure, a dynamic real-time
speed advisory algorithm is developed. Numerical simulations showed improved performance over
benchmark techniques. In particular, the proposed Dynamic-GLOSA solution’s performance was
shown to be very close to that with a brute-force optimal solution but with a much shorter calculation
time and has significant potential for energy saving.

Keywords: intelligent transportation systems; green light optimal speed advisory; energy efficiency;
nonconvex optimization; electric vehicles

1. Introduction

The global energy crisis and the growing dependency on oil lead to serious environmental
consequences that threaten price stability and global economic growth [1]. Electric vehicles (EV)
are becoming increasingly common, to the extent that governments encourage their use because of
their high energy efficiency and zero emissions during operation [2]. However, the current capacity
for battery stored electrical energy offers low energy density compared to fuel [3], which affects the
maximum range can be reached without recharging the battery. Energy efficient driving is a promising
way to deal with the EV range problem and the energy dependence.

Intelligent Transportation Systems (ITS) exploit advances in infrastructure-to-vehicle
communication (I2V) to optimize transportation efficiency. The ongoing improvement in calculation
abilities makes it possible to optimize processes in numerous fields, such as transportation and
power management [4]. A proper driving strategy has great potential for reducing fuel and energy
consumption [5], emission [6], and trip time [7]. ITS solutions include adaptive signal control [8,9],
optimal route planning [10,11], and driving strategy advisory systems. Signal control and route
planning seek to minimize idling and travel time cost functions. Driving strategy advisory systems
provide velocity or acceleration recommendations that take travel time and energy consumption into
account. In particular, Green Light Optimal Speed Advisory (GLOSA) systems enable significant
savings in fuel consumption and idling time by using road data and traffic light schedules.

GLOSA is an advanced driver assistance system (ADAS) that advises the driver to employ a
chosen speed in order to arrive at each intersection during a green light phase. The desired speed is
computed according to various criteria [5,7,12–15] that are described by an objective function, which is

Vehicles 2020, 2, 35–54; doi:10.3390/vehicles2010003 www.mdpi.com/journal/vehicles

http://www.mdpi.com/journal/vehicles
http://www.mdpi.com
https://orcid.org/0000-0002-3159-1080
http://dx.doi.org/10.3390/vehicles2010003
http://www.mdpi.com/journal/vehicles
https://www.mdpi.com/2624-8921/2/1/3?type=check_update&version=2


Vehicles 2020, 2 36

usually based on various factors such as total energy consumption and travel time. GLOSA system
algorithms use traffic signal phase and timing information, as well as other road and traffic data.
Although this information may be unknown, traffic light schedules can be predicted with a high degree
of accuracy [16].

According to the descriptions of GLOSA systems that appear in the literature, red light stops
should be avoided as much as possible due to the significant influence of re-acceleration on energy
consumption [3]. Because of traffic light discontinuity, the avoidance of stopping leads to a nonconvex
and noncontiguous optimization problem that is difficult to solve [17]. The stopping effect and the
inherent difficulty with its mathematical properties are discussed in the next sections. Acceleration
profiles and cruise speed control methods are important in the use of the GLOSA system and are
discussed in [2,18,19].

Numerous ad hoc methods have been proposed in the literature to determine the recommended
speed profile by applying simplified vehicle models. Some of the various speed advisory studies
describe linear [13] or quadratic [5] energy consumption models. Other models employ discrete
velocity values [14], single-segment analysis [2,7], or genetic algorithms (GA) to solve the optimization
problem [13]. An acceleration advisory method is presented in [15]. Some approximations, such as
neglecting the road slope, can reduce algorithm efficiency [20], but should be taken into consideration
in a more detailed model. Single- and multi-segment methods are presented and in most cases a single
vehicle is analyzed. The single vehicle case could be relevant for off-peak hours or restricted traffic
lanes. For multiple vehicles cases, which is more common at real world scenarios, a car following
model should be adopted [21,22]. Such platoons management solutions can be implemented using
vehicle-to-vehicle communication (V2V) [23] and adaptive Signal Phase and Timing (SPaT) can be
considered by using vehicle-to-infrastructure communication (V2I) [24,25]. Some studies conducted a
real-world testing to evaluate the potential of GLOSA [26,27].

In general, more sophisticated optimization methods, more accurate models, and more detailed
objective functions are expected to lead to better optimization results that will increase the energy
saving potential. GLOSA systems, as described in the literature [5,13,14], employ search algorithms
that require lengthy calculations because of their nonpolynomial complexity [17]. The use of search
algorithms is discussed in [28]. Calculation time must be taken into consideration as part of the
solution optimality examination.

The contribution of this paper is threefold. First, it presents detailed energy consumption, travel
time, and traffic light models. Although these models and their optimization are based on the EV
model they are relevant to all types of transportation. Second, it formulates the GLOSA system as
an optimization problem for a single vehicle at a multi-segment route and exploits the mathematical
nature of the problem to develop a smoother relaxation procedure. This procedure is used as the
mathematical basis for the presented algorithm. Third, we propose a dynamic algorithm for a single
vehicle, which can reduce travel time, energy consumption, and calculation time. Simulation results
that are provided in practical settings demonstrate that the proposed method outperforms existing
methods. In particular, simulations show that in the tested cases the Dynamic-GLOSA algorithm
results demonstrate an average of 44% improvement in energy saving in comparison to cases with
a naive driver strategy, with an algorithm calculation time of less than 0.5 s. In addition, the low
calculation time can be useful for real-time implementation, as random traffic conditions make it
difficult to plan driving speed far ahead [18,29]. Therefore, real-time implementation is important in
order to overcome real-life randomness.

The remainder of the paper is organized as follows: energy consumption and travel time models
are presented in Section 2. The GLOSA system optimization problem is described in Section 3. Section 4
exploits mathematical properties to provide a low-complexity algorithm for planning driving speeds
and reducing energy consumption. Finally, the algorithm results appear in Section 5.
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2. Problem Formulation

In this section, the energy consumption and the travel time models are developed based on those
of Schaltz [30] and Kaloko et al. [31]. First, we present the force and powertrain models that are the
basis for the energy consumption model. Then, a traffic light model and a standard speed profile are
used to define the energy consumption and the travel time models as a function of the driving speed.
It should be noted that this general formulation calculates the energy consumption based on generic
models. Since the amount of energy needed for travelling is the same for all types of vehicles, this
model can be adopted for gas-fueled, electrical, or hybrid vehicles; with various sets of parameters,
such as mass, transmission ratios, and motor efficiency; and with minor differences at the power
source model.

2.1. Force Model

We consider a force model consisting of the gravitational force, aerodynamic drag, rolling
resistance, and inertial force, as shown in Figure 1. In particular, the gravitational force is given by

Fg = Mgsin(α), (1)

where α is the road slope, g is the gravity of earth, and m is the vehicle mass. The aerodynamic drag
force is given by

Fad =
1
2

ρACdv2, (2)

where ρ is the air density, A is the vehicle frontal area, Cd is the vehicle form coefficient, and v is the
velocity. The rolling resistance force is given by

Frr = µrr (1 + Crrv) Mgcos(α), (3)

where µrr is the static resistance coefficient and Crr is the dynamic resistance coefficient. The inertial
force is given by

FI =

(
M + I

G2

R2

)
a, (4)

where a is the acceleration, I is the shaft moment of inertia, G is the gear ratio, and Rwheel is the wheels
radius. In general, G is a function of the driving speed. In the case of an EV, the gear ratio should
be replaced with a constant. The sum of the forces equals the traction effort extracted by the motor,
Ftraction, and satisfies

Ftraction = Ftotal = Fg + Fad + Frr + FI . (5)

By substituting Equations (1)–(4) into Equation (5), one obtains

Ftotal(v, a, α) = Mgsin(α) +
1
2

ρACdv2

+ µrr (1 + Crrv) Mgcos(α) +
(

M + I
G2

R2

)
a.

(6)

Figure 1. Forces applied on a vehicle.
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2.2. Powertrain Model

The powertrain supplies the power from the battery to the wheels, which provides the
required traction force according to Equation (6). The powertrain considers the gear box, the shaft,
the three-phase AC motor, the inverter, and the regenerative braking mechanism. Nonlinear motor
efficiency, ηmotor, and gear-box discontinuity should be taken into account in order to calculate the
power extracted from the battery. A standard motor efficiency map and a four gears transmission
system were implemented based on [32]. According to those models, both gear ratio selection and
motor efficiency are functions of velocity. The motor torque, Tmotor, and the motor angular velocity,
ωmotor, are given by

Tmotor =
Ttraction
Gηgear

=
Ftotal Rwheel

Gηgear
(7)

and
ωmotor = ωwheelG =

vG
Rwheel

, (8)

respectively, where ηgear is the gear efficiency. The power consumed from the battery, Pbatt, is therefore
known and can be expressed by

Pbatt =
Pmotor

ηmotorηinv
=

Tmotorωmotor

ηmotorηinv
, (9)

where ηinv is the inverter efficiency. The inverter and gear efficiencies are assumed to be constant. By
substituting Equations (7) and (8) into Equation (9), one obtains

Pbatt(v, a, α) =
Ftotalv

ηmotorηinvηgear
. (10)

In cases of negative Ftotal , generally when decelerating, energy can be used for recharging the
battery. This regenerative braking mechanism [33] changes ηmotor to 1

ηgenerator
in the powertrain model

from Equation (10). The generator effectiveness, ηgenerator, is relatively low due to the additional
mechanical braking and is assumed to be constant [33].

2.3. Travel Time and Energy Consumption Models

In this subsection, the travel time and energy consumption models are defined in terms of vehicle
velocity and the traffic light model. These models describe a multi-segment and single vehicle problem.
In urban environments, energy consumption is subject to traffic light status. When arriving at a red
light, the driver is forced to stop, and this significantly increases energy consumption and travel time.
In this paper, these stops are considered as time and energy penalties. The traffic signal status at each
intersection is assumed to be periodic, with a specified time offset, green time, and cycle duration at
each intersection. The typical traffic signal status is presented in Figure 2, where T is the period time,
the green light timing is within the first Tgreen seconds, the phase offset from time zero is θ, and k is the
number of complete cycles that have passed from an arbitrary initial time until the vehicle arrives at
intersection i, which can be referred to as the green window number.

Figure 2. Traffic light model: status versus time.

According to this traffic light model, the ith intersection is at the end of segment i and the
intersection arriving time, ti, when the traffic light is green, satisfying

θi + kiTi ≤ ti ≤ θi + kiTi + Tgreen,i, ki ∈ N. (11)
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The number of the green cycle that the car uses at intersection i, ki, is given by

ki = div(ti − θi, Ti), (12)

where div is an integer division.
For the sake of simplicity, a standard driving profile [2,34] is used in this paper. According to the

driving profile, the route is divided into several segments, where each segment ends with a traffic light
and has a target speed. Then, each segment is divided into two intervals: transition and steady-state
intervals. During the transition interval, the vehicle accelerates to the target speed of the segment.
Since optimal speed planning will often result in not stopping at red lights, the acceleration is assumed
to be relativity small and the duration of the acceleration phase is the same for each segment and
defined by ∆t. This assumption simplifies the driving model but neglects constraints for the maximum
power, as well as jerk constraint for driving comfort. The value of ∆t parameter can vary for different
vehicles and is dependent on the vehicle’s acceleration performance and the maximum speed limit.
Then, as part of the steady-state interval, the vehicle travels at a constant speed for the remainder of
the segment. Thus, the acceleration at time t is given by

ai(t) =

{
vi−vi−1

∆t , ti−1 ≤ t ≤ ti−1 + ∆t
0 , ti−1 + ∆t ≤ t ≤ ti

. (13)

The distance covered in the transition interval is

∆Li(vi−1, vi) = ∆t
vi + vi−1

2
. (14)

The travel time of each segment, consisting of the transition and steady-state times, is given by

∆Ti = ti − ti−1 = ∆t +
Li − ∆Li

vi
. (15)

By substituting Equation (14) into Equation (15), we obtain

∆Ti(vi−1, vi) =
Li
vi

+
∆t
2

(
1− vi−1

vi

)
. (16)

In the case where the vehicle has not stopped at a red light, the arrival time at the ith intersection
is obtained by summing the travel time of each segment, as presented in Equation (16):

ti(V) = ti−1 + ∆Ti = t0 +
i

∑
j=1

∆Tj(vj−1, vj), (17)

where V = [v0, v1, ..., vN ] is the velocity vector for the N-segment route and t0 is the initial time.
An example of a traffic light status map for a two-segment route is presented in Figure 3 with

the parameters in Table 3, for t0 = 0 and v0 = 0. The green windows (when the vehicle arrives at
both intersections at a green light) demonstrate the problem’s complexity. Figure 3 shows that the
traffic light condition from Equation (11) is neither a convex nor a continuous set. It can be seen that
the vehicle will encounter green lights at the intersection at the end of the first segment if it drives,
for example, at v1 = 45 km/h or v1 = 20 km/h. If it drives with v1 = 45 km/h, to encounter green
lights at the second intersection, it could drive at, for example, at 45 or 25 km/h.
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Figure 3. Traffic light status map for a two-segment route.

The travel time in Equation (16) is calculated without taking the vehicle stops into account. The
time stops penalties are caused by the idling time until the traffic light turns green, and satisfies

∆Tsp,i(V) =

{
θi + (ki + 1)Ti − ti(V) , Ii = 1
0 , Ii = 0

, (18)

where the deceleration time before the red light is considered as part of the waiting time and the
stopping condition for each intersection, Ii, is based on Equation (11) and is given by

Ii(V) =

{
1 , θi + kiTi + Tgreen,i ≤ ti(V) ≤ θi + (ki + 1)Ti, ki ∈ N
0 , otherwise

. (19)

The total travel time, Ttotal , is obtained by summing up the travel time from Equation (16) and the
time stopping penalty from Equation (18) in each segment from the segments set, S = {1, ..., N}, in an
N-segment route:

Ttotal(V) = ∑
i∈S

∆Ti + ∆Tsp,i. (20)

By substituting Equations (16) and (18) into Equation (20), one obtains

Ttotal(V) = ∑
i∈S

Li
vi

+
∆t
2

(
1− vi−1

vi

)
+ Ii(V)(θi + (ki + 1)Ti − ti(V)).

(21)

The energy consumption calculations consider both the auxiliary loads energy and the energy
that is used for driving. Auxiliary loads power, PAUX , which includes radio, air conditioning, lights,
and electrical control units, is assumed to be constant [30]. Therefore, the auxiliary loads energy is
related to the total travel time and is given by

EAUX = PAUXTtotal . (22)

The driving energy consumption is calculated by a numerical integration of power over time.
According to the presented profile, each segment is divided into intervals, in which the battery power
from Equation (10) is assumed to be constant. Therefore, the energy consumed in the transition
interval is

∆Et,i(vi−1, vi) = ∆tPbatt

(
vi + vi−1

2
,

vi − vi−1

∆t
, αi

)
, (23)
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where αi is the segment slope that is assumed to be constant for each segment. Although the velocity
during the transition interval is not constant, an average value of vi+vi−1

2 is considered in the power
calculation from Equation (10). This approximation is relatively minor since vi−1 and vi are close
to GLOSA systems, as the vehicle does not stop at red lights. The full equation is presented in
Equation (28). In the remaining distance, Li − ∆Li, the vehicle maintains a constant speed until the
next traffic light. Thus, the energy consumed in this steady-state interval is given by

∆Es,i(vi−1, vi) = (∆Ti(vi−1, vi)− ∆t) Pbatt(vi, 0, αi). (24)

In cases when the vehicle stops, the total energy includes a stop penalty term that consists of
two contributions: the vehicle stop and the re-acceleration that replaces the transition interval in
Equation (23). Therefore, the energy consumption penalty satisfies

∆Esp,i(V) =

{
Et,i(vi, 0) + Et,i(0, vi+1)− Et,i(vi, vi+1) , Ii = 1
0 , Ii = 0

. (25)

The total energy consumption, Etotal , is obtained by summing the intervals energies in
Equations (23)–(25), which results in

Etotal(V) = ∑
i∈S

∆Et,i + ∆Es,i + ∆Esp,i. (26)

Therefore, the total energy consumed from the battery is given by summing
Equations (22) and (26), yielding

Ebatt_total = Etotal + EAUX = Etotal + PAUXTtotal . (27)

By substituting Equations (22)–(26) into Equation (27), one obtains

Ebatt_total(V) = ∑
i∈S

(1− Ii−1(V))∆t (Mgsin(αi)+

1
2

ρACd

(
vi + vi−1

2

)2
+ µrr

(
1 + Crr

vi + vi−1

2

)
Mgcos(αi)

+

(
M + I

G2

R2

)
vi − vi−1

∆t

)
vi + vi−1

2
1

ηmotor(V)ηinvηgear

+

(
Li
vi
− ∆t

2

(
1 +

vi−1

vi

))(
Mgsin(αi) +

1
2

ρACdv2
i

+µrr (1 + Crrvi) Mgcos(αi))
vi

ηmotor(V)ηinvηgear

+ Ii(V)∆t
(

Mgsin(αi) +
1
2

ρACd

(vi
2

)2

+µrr

(
1 + Crr

vi
2

)
Mgcos(αi) +

(
M + I

G2

R2

)
−vi
∆t

)
vi
2

ηgenerator

ηinvηgear
+ Ii(V)∆t (Mgsin(αi)

+
1
2

ρACd

(vi+1

2

)2
+ µrr

(
1 + Crr

vi+1

2

)
Mgcos(αi)

+

(
M + I

G2

R2

)
vi+1

∆t

)
vi+1

2
1

ηmotor(V)ηinvηgear

+ PAUX

(
Li
vi

+
∆t
2

(
1− vi−1

vi

)
+Ii(V)(θi + (ki + 1)Ti − ti(V))) .

(28)
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3. Optimization Problem Formulation

Traffic light timing data enable an optimal speed planning that minimizes energy consumption
and travel time. With this goal in mind, an appropriate objective function should be defined
and optimization tools should be used to find the associated global optimum. In this paper, we
consider a multiobjective function [17] that consists of total travel time from Equation (21) and energy
consumption from Equation (28). In particular, the objective function is defined as:

F(V) = λEbatt_total + (1− λ)CTtotal , λ ∈ [0, 1], (29)

where λ is a tuning parameter that controls the trade-off between energy consumption and travel time
costs, and C [Watt] is set as the time coefficient in order to quantify the time relative to the energy.
Assuming that the vehicle turns the engine off while standstill (which is very common in EVs), C will
be equal to Paux. The objective function is in terms of energy, but considers an adjustable trade-off
between the energy and time. By substituting Equation (27) into Equation (29) and setting C = PAUX
for simplification, the following GLOSA system objective function is obtained:

F(V) = λEtotal + PAUXTtotal , λ ∈ [0, 1]. (30)

It can be seen in Equation (30) that the objective function increases when the energy or the travel
time increases. The advisory speed vector, V, must be between the minimum and maximum speed
limits, Vmin and Vmax, respectively. Therefore, the GLOSA system’s optimization problem can be
formulated as:

minimize
V

F(V) = λEtotal + PAUXTtotal

subject to Vmin,i ≤ vi ≤ Vmax,i, ∀i ∈ S.
(31)

Traffic light discontinuity, which is presented in Equation (11), results in a discontinuous stop
penalty. Thus, the objective function turns out to be a nonconvex discontinuous function. The function
complexity makes it impractical to solve with standard optimization toolboxes and in a reasonable
computation time [17].

An example of the proposed objective function for a two-segment route is presented in Figure 4
for λ = 0.4, PAUX = 200 [watt], and the parameters of the traffic light status map as presented
in Figure 3. The green windows from this map are reflected directly in the objective function
shadows, demonstrating the direct relation between them. The stopping penalties can be viewed as
the major jumps in the objective function. The objective function shows that slow driving is reflected
as an increase in F values as travel time increases. Fast driving is also not optimal due to high
energy consumption.

Figure 4. The nonconvex objective function versus the velocity for a two-segment route and the GLOSA
system optimization problem.
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4. Dynamic-GLOSA

The optimization problem from Equation (31) is a nonconvex optimization problem that is
intractable in real time scenarios. This section presents a real-time algorithm based on a relaxation
procedure for solving the GLOSA optimization problem and offers improved optimization results and
reduced calculation time. The algorithm, referred to as Dynamic-GLOSA, and the proposed method
assume that avoiding stops is preferable to stopping at red lights. This assumption has been proven
using a brute force search that seeks the true optimal driving profile. However, an edge case in which
this assumption is invalid may occur. Based on that, a solution in three main steps is suggested.

According to the first step of the proposed algorithm, the traffic light status can be expressed
indirectly and the objective function from Equation (30) is calculated without taking the traffic light
stop penalties into consideration. Therefore, the relaxed objective function is given by substituting
Equations (21) and (26) into Equation (30) and substituting Ii = 0 for each intersection:

Frelaxed(V) = ∑
i∈S

λ∆t

(
Mgsin(αi) +

1
2

ρACd

(
vi + vi−1

2

)2

+µrr

(
1 + Crr

vi + vi−1

2

)
Mgcos(αi)

+

(
M + I

G2

R2

)
vi − vi−1

∆t

)
vi + vi−1

2
1

ηmotor(V)ηinvηgear

+ λ

(
Li
vi
− ∆t

2

(
1 +

vi−1

vi

))(
Mgsin(αi) +

1
2

ρACdv2
i

+µrr (1 + Crrvi) Mgcos(αi))
vi

ηmotor(V)ηinvηgear

+ PAUX

(
Li
vi

+
∆t
2

(
1− vi−1

vi

))
.

(32)

It can be seen that the relaxed objective function from Equation (32), as presented in Figure 5, does
not contain the major discontinuities caused by the traffic lights as in the original objective function
from Equation (30), as presented in Figure 4. This modified model is still non-convex due to factors
such as gear switching and motor efficiency. However, as the Results Section demonstrates, this
relaxation can be assumed not to affect the approximation of the global optimum that was calculated
using a brute force search. Furthermore, the relaxation procedure enables the solution for this step to be
found in real-time by using standard optimization toolboxes, which should make the implementation
of this method easier [35]. This partial solution describes the optimal driving speeds of the relaxed
problem, Vrelaxed, and is not really the optimal solution because it does not comply with the traffic light
constraints in the real world (which are taken into account in the next steps).

Figure 5. The relaxed objective function versus the velocity for a two-segment route.



Vehicles 2020, 2 44

The second step of the proposed method considers the traffic light status and selects the green
window for passing through each intersection. The green window is described by K = [k1, k2, ...],
and should be determined according to Equation (12). The objective function from Equation (30)
indicates that the green window, K, should be as close as possible to the relaxed optimal speed in
each segment. In the case where the vehicle will arrive at the intersection when there is a green light,
the velocity will be the advisory speed. In the case of arriving when there is a red light, two ki values
are tested: before and after the relaxed optimal speed for the segment. These window values are
given by

ki,be f ore = div(ti(Vrelaxed)− θi, Ti), (33)

and
ki,a f ter = ki,be f ore + 1 = div(ti(Vrelaxed)− θi, Ti) + 1. (34)

In general, more ki values will improve the results but will increase the calculation time
significantly. In this paper, the choice of two values for ki is proved to show satisfactory optimization
results. Each of these windows reflects a different driving speed in order to arrive in the middle of the
green phase:

vi,be f ore =

 ki,be f oreTi+θi+
Tgreen,i

2
Li

, Ii = 1
vi,relaxed , Ii = 0

, (35)

and

vi,a f ter =

 ki,a f terTi+θi+
Tgreen,i

2
Li

, Ii = 1
vi,relaxed , Ii = 0

. (36)

According to the second step, the green widow selection is done from the first segment to the
last. First, the objective function value is calculated for two of the close green windows by setting
vi = vi,be f ore and vi = vi,a f ter. Second, the segment green window with the lowest objective function
value is selected for the specific segment. Then, this step is repeated for each segment until K is
determined. The search complexity is linear (2N), and as such it enables a short calculation time for
multi-segment cases.

In the third and last step, after the green windows have been determined, each segment passing
time is within a specific cycle: kiTi + θi ≤ ti ≤ kiTi + θi + Tgreen,i, ∀i. Calculating the optimal speeds
within this window can be done by using standard optimization tools, due to the significant reduction
in problem complexity. Finally, the proposed GLOSA-dynamic algorithm is summarized in Algorithm 1
and visualized in Figure 6.

Algorithm 1 Dynamic-GLOSA algorithm.

1: Initialize the problem parameters, road information, and vehicle parameters.
2: Step 1: Minimize F(V) for ∆Tsp,i, ∆Esp,i = 0 to get Vrelaxed.
3: Step 2: Dynamic search for the best green window, K, between the near two green windows:
4: Set V = Vrelaxed.
5: for i ∈ S: do

6: Calculate vi,be f ore and vi,a f ter.
7: Calculate F(V) for vi = vi,be f ore and vi = vi,a f ter.
8: Determine ki which minimizes F(V) where
9: ki ∈ [ki,be f ore, ki,a f ter].

10: end for
11: Step 3: Minimize F(V) within the selected green window.
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Figure 6. The Dynamic-GLOSA algorithm: first, project the relaxed solution over the traffic light status
map to find the best green window, and then optimize the solution for the selected window.

5. Simulation Results

In this section, the performance of the proposed Dynamic-GLOSA algorithm is evaluated for
different methods and driving patterns.

5.1. Methods and Parameters

The Dynamic-GLOSA solution was compared with the optimal solution and with the performance
of the following methods:

1. BF-GLOSA: A brute force (BF) search is implemented to calculate the optimal solution of the
optimization problem in Equation (31). The BF is time consuming and has computational
complexity that grows exponentially with the number of segments. Thus, this search is impractical
and is possible only in scenarios with a low number of road segments.

2. GA-GLOSA [13]: This Genetic Algorithm (GA) statistically generates solutions, compares their
scores, and selects the best solution [36]. This process is repeated several times to increase
the natural selection. The parameters of the GA, including the genetic natural selection, score
function, and mutations, are implemented according to the values in [13].

3. MAX-GLOSA [7]: This method advises the fastest velocity in each segment for passing the traffic
lights when they are green. Thus, it can be interpreted as the substitution of λ = 0 in the objective
function from Equation (30) for a single segment route.

4. Naive driver: The naive driver is an unassisted driver who travels at a constant velocity. In the
following, the naive driver velocity is set at 34 km/h according to the average driving speed
in the New European Driving Cycle (NEDC) profile [37] and the driver stops at the intersection
when the light is red. The naive driver uses a naive strategy that is likely to be worse than that
of real and intelligent drivers. The naive driver is used as a benchmark in order to evaluate the
energy and time saving potential by using GLOSA.

The vehicle model parameters presented in Table 1 were based on [30,31]. These parameters
reflect a small EV model adjusted for urban conditions. The route parameters were based on the
NEDC model [37], which is characterized by short segments and includes 13 stops. To generate
generic simulations, the route parameters were drawn according to a uniform random distribution,
U[a, b], where the specific ranges for each parameter were set according to Table 2. The transition time,
the initial time, and the initial speed were set to be ∆t = 3 s, t0 = 0, and v0 = 0, respectively. The
constant auxiliary power consumption was assumed to be PAUX = 200 [watt].

In this research, MATLAB R©FMINCON was used to minimize the objective function.
The simulations were performed on a standard LG R©P510 laptop, with Intel(R) Core(TM) 2 Duo
CPU, T9550 2.66 Ghz.
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Table 1. Model parameters.

Parameter Description Value

M Vehicle mass 1200 Kg

A Frontal area 1.8 M2

ρ Air density 1.184 Kg
m3

Cd Air friction coefficient 0.19

µrr Static wheel resistance coefficient 0.01

Crr Dynamic wheel resistance coefficient 0.036 s
m

I Total (wheels and shaft) inertia coefficient 3 Kg
m2

Rwheel Wheel radius 0.3 m

ηgear Gear efficiency 0.97

ηinv Inverter efficiency 0.95

ηgenerator Generator efficiency 0.25

G1 First gear ratio when v ≤ 15 2.5

G2 Second gear ratio when 15 ≤ v ≤ 30 1.5

G3 Third gear ratio when 30 ≤ v ≤ 70 1

G4 Fourth gear ratio when 70 ≤ v 0.8

Table 2. Route parameters.

Parameter Description Value

Li Segment length U[200, 1200] m

αi Segment slope U[−3, 3◦]

Ti Traffic light period time U[60, 120 s]

Tgreen,i Traffic light green duration U[15, 60 s]

θi Traffic light offset time U[0, Ti s]

Vmax,i Segment maximum speed limit 50 km/h

Vmin,i Segment minimum speed limit 5 km/h

5.2. Typical Solution

This subsection presents a typical speed profile for a four-segment route, based on the
driving profile from the previous subsections. The smoothness of the generated speed trajectory
can be seen in the given example. Each segment was divided into three intervals: transition,
steady-state, and stopping intervals. The travel times which each interval takes are given by ∆t,
Equations (16), and (18), respectively. The energy consumption in each of these intervals is calculated
by Equations (23)–(25), respectively. The vehicle parameters used for this simulation are in accordance
with Table 1, and the arbitrary route parameters are presented in Table 3 and can be seen in Figure 7. It
should be noted that the intersection can be defined by different parameters sets, which can imply
different sizes of intersections or approaches from a side road to a main road. Therefore, the parameters
for each intersection were drawn randomly to ensure generic simulations for comparison. The initial
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time and the initial speed can be set to any values, but, to simplify the calculation, they were set to
t0 = 0 and v0 = 0, respectively. The velocities vector was set to V = [0, 35, 40, 30, 35 km/h], and the
transition time was set at ∆t = 3. The driving profile example is given in detail in Table 4, where the
division of the intervals is presented.

Table 3. Route parameters for the typical solution.

Parameter Value

L [1000, 1000, 1000, 1000 m]

α [1,−1, 0, 1◦]

T [60, 80, 100, 120 s]

Tgreen [15, 30, 45, 60 s]

θ [10, 20, 30, 40 s]

Table 4. Typical solution values.

Time [s] Velocity [km/h] Notes

0 0 Travel start: t0 = 0, v0 = 0

3 35 End of first segment transition interval

29.07 35 End of first segment steady-state interval

30.07 0 End of first segment traffic light stop interval

70 0 End of first segment idling

73 40 End of second segment transition interval

95.5 40 End of second segment steady-state interval

96.5 0 End of second segment traffic light stop interval

100 0 End of second segment idling

103 30 End of third segment transition interval

134.83 30 End of third segment steady-state interval

137.83 35 End of fourth segment transition interval

163.62 35 End of fourth segment steady-state interval

According to the given velocities vector for the given example, the vehicle will stop at the first
and second intersections. Figures 7 and 8 show that these stops are described by traffic light stop
and idling intervals. For the presented route and velocities vector, the total energy consumption is
Etotal = 7.1175e + 06 Joules and the total travel time is Ttotal = 163.62 s.
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Figure 7. Typical solution showing position versus time, including the traffic lights status.

Figure 8. Typical solution showing velocity versus time.

5.3. Energy and Time Trade-Off

The objective function from Equation (30) is a function of the parameter λ that represents the
trade-off between energy consumption and travel time. The forces equation from Equation (6) presents
an increasing function depending on the velocity v, which reflects the increasing nature of the energy
consumption in Equation (26). It can be seen that the total travel time from Equation (16) is a decreasing
function depending on the velocity v, due to the inverse relation. Therefore, one contradicts the other
and an energy/time trade-off must be determined according to a specific criterion. The trade-off value
is increased to attribute more weight to the energy saving, while its decrease indicates a higher weight
attributed to the time criterion.

The energy consumption and travel time results for a four-segment route, calculated by the
BF-GLOSA solution, are presented in Table 5 for λ = 0, 0.1, 0.2, 0.4, 1. The optimal driving strategies
were calculated for the same route and relate to the different values of λ in Figure 9.

Table 5. Optimal energy consumption and travel time according to various λ values.

λ Etotal [KJoule] Ttotal [s]

1 977 880.00

0.4 1074 642.75

0.2 1169 520.00

0.1 1290 400.00

0 1506 324.37
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Figure 9. The optimal speed profiles according to various λ values for a four-segment route.

Figure 9 and Table 5 demonstrate that, for a small value of λ, the travel time decreases. In
particular, for λ = 0, the shortest travel time and highest energy consumption are obtained. Conversely,
as λ increases, the energy consumption decreases. Therefore, the value of λ should be chosen according
to the desired trade-off between time and energy. The quantitative relationship of this trade-off is
discussed in [38].

Different values for λ were tested to demonstrate each method’s behavior. In the following
simulation, different values of λ from 0 to 1 were tested, and the energy and time results of each
method were calculated based on the advisory speed profile and according to Equations (21) and (26).
Then, a Pareto front was derived from the results to show the quantitative relationship between energy
consumption and travel time. As in the previous simulation, this simulation was based on fixed and
arbitrary route parameters that are presented in Table 3.

In Figure 10, it can be seen that, for every value of λ, the BF-GLOSA, which represents the
optimal solution, and Dynamic-GLOSA are better than the other methods. It can also be seen that
the Dynamic-GLOSA results approach those of the BF-GLOSA. The GA-GLOSA and MAX-GLOSA
methods perform well in terms of travel time optimization, but their performance decreases as
λ increases. The GA-GLOSA method uses a random algorithm, thus it is not smooth [36]. The
MAX-GLOSA and naive driver results are reflected as dots since λ is not considered as part of the
velocity calculation.

Figure 10. Pareto fronts of energy consumption versus travel time objectives for BF-GLOSA,
Dynamic-GLOSA, GA-GLOSA, MAX-GLOSA, and the naive driver methods.
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5.4. Optimization Results

Next, 100 Monte-Carlo [39] simulations were run for different numbers of segments. First,
the route parameters were drawn randomly according to Table 2 and the parameters in Section 5.1.
Second, the advisory speed profile of each method was evaluated based on the methods presented in
Section 5.1. Finally, the objective function value for each method was calculated based on the advisory
speed profile and the objective function from Equation (30) and the average results were calculated. In
the following simulations, parameter λ was set to 0.2 to stress the importance of the energy criterion.

As expected, Figure 11 illustrates that F value increases as the number of segments increases. This
simulation compares the described methods and shows that the Dynamic-GLOSA results are better
than the other benchmark methods for every number of segments. A similar comparison in [40] shows
that a Genetic Algorithm such as the GA-GLOSA is preferable to other methods. In addition, it can be
seen that the performance of the proposed Dynamic-GLOSA algorithm is very close to the BF-GLOSA
optimal solution. The optimal solution was not calculated for more than four segments because of the
high complexity and the unrealistic calculation time.

Figure 11. The objective function values versus number of segments, for BF-GLOSA, Dynamic-GLOSA,
GA-GLOSA, MAX-GLOSA, and the naive driver methods.

In Table 6, the simulation results for the four-segment case are compared with the optimal
BF-GLOSA solution. In this simulation, the advisory speed profile was calculated according to each
method for 100 random scenarios. Following this, the same profiles were used to calculate the methods’
objective function values from Equation (30), F, the travel time from Equation (21), T, the energy
consumption from Equation (26), E, and the computational complexity, i.e., calculation time.

Table 6. Four-segment average results and variances for λ = 0.2.

Algorithm F (avg[%]/var) E (avg[%]/var) T (avg[%]/var) Calculation Time [s]

BF-GLOSA 100/0 (ref) 100/0 (ref) 100/0 (ref) 1635

Dynamic-GLOSA 101.01/1.96 93.03/28.79 106.59/18.51 0.45

GA-GLOSA 110.34/12.96 136.50/89.52 82.43/14.83 21.13

MAX-GLOSA 123.74/13.71 181.93/178.24 73.87/14.38 0.0002

Naive driver 140.94/32.22 186.82/203.85 113.96/21.59 -

Table 6 illustrates that, as expected, the BF-GLOSA solution has the lowest cost, F.
The Dynamic-GLOSA F values are relatively close to the optimal BF-GLOSA solution, with only
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a 1.01% higher cost and a small variance of 1.96%. The Dynamic-GLOSA average calculation time,
0.45 s, allows real-time implementation. The GA-GLOSA shows reasonable optimization results but
requires a lengthy calculation time. An overly simplified model, such as MAX-GLOSA, displays a
short calculation time, but the objective function results are unsatisfying as the vehicle model is not
taken into account. The naive driver solution presents both the highest energy consumption and the
longest travel time. By comparison with the naive driver, the Dynamic-GLOSA consumes 50.2% less
energy and takes 6.4% less travel time. The Dynamic-GLOSA results show that the energy saving
is more significant than the travel time saving, because the objective function trade-off in this paper
considers energy to be more important.

The 13-segment case was also tested, as the problem complexity grows significantly with the
number of segments. The average objective function values, travel time, energy consumption,
and calculation time are presented in Table 7 for 100 Monte-Carlo simulations and a 13-segment
route. This simulation compared the Dynamic-GLOSA, GA-GLOSA, MAX-GLOSA, and the naive
driver methods. The optimal BF-GLOSA solution was not calculated due to unrealistic calculation time.

Table 7. 13-segment average results and variances for λ = 0.2.

Algorithm F (avg[%]/var) E (avg[%]/var) T (avg[%]/var) Calculation Time [s]

Dynamic-GLOSA 100/0 (ref) 100/0 (ref) 100/0 (ref) 0.69

GA-GLOSA 120.97/8.80 132.80/15.30 95.30/11.30 42.87

MAX-GLOSA 132.64/21.13 156.43/35.38 79.82/8.47 0.0008

Naive driver 148.55/18.62 161.52/30.79 123.44/11.50 -

Similar to the results for the four-segment case, the objective function values for the
Dynamic-GLOSA method are lower than for the other methods. Compared to the naive driver
method, the Dynamic-GLOSA method presents 38.1% energy saving potential. The Dynamic-GLOSA
calculation time remains relatively low even for the 13-segment route. Since changes in traffic are
relatively slow, the calculation time results, together with the use of standard laptop and standard
optimization toolbox, show that the method can run in real time with a vehicle equipped with a
standard on-board computer.

6. Conclusions

In this paper, we investigate the optimization problem of the GLOSA system and propose a
real-time solution. A new formulation of the GLOSA system is introduced that includes energy
consumption, travel time, and traffic light models. In urban environments, stopping at traffic lights
usually occurs without the use of preliminary information and, therefore, the energy consumption of an
unassisted driver increases. In general, the energy saving potential increases when driving is based on
a more sophisticated algorithm. The optimization problem is reformulated and it is now emphasized
that the GLOSA optimization problem is a nonconvex optimization problem, due to the traffic light
discontinuity, which is intractable in real time scenarios. Based on a smoother relaxation procedure
for this problem, a dynamic real-time algorithm is presented with a high degree of optimization
and low calculation time that can be used with all types of vehicles. Simulations showed that the
performance of the proposed Dynamic-GLOSA algorithm is very close to that with optimal driving
speeds obtained by the brute-force solution but with a much shorter calculation time. In addition,
the proposed Dynamic-GLOSA driving strategy advisory was demonstrated to be better than existing
methods for every number of segments and every time and energy trade-off value investigated, but is
much superior in terms of energy saving potential. Due to the short calculation time in the Dynamic
GLOSA method, a real-time implementation for the Dynamic-GLOSA is possible.
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The paper deals with the mathematical challenges in calculating the optimal speed and presents a
new mathematical approach, which proves capable of reducing calculation time and approximating
the optimal solution. Future researchers can employ the presented method as the mathematical
substrate for a real-time implementation to meet real-world randomness [41] and to avoid cumulated
errors [26,27]. The proposed method can be extended for multiple vehicle solutions, for example
by using vehicle-to-vehicle communication (V2V) [23]. By using V2X communication, information
about nearby traffic can be analyzed in real time and used to recalculate the optimal driving profile.
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