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Abstract: This article identifies the essential technologies and considerations for the development of
an Automated Cow Monitoring System (ACMS) which uses 3D camera technology for the assessment
of Body Condition Score (BCS). We present a comparison of a range of common techniques at the
different developmental stages of Computer Vision including data pre-processing and the imple-
mentation of Deep Learning for both 2D and 3D data formats commonly captured by 3D cameras.
This research focuses on attaining better reliability from one deployment of an ACMS to the next
and proposes a Geometric Deep Learning (GDL) approach and evaluating model performance for
robustness from one farm to another in the presence of background, farm, herd, camera pose and
cow pose variabilities.

Keywords: computer vision; automated cow monitoring system; body condition scoring; reliability
assessment; transfer learning; geometric deep learning

1. Introduction

There has been much research activity in recent years on the development of intelligent
vision systems for the surveillance of cows as they pass through fixed points in and around
the milking parlour during their milking routine. Such Automatic Cattle Monitoring (ACM)
systems are useful for identifying important attributes relating to animal health and farm
management at a herd level. The specific task of interest to the methodology laid out in
this article is the estimation of Body Condition Score (BCS), an indirect estimation of the
level of body reserves in cattle.

Traditionally BCS estimation is carried out primarily visually by a trained observer on
occasions where cows are passed through handling facilities to allow them to be observed.
An assessor may also use their hand to apply pressure on the three primary reference
points: the pins and tail head, the short ribs and the ribs to feel for the amount of fat around
and prominence of the bones. A BCS is assigned based on which bones are prominent
and to what extent. The Irish/European system uses a scale of 1 to 5 in increments of 0.25,
where for example BCS is above 3.5 if the pins are submerged, above 3.0 if the ribs are
smooth, below 2.75 if the short ribs are visible and below 2.5 if the back bone is jagged.
Despite the inconvenience of manual scoring and much research toward the automation of
the process, an automatic measurement system to evaluate BCS daily and non-invasively
(i.e., without the need to come close to the cow with an ultrasound scanner [1]), has not
yet become popular with only a small percentage of farms (5%), adopting automated BCS
systems [2].

However, studies on the subject have been reporting increasing accuracy as the latest
advancements in CV and camera technology are exploited. One of the main advancements
in CV has been the proliferation of the use of Deep Learning (DL) to many application
domains. Deep Learning (DL) which is a method of training a computer to detect which
patterns are important for a specific task rather than defining the patterns specifically. It
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has proven in many fields of research, to be more robust and offer the capability to surpass
human-level accuracy and to do so on a daily and consistent basis.

A significant challenge to commercialising a deployable system is the ever-changing
environment in which a camera system can be expected to be deployed. The accuracies of
CNN methods tend to decrease significantly when evaluated on different image domains
compared with those used for training, which demonstrates the lack of adaptability of
CNNs to unseen data. For example, a CNN trained on one farm can be expected to
perform well on that farm, but performance is likely to drop when the model is run on
images of cows in a different farm. This can be for many reasons including variations in
background, lighting, time of year, handling facilities/activities affecting animal behaviour,
herd characteristics, camera pose and cow pose.

Ensuring reliability in the presence of all these sources of variability requires technolo-
gies which are invariant to as much of them as possible. This is why 3D vision systems
have become widespread in this field of research- it eliminates difficulties in extracting
cow features even in difficult lighting and background conditions. This work will go even
further and implement Geometric Deep Learning, an emerging field of CV which applies
DL to non-euclidean point cloud data and allows algorithms to be more robust to how
shape features are presented to the camera.

The remainder of this journal article is organised as follows. Section 2 will give an
overview of the existing state of the art in automatic cattle monitoring by intelligent camera
surveillance technology. Section 3 will detail our methodology in collecting data on BCS
for three herds over an extended period using 3D vision sensors, processing that data to
train a model to predict BCS with methodologies for both 2D ad 3D data formats. Finally in
Section 5 we analyse the repeatability of our systems versus the repeatability of the expert
manual scorers and highlight the importance of using this metric for evaluation in future
BCS research.

2. Related Research

Body Condition Score (BCS) is an indirect estimation of the level of body reserves, and
its variation reflects cumulative variation in energy balance. It interacts with reproductive
and health performance, which are important to consider in dairy production. The potential
for an ACMS to extract appearance attributes that can be used to indicate BCS in cattle is
an interesting one and could be invaluable in:

1. Integrating with feeding systems to manage cow nutrition more effectively;
2. Alerting the farmer to ill health/lameness promptly;
3. Long-term monitoring of each animal attributes which can yield key information for

animal husbandry, ethological studies and the development of PLF tools.

Body Condition is not easy to monitor; however, as manual visual BCS is subjective,
time-consuming and requires experienced observers. Nevertheless, it is a practice that
farms do take the time to carry out routinely as it is useful for guiding nutrition management
to ensure cows reach and maintain their target condition (BCS 3.0 to 3.25 for dairy cattle)
especially at critical times such as pre-calving, post-calving and at breeding. It is a practice
that needs to be promoted more in recent times as farms get bigger, and the potential for
problem cows to go unobserved increases. Regular Body Condition Scoring can help with
the early detection of disease and help prevent disease if used to keep animals within a
healthy BCS [3].

The latest research in Body Condition Scoring (BCS) estimation for Precision Livestock
Farming (PLF) show a trend towards the use of 3D cameras and deep learning has improved
the ability of these systems to deal with a greater variety of sensing scenarios through
automatic feature extraction, improved accuracy and more reliable operation. This article
will seek to advance the research in this area by analysing the challenges in using manual
expert-provided scores as a ground truth reference and developing an Automatic Cattle
Monitoring (ACM) system that addresses problems around the deployment, accuracy,
sensitivity and maintenance of such a system. In examining the systems documented to
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date for automatic cattle monitoring, most techniques seem to be largely adaptions of
Convolutional Neural Networks (CNNs). This prompted the development of a system to
predict cow id and then BCS using Deep Learning(DL) paradigms. This prototype system
highlighted a number of tools and techniques that proved useful in automatic cattle BCS
monitoring, yielding a dataset with 2D and 3D camera data and expert-provided labels for
BCS comprising 650 cows across three farms and demonstrated that state-of-the art level
accuracies are achievable in both tasks using the latest 2D and 3D Deep Learning networks.
More importantly, our trials highlighted problems with the reference data sources that are
used for both tasks. The BCS scores provided by veterinarians featured inter-rater and
even intra-rater reliability issues which impacts the agreement achievable by an automated
system when transferring knowledge between farms.

The state of the art in automatic BCS estimation is reviewed in [4,5] and summarised
in Table 1 under categories such as the size of the test dataset, the degree of automatization,
the type of camera used and the accuracy of scores within 0.25 of manual BCS reference.
Accuracies of 79% within 0.25 are achievable at scale with as high as 86% being achievable
on some small datasets . Simultaneously the cost and complexity of the sensing equipment
has come down (early 3D scanning required an array of expensive scanners). The main
challenge that remains in the face of the adoption of these systems is the delivery of reliable
repeatable results with enough resolution that the system can detect deviations in BCS for
each individual animal. At present the fluctuations within the error margin of the state of
the art and the potential for occasional false positive indications of extreme BCS due to
sensing/dataset anomalies hinder the uptake of automated systems.

Table 1. Past Vision-based BCS Scoring Research.

Features Reference Images in
Dataset

Automated/
3D/2D Performance

Hook angle, posterior hook angle, depression [6] 834 No/2D 92.79 (note manual input
is required)

Goodness of fit of a parabolic shape of the
segmented image [7] 172 Yes/2D R = 0.94

Measurement between specific points on a
cows back [8] - No/3D Area estimate only

Principal Component Analysis [9] 25 No/3D R = 0.96

14 individual features per cow, derived from
cows’ topography [10] 2650 Yes/3D 74% accurate within 0.25

Area around the tailhead and left and
right hooks [11] 130 Yes/2D Area estimate only

Body mass, hip height and withers height [12] 107 Yes/3D R2 = 0.946 (body mass
estimation)

3D surface of cows back and fitted sphere [13] 95 Yes/3D Area estimate only

Features determined by CNN on pre-processed
depth images [14] 503 Yes/3D 0.78 accurate within 0.25

Proprietary BCS system [15] 344 Yes 0.76 correlation

Refinement of [15] with smoothing filter [16] 32 Yes 0.86 Pearson correlation

Manual body measurements [17] 55 No R2 of 0.63 and RMSE of 0.16

2.1. Deep Learning

Automated BCS systems have advanced with the available technology as illustrated
in Figure 1. The most prevalent trend identified is the uptake of 3D vision. With regards
to what parts of the cow the vision system should capture, most implementations take a
top-down view and are interested in features such as the curvature of the spine, hips and
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pins, while some take a side-on view and look at features such as leg swing, the curvature
of the spine and the placement of the cow’s hoofs.

Figure 1. Visual representation of the progression of the state of the art in BCS estimation.

ToF cameras best fit such applications as they provide their own light source, they pro-
vide reliable measurements in real-time with the required precision (as proven by [18,19])
and they are available in IP69 rated enclosures. The precision and applicability of measure-
ments gathered from a ToF camera (cameras being placed approximately 0.5m from the
cow) were assessed by [20] where the heights of ischial tuberosities, i.e., the pins of the
cow’s pelvis, were calculated from the 3D coordinates. Measurements taken with cattle
standing still showed a standard error range from 2.4 to 4.0 mm for the heights of the
ischial tuberosities. The accuracy decreases when the animal is moving to 14– 22.5 (+550%)
mm, respectively, for each type of measurement. Therefore, the technology is practical for
determining accurate measurements for assessing traits in cattle.

2.2. Deep Learning

A further trend has been the development of algorithms which make use of AI for
improved accuracy and reliability. Many recent papers make use of a popular DL technique
called Convolutional Neural Networks (CNNs) which are designed to automatically and
adaptively learn spatial hierarchies of features. Such developments have been shown to
beneficial in situations where the system may be deployed in a diverse range of conditions
considering that physical traits can vary greatly depending on the stage of lactation and
cattle breed and also that poor lighting and lens fouling are likely to occur in farmyard en-
vironments.

Manual feature definition is sometimes very difficult for high-level features—it is up
to the CV engineer’s judgment and a long trial and error process to decide which features
best describe different classes of objects. Poor model/feature definition, the introduction of
unwanted bias from pre-processing steps and changing environments can lead to a lack of
robustness. Machine learning rejects the traditional programming paradigm where problem
analysis is replaced by a training framework where the system is fed a large number of
training patterns (sets of inputs for which the desired outputs are known/discoverable)
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which it learns from to create a model which can be applied to new data at the inference
stage. Machine learning can automatically learn complex mapping functions directly from
data, eliminating the need for features to be manually defined [4].

Recently, there has been a big jump in our ability to recognise complex features thanks
to a development called deep learning (DL), and more specifically, the neural network
(NN) computing architecture, which emulates the theorised functioning of the human
brain. The adjective “deep” is often assumed to mean that the architecture consists of
many layers of computing cells, sometimes called “neurons”, that each perform a simple
operation. The result of each computation being an activation signal that is passed through
to the neurons in proceeding layers. Each neuron assigns a weight to each of its inputs
and adds a bias value if necessary. By tuning these weights and biases, a model can be
trained/learned to capture “deeper” local information and features through exploiting
self-organisation and interaction between small units [4]. It is also for this reason that deep
neural networks (DNNs) are often computed using GPUs, or similar hardware suited to
matrix multiplication, and the availability of such computing resources is what has fuelled
the recent activity and great strides in the predictive capability of artificial intelligence.

DL introduced the concept of end-to-end learning where the machine is just given a
dataset of images which have been annotated with what classes of objects are present in
each image. Thereby a DL model is ‘trained’ on the given data, where neural networks
discover the underlying patterns in classes of images and automatically works out the most
descriptive and salient features for each specific class of object. It has been well-established
that DNNs perform far better than traditional algorithms, albeit with trade-offs with respect
to computing requirements and training time, with the current state-of-the-art approaches
in cattle monitoring employing this methodology [21].

2.3. 3D Deep Learning

Many of the state-of-the-art techniques in cow monitoring reviewed have used pre-
processed depth images as input where the 3D spatial relationship between all points
measured by the 3D camera is not captured [21,22]. Very few studies have exploited the
potential of the point cloud data collected by 3D cameras, however, as the majority of
algorithms use the depth image as input and those that have used point cloud data have
only explored statistical techniques [13,23,24]. We propose that deep learning techniques
which operate on the raw point cloud data, would yield better accuracy and reliability as
it allows geometric pre-processing and noise reduction techniques to be applied and the
shapes present in the point cloud would be invariant of camera pose, light amplitude and
background light. As an emerging field, 3D CV has many open challenges including sensor
fusion to improve the performance of range imaging systems, deformable 3D shape corre-
spondence, generalization of deep learning models and dealing with dynamically changing
shapes in 3D camera streams. The processing of 3D data also imposes greater memory
requirements compared to as the convolutional kernel must convolve over 3 dimensions
which results in an increase in computational complexity from O(n2) to O(n3). Com-
pared to 2D image processing, 3D CV is made even more difficult as the extra dimension
introduces more uncertainties, such as from occlusions and varying cameras angles.

Geometric Deep Learning (GDL) deals with the extension of DL techniques to 3D data.
3D data can be represented as graphs, manifolds, meshes and point clouds depending on
the application. As CNNs are the most effective DL architecture, many have adapted CNNs
to take 3D data as their input and branded them 3D-CNNs. A diverse range of different
methods have been proposed for 3D object recognition. Upon review, we note five types of
architecture being developed: they are being view-based, voxel-based, convolution-based,
point-based and graph-based [25]. One of the main difficulties in applying CNNs to 3D
data is that the spatial relationship between features is lost due to the max-pooling layers.
There have been many different adaptions to address these issues including projecting
a 3D model into multiple 2D views, using CRFs to enforce geometric consistency of the
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output of 3D CNNs, and point-based methods with special transformations to ensure
spatial awareness.

3. Materials and Methods

The creation of a dataset with corresponding data on animal activity/events for each
cow recorded over a long term (multiple lactations) will allow variations over the lactation
(as well as longer-term variations) to be tracked. The primary case study for the system is
at points around the milking parlour, e.g., at the first bail after the entrance reader in the
parlour. The system will be integrated with the milking parlour control system to correlate
the information for each cow for each image. Once trained, the system should be deployable
to any other location around the farm (for instance, cameras will also be installed above
crushes/walkways/drafting crates) as such a system should provide real-time insights to
allow decisions to be made at critical points in a pasture-based management system—when
the cow is being fed concentrates, when the cow is being milked and when the cow is
being drafted.

3.1. Camera Installation

A range of tests were carried out to determine if the available vision sensors were
applicable to our desired application. To summarise, a range of criteria were evaluated,
including accuracy, reliability of depth measurement across the field of view of the camera,
long and short-range sensing applications, dynamic scene effects and remote deployment
considerations. A low-power stereovision solution in the form of an Intel D435 camera [26]
and an industrial Time-of-Flight (ToF) camera in the form of an IFM O3D313 [27] were
tested. The ToF camera was chosen as it was found to be less sensitive to variations in
lighting and provides more reliable depth measurements for fine-grained visual recognition
tasks was chosen for the parlour vision system.

Through a literature review of the latest state-of-the-art technologies available in CV
which may be applied in cattle monitoring [4], the most appropriate camera technologies
and camera pose configurations were considered. This review was undertaken from both a
hardware perspective and a software perspective. From a hardware perspective, the study
found that state-of-the-art implementations use 3D cameras. With regards to what angles
of the cow the vision system should capture, most implementations take a top-down view
and are interested in features such as the curvature of the spine, hips and pins, while some
take a side-on view and look at features such as leg swing, the curvature of the spine and
the placement of the cow’s hoofs.

For our trials, we chose to view the animals from above (at locations shown in Figure 2).
This places the camera high up and away from potential fouling and damage from animals
or during the parlour wash routine. Both a ToF camera and a standard IP Camera were
installed at each observation location. The view with a depth camera from above means
that the curvature of the cow’s spine can be perceived which has been shown to be a useful
indicator in BCS research. The IP camera provides a high resolution colour image which
may aid the 3D camera if data fusion is used or prove to be a low cost alternative if trials
demonstrate the analysis of the data can yield satisfactory results.



Dairy 2023, 4 7

(a) (b)

Figure 2. (a) Three sets of cameras were installed on the research farm over the rotary (far in distance
in image (looking down at the cow’s front at an angle of 30 degrees at a height of 0.9 m above the
cow) over the drafting crate (looking straight down perpendicular to the cow’s back at a height of
0.9 m above the cow) and at the drafting exit (45 degrees at a height of 1.2 m above the cow). (b) Two
cameras were installed in a local farm over the rotary and over a drafting crate (not shown) (view of
cameras marked in orange).

In our experiments we set out to devise methods which can learn from shape alone and
are robust to rigid translation and rotation of the point cloud. Therefore ur experimental
setup should contain such instances where the cow pose and environment changes. e.g.,
in the installation above the rotary parlour where the cow is not necessarily always at the
centre of the frame, e.g., on the rotary as the cow revolves across the field of view (see
Figure 3).

Figure 3. A sequence of images recorded as the rotary revolves underneath the camera.

Moreover, the relative pose between camera and cow is not easily constrained either as
it is sometimes necessary to point the camera at an angle to obtain a clear view unobstructed
by the surrounding parlour infrastructure as shown in Figure 4. Additionally, cows can be
moving quite quickly in some installation environments, such as at the parlour entrance,
which makes accurate 3D measurements more challenging.
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Figure 4. A situation where a more extreme angle of camera pose (45 degrees at a height of 0.7 m
above the cow) is necessary to avoid occlusion from surrounding infrastructure.

3.2. Data Acquisition

The camera is triggered when it is known the animal is passing underneath and the
ID of the animal was logged through the use of an external RFID system. The recordings
were stored in the file structure to enable access to the necessary information later during
data analysis.

Vets provided regular BCS and Locomotion Scores at the Research Farm in UCD
(University College Dublin) where the first camera trial took place which acted as a reference
for learning to predict these animal Health indicators, while on 2 validation farms where
subsequent trials took place, scores were provided thanks to the assistance of veterinarians
at the Munster Technological University (MTU); Lea Krump and Gearoid Sayers. All herds
had primarily Holstein Friesan breeding. Cows were assessed for BCS (a scale of 1 to 5
with increments of 0.25, where 1 is extremely thin and 5 is extremely fat) on a fortnightly
basis. A summary of the data collected is provided in Figure 5.

Figure 5. Summary of the data and processes collected/implemented in this study.

The task is to automate the manual scoring of health attributes relating to the ap-
pearance of an animal’s shape. The reference scores which were taken as ground truth
labels for the data were supplied by veterinarians and aligned with each animal in the
data analysis phase through the matching of date and animal ID. The final label was then
related to the corresponding veterinarians’ scores by look up table query based on animal
ID and date. Taking the main research farm as reference, the acquisition system collected
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70 sets of images/point clouds per cow per milking session for 200 cows. The data used for
training was limited to very 10th image in which the cow was in frame which accrued to
1400 images per month and 11,200 images/point clouds over the 8 month collection period.

3.3. Image Processing
3.3.1. Keyframe Extraction

It is advantageous to be able to extract the keyframes when the cow is in the centre of
the frame for both eliminating invalid frames from training data and also for limiting the
number of frames over which a model is run at runtime. Due to challenging segmentation
conditions (e.g., poor lighting and close proximity of animals to surrounding infrastructure),
a wide range of keyframe extraction techniques were trialled and documented in the
following paragraphs.

Depth-Based Foreground Extraction

The objective here was to detect cow presence using the segmented images using
the watershed method [28] which could allow models to be trained with fewer data as
non-relevant variations in the surrounding background would be removed. However, this
work yielded unreliable results such as cows being segmented into multiple parts or not at
all as shown in Figure 6. This may have been due to poor repeatability of the watershed
algorithm in separating the cow from the background.

Colour Thresholding

The animals’ size and posture can vary significantly, i.e., as they walk and move
their head as they pass through the cattle crush/milking parlour. This was found to be
problematic when applying Colour space pre-processing (transformation to LAB and then
HSV colour spaces) and binary amplitude thresholding to segment the animal from the
image. The required tolerance to accommodate the variation in cattle shapes was found
to be too great compared to the proximity of the cattle to the surrounding railings to
successfully segment the cow (see Figure 7).

(a) (b)

(c) (d)

Figure 6. Depth-based foreground Segmentation: (a) depth image in greyscale, (b) result of applying
amplitude OTSU thresholding a method widely used in classic image segmentation (c) extraction of
contour with largest area (d) example of erroneous segmentation result where there is a separation of
contours generated over the cow due to artefacts caused by cow coat patterns (visible in (b)) drawing
a line across the cow.
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(a) (b) (c)

Figure 7. Colour Thresholding Process (a) depth image shown in blue channel where not much
gradient is visible, (b) LAB image which makes gradients and edges more visible and (c) thresholding
result where sometimes rails are erroneously included if too close to the cow.

Difference Histogram

The absolute histogram difference-based method was found to be effective in finding
images where the animal is moving, i.e., by setting a threshold on the minimum difference
between the histograms of two consecutive image frames, the repeated images were
removed and the frames containing animal posture and motion information are extracted.
However, the method was not very useful in determining when a cow was fully in-frame
and also in the given application we also want to run the analysis when the cow is fully
in-frame and also static (thereby increasing the accumulated confidence in our prediction
over several frames).

Depth Measurement at Image Keypoints

In some instances, animal flow is unimpeded, and animals can often follow each other
closely which makes it difficult to identify the gap between animals in order to separate the
recordings for each animal. It was found to be more effective and more efficient to simply
query the pixel value at 5 distinct locations in the depth image where it was known that
the area would be occupied/unoccupied, respectively, at the instant the animal would be
in the right place. This method consisted of a simple program that queried the depth at
5 co-ordinates which in a keyframe would be located as follows: just in front of the cow,
3 points zig-zagged along the cows back and just behind the cow. If the depth for each
keypoint was between certain thresholds for each respective keypoint (i.e., if the points
before and after the cow were vacant and the 3 points in the middle were occupied by a
cow), then the keyframes when the cow was in the optimum location for all features to be
visible to the camera could be reliably detected. This technique was found to be the most
satisfactory of the keyframe detection techniques presented in this section as it could be
easily configured for new installation scenarios (albeit manually) to be triggered according
to the desired cow profile/pose for BCS estimation to take place.

Normal Map Calculation

For the BCS application, it was found that it was useful to extract the curvature
information of the cow’s topology by calculating the normal (the direction of the line
perpendicular to the tangent to the surface) for each point. The normal map for an image
may be calculated from two vectors calculated from neighbour pixels by merging Holzer et
al’s method [29] and Equation (1).

N(u, v)=(V(u+1, v)−V(u, v))×(V(u, v+1)−V(u, v)) (1)

where: N(u, v) is the Normal vector at a point (u, v), V(u, v) is a vertex map that corre-
sponds to a camera coordinate, and the equation describes how the normal vectors are
obtained by calculating a cross product of two vectors from neighbour points.

Initial results were unsuccessful in representing the gradient in height along the cow’s
back because of noise in the depth image. Upon applying a bilateral filter to the depth
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images before the normal map estimation, the result was improved to what can be seen in
Figure 8a.

The method was subsequently performed on images with the animal segmented as
can be seen in Figure 8b. However, the models subsequently trained on the normal map
calculated for the entire scene yielded the better results so that method was used ultimately.

(a) (b)

Figure 8. Normal Map Calculation of cow’s back for (a) the entire depth image and (b) the segmented
depth image.

3.3.2. Image Classification

In line with the latest state of the art, deep learning processes were implemented in
order to yield models to predict Cow ID and BCS. With the rise of deep learning in the last
number of years, plenty of frameworks and libraries that can be used for deep learning have
been developed for open source use. This thesis has looked at a number of frameworks to
test the various libraries/programming interfaces available, e.g., Keras [30], Pytorch [31]
and Matlab [32]. A framework called TensorFlow [33] was used for these trials as it has the
most flexibility and community support [34]. For training deep CNNs on the dataset of
images collected was performed as detailed in Section 3.2 on data acquisition. The ‘depth
Measurement at image keypoints’ method was implemented to ensure only images where
a cow is in frame were used. Since the image acquisition system acquires 20–60 images per
sighting of each cow, every 10th frame was taken to limit the amount of repeat data.

The entire scene captured by the camera was taken as input, i.e., no segmentation was
applied. Images from both types of camera (2D and 3D) were trialled.

For the 3D camera data, the 3 image outputs from the IFM O3D313 camera were
overlaid into a composite image as described in to satisfy the 3 channel format of the input
to most available deep learning-based classifiers (i.e., the r, g and b channels typical in
colour images were filled with the amplitude, depth and confidence streams from the 3D
camera). Some preprocessing was applied to adapt the image to the format expected by
pre-defined models (i.e., image resizing) and experiment with measures to highlight the
curvature of the cows’ backs (i.e., normal map generation).

The data was labelled according to the file structure, i.e., for the cow identification
task the cow ID is contained within the directory name was used as the target label, while
for the BCS task, the label was assigned according to a look up function of the nearest BCS.
A wide range of different types of models available in the TensorFlow object detection API
were trained on the collected labelled data. As the models downloaded to use as initial
checkpoints were initialised on general purpose datasets (e.g., ImageNet or MS COCO)
the training procedure was a means of transfer learning, i.e., re-adjusting the weights and
biases of the checkpoint network so that the output classes are reassigned to the set of
cow ID/BCS classes defined in the dataset. Transfer Learning was found to work on new
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classes as that it turns out the kind of information needed to distinguish between all the
1000 classes in ImageNet is often also useful to distinguish between new kinds of objects.

Object Detection models where a bounding box is defined around each cow were used
to focus the input data to just the information relevant to the cow per annotated image,
i.e., removing irrelevant information about the scene in the background. The TensorFlow
Object Detection API was implemented for BCS classification.

In this experimentation, we used the MobileNet-SSDV2, Inception-SSD and we trained
the models using depth images, composite images and normal-map images to compare
the results images from [15]. We resized the images to 224 by 224 resolution. No other
pre-processing was done. We trained the models on a laptop equipped with a NVIDIA
GTX 1060 GPU with a 6 GB memory. We set the batch size equal to 24 and ran the training
for 25,000 training steps.

To maximise the classification accuracy, the accumulated confidence of each prediction
for subsequent frames of every cow sighting. This method is useful in the scenario where
the top-n predictions are of similar confidence. A high confidence filter was appended to the
network architecture in Figure 9 where the sum of the confidence score for predictions that
appeared most often with high confidence (the top-5 predictions per frame over 45 frames
or 3 s) was used as an indicator to yield more consistent predictions. The results of these
trials are shown in Table 2.

Table 2. BCS Classification Results with Tensorflow Object Detection models.

Input Data Location Model Inference Time 1 (ms) Classification Accuracy 2

IP Camera RGB Image Drafting crate Mobilenet V2 62 0.25

Depth Image Drafting crate Mobilenet V2 30 0.26

Depth Image Drafting crate Inception 50 0.24

Composite Image Drafting crate Mobilenet V2 30 0.29

Normal Map Drafting crate Mobilenet V2 30 0.39

Normal Map Drafting crate Mobilenet V1 FPN 30 0.38
1 when ran on an intel i7 CPU and NVidia GTX 1060 graphics card; 2 when tested on a test set of cows not seen
during training but part of the same herd.

Figure 9. The MobileNet-SSDv2 Network Architecture showed best results for the pre-processed
normal map of the depth image. Image modified from [35].

3.4. Point Cloud Processing

Issues arising from a change in farm/pose/environment were found to be detrimental
to model performance (e.g. cameras mounted in a different location and orientation result
in inconsistent presentation of the data as illustrated in Figure 10) and tightly constraining
the camera installation configuration is not an feasible. Hence, the proceeding section
will investigate methods which operate on the more native representation of the 3D data
going through the steps of keyframe extraction, data pre-processing/transformation, neural



Dairy 2023, 4 13

network training and the refinement of inference results and compare them with their 2D
counterparts to answer the question of whether it is better stay in the well-established 2D
domain or try and exploit the extra relational information in raw point cloud data.

(a) (b) (c)

Figure 10. The depth map from a different angle (a) produces a significantly different normal map
(b) but the point cloud representation (c) remains the same as it would regardless of camera pose.

3.4.1. Dataset Preparation
3.4.1.1. Keyframe Extraction

Applying some segmentation techniques to verify the cow is in the correct position
using the point query method in the depth image and so filter the training data was found
to improve the quality of the proceeding inference results. The training data was limited to
only days within 2 days of when cows are scored to omit any deviation cows may exhibit
in the intermediary periods between score dates. Different pre-processing steps for the
point cloud data were also trialled using Point Cloud Library [36] including:

Primitive Shape Matching Segmentation

Model-fitting methods for point cloud segmentation, such as Hough Transforms [37]
and Random Sample Consensus (RANSAC) [38,39], may be used to fit primitive shapes
such as planes, cylinders and spheres to point cloud data. The points that conform to the
mathematical representation of the primitive shape are labelled as one segment. RANSAC is
fast and efficient, less sensitive to noise and outliers, maintains topological consistency and
avoids over- and under-segmentation. However, these methods are highly dependent on
the subject matching a known shape which means the method falls short for complex shapes
or fully automated implementations and was found not to be applicable where the subjects
are animals as a combinations of dimensions and tolerances for planes/cylinders/cones
(see Figure 11) could not be found to consistently segment the cow/background points.

(a) (b) (c)

Figure 11. Some successful instances of (a) plane, (b) cylinder and (c) cone segmentation required
very tight constraints on shape dimensions which were not generalisable to all cows.

Region Growing Point Cloud Segmentation

Region growing segmentation [40] is a bottom-up approach that starts from some seed
points and grows the segments based on given similarity criteria. The method is more
robust to noise through the use of global information but is sensitive to the location of
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initial seed regions and inaccurate estimations of the normal and curvatures of points near
region boundaries. The similarity criteria used in the trial of this method was to group
points which are spatially close and share similar normal vectors. The method was found to
work quite well (see Figure 12) once tuned to the characteristic point density and curvature
of the data captured by the camera for the scenes in question.

Figure 12. Region-growing segmentation results.

Point Cloud Annotation

Dataset creation and annotation is a huge bottleneck in 3D DL, particularly in 3D
segmentation tasks where every point in 3D space must be labelled accurately. Ref. [41]
include a review of some creative ways of improving the data annotation process in terms of
efficiency, accuracy and automatability. Several annotation tools exist which have improved
the user interface for point cloud annotation, for our dataset, we used an adaption of [42].

In our annotation automation schemes we delegate as much of the work as possible to
the machine while still giving the user insight and control over the process. We followed
such a scheme to segment the cow from the background in the parlour vision system
dataset. Traditional region growing segmentation was used to annotate point clouds over
narrow spectrums of circumstances. That is a segmentation strategy was defined that
works for a given set of conditions, take the segmentation results and combine them with
the results of the same process adjusted to a different set of conditions. Doing this in an
iterative manner allows complicated to be annotated many scenes at a time offering a
drastic speed-up compared to annotating point clouds one scene at a time manually.

3.4.2. Data Pre-Processing/Transformation/Point Cloud Downsampling

Following segmentation, it is necessary to downsample the isolated cloud of the object
to be classified if it is to be inputted into a neural network. There are several useful filtering
and downsampling techniques which may be used to ensure the quality of data being fed
to the network. Rather than listing them all, let us demonstrate how the point clouds were
filtered in our implementation.

Firstly, the point cloud was represented as a voxel grid so that statistical outlier removal
by K-means clustering [43] could be performed followed by radius outlier removal. The
combination of these two techniques allowed both point outliers due to noise and groups
of points due to sensing artefacts and/or incomplete segmentation of the background in
the previous step to be removed effectively.

It is necessary to input a fixed number of either 512/1024/2048/4096 points to many
of the neural networks trailed for our application. Therefore, many subsampling methods
which allow for the desired number of remaining to be set were implemented and compared.
The point clouds were reduced from approx. 8000 points to 4096 points using random
sampling and normal-space sampling. As is shown in Figure 13, density-based sampling
such as normal-space sampling or farthest point sampling removes more points in the flat
parts where there is not much detail while keeping the important parts near the tight curves.
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(a) (b)

Figure 13. Subsampling results of (a) Random subsampling vs. (b) Normal-Space Subsampling.

3.4.3. Point Cloud Classification

The latest state-of-the-art models for each of the categories of data representation were
reproduced using the open-source repositories included in the respective references and
adapted where necessary to run on our custom data. These included:

• Point-based methods for shape embedding (PointNet++ [44]);
• Graph-based methods for relationships analysis [45];
• 3D Discrete Convolution Networks [46];
• 3D Continuous Convolution Networks [47].

These networks were implemented in combination with various combinations of the
keyframe extraction and data pre-processing steps as shown in Figure 14. Several training
iterations were performed to tune the parameters to our data (e.g., the l1–l4 radii which
define the range of sizes of feature you want to look at). A script was also written to sample
the point cloud into box sections randomly and feed these point sets as the training input.
This worked well as the networks seemed to train better with point numbers <8192 because
it allows larger batch sizes and doing it this way avoids downsampling the point cloud
too much.

Figure 14. A visual representation of our comparison of 2D and 3D Deep Learning approaches to the
BCS application.

These networks were implemented in combination with various combinations of the
keyframe extraction and data pre-processing steps discussed previously as detailed in
Table 3. With regards to 3D augmentation, rotation and translation and jitter, i.e., the intro-
duction of random perturbations to each point in the point cloud, are standard techniques.
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These techniques were found to be effective when selectively applied to the minority classes
in our implementation of PointCNN which improved accuracy substantially compared to
the other 3D model results from an accuracy of 39.4% of the next best model PointCNN
to an accuracy of 53.0% (Table 3). This result was also facilitated by mitigating the class
imbalance present in the data by using selective data augmentation (applying random
rotations and jitter only to the classes for which few data are available) and by adjusting
the weights for each class according to their representation in the training set.

Table 3. A quantitative comparison of 3D deep neural networks in BCS classification.

Input Data Location Preprocessing Model Classification Accuracy

Convolution-based Rotary Region-growing segmentation + outlier
removal + Normal-Space Subsampling

Relation-Shape
CNN 0.185

Graph-based Rotary Region-growing segmentation + outlier
removal + Normal-Space Subsampling DGCNN 0.205

Convolution-based Rotary Region-growing segmentation + outlier
removal + Normal-Space Subsampling PointCNN 0.394

Point-based Draft Region-of-Interest segmentation + minor
Normal-Space Subsampling + block merging Pointnet++ 0.53

The gradients of state-of-the-art networks such as PointNet and PointCNN were tuned
to the easy-classified samples present in the 3D point cloud benchmark datasets such as
ModelNet or ShapeNet, making hyperparameter initialization very challenging when it
comes to applying these networks to custom datasets. Table 3 shows the results of the
experimentation which was carried out. Recall the max classification accuracy achievable
using the 2D methods discussed in the previous section was 0.39.

Hyperparameters proved to be determinant in the training process. In the early stages
of the experiments, the size of the mini-batches fed to the network was bigger and the
highest accuracy achieved was 0.394 accuracy, but this value reduced in later stages. Data
pre-processing and checking is fundamental. Varying the test, train and validation sets
after the data was clear of imbalances had minimum impact onto the model.

4. Results

The scarcity of samples in some of the object categories leads to problems during
training where the validation loss increased as training progressed. 57% of the cows in the
dataset had a BCS of 2.75 (the majority class) which lead to the models being more biased
to score 2.75. BCSs at the extremes of the chart (<2.0 and greater than 3.5) were recorded
live in less than 22% of the scores, whereas the same 2 to 4 scores (2.75 to 3.25) accounted
for up to 78% of the scores with 57% of the cows being scored 2.75.

This deviation from normal distribution did not sufficiently expose the model to these
extreme BCS points during initial testing. To give an idea of the distribution of correct
predictions, confusion matrices were calculated and are shown in Figure 15. This class
imbalance within the dataset prompted the need for data augmentation techniques to be
applied to the under-represented classes so they could be over-sampled. There are other
options such as under-sampling the majority classes. An alternative to dataset management
is to use a Weighted Loss function such as the Focal Loss function in Mobilenet V1 FPN
which yielded the best accuracy in Table 2), yielding an accuracy of 38%, 90% within 0.25
and 95% within 0.5.
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Figure 15. Confusion Matrix of BCS predictions.

This high-confidence aggregation approach was found to work well when the cow
is stationary for the observation period and was found to be less effective for the Rotary
images where the platform is constantly moving and would not be applicable in cases
where cows are not stopped at the drafting crate.

Of the 3D DL models tested in Table 3, PointNet was proven to best learn the relevant
features of the data. To achieve this result, Region-of-Interest segmentation + minor Normal-
Space Subsampling and block merging techniques previously discussed were combined.
The results after this step were 98% semantic segmentation accuracy in cow segmentation
(extracting the cow from the background and for BCS the semantic segmentation accuracy
was 53% (which was better than previous methods described in this paper as charted
in Figure 16 ). Visualisations generated of the semantic segmentation results for BCS
classification show how different areas are attributed to different BCS scores. As can be
seen in Figure 17 the BCS predicted is consistent across the cow and the cow is accurately
segmented from the background.

Further comparisons in this paper will compare the best preforming of the 2D and 3D
methodologies trialled (i.e. Mobilenet V2 with normal map preprocessing from Table 2
and Poinet++ with region growing and normal space subsampling from Table 3), hereafter
referred to as Algorithm 1 and Algorithm 2 respectively.
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Figure 16. The 2D/3D DL Model Development Progress in BCS Classification.

Figure 17. PointNet Segmentation Results on patch at seed point and complete scene.

5. Repeatability Evaluation for the Scoring Tasks

Human scoring is identified as the gold standard in BCS. This is problematic as it is a
subjective assessment which is prone to poor inter-observer and intra-observer reliability.
Therefore, the repeatability of estimation of observers needs to be evaluated if the system
designed to replace this gold standard is to be compared fairly.

A metric which is often used to quantify repeatability is Cohen’s κ coefficient, a
traditional measure originally designed as a measure of agreement between two judges,
based on the Accuracy but corrected for chance agreement. It uses a scale of poor (<0),
slight (0.01–0.20), fair (0.21–0.40), moderate (0.41–0.61) substantial (0.61–0.80), or almost
perfect (0.81–1.00). The definition of κ is

κ ≡ po − pe

1 − pe
(2)

where po is the relative observed agreement among raters, and pe is the hypothetical
probability of chance agreement, using the observed data to calculate the probabilities of
each observer randomly seeing each category. If the raters are in complete agreement then
κ = 1. If there is no agreement among the raters other than what would be expected by
chance (as given by pe), κ = 0. It is possible for the statistic to be negative, which can occur
by chance if there is no relationship between the ratings of the two raters, or it may reflect a
real tendency of the raters to give differing ratings.
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Kristensen et al. (2006) conducted a study to estimate the agreement on exact scores
among practising dairy veterinarians attending a teaching workshop on BCS and the κ
ranged from very poor (0.17) to good (0.78), with a moderate average (0.50). These levels of
agreement in exact scores between assessors were similar to our findings. Consequently,
comparisons between assessors of herd BCS are not warranted unless repeatability assess-
ments have been performed and a need exists to provide more estimates of the repeatability
of BCS among consultants working in the field. Allowing an agreement within 0.5 points
seems to be necessary to achieve excellent agreement (Kw > 0.80) between many assessors
for assessment in uncontrolled situations and to allow comparison of herds [48].

From analysis of the manual scores for the first day of scoring on the verification
trial, the vets had an inter-rater reliability κ value of 0.268–0.296 and each of the vets had
intra-rater reliability of 0.449 and 0.27, respectively, for the 205 cows scored.

κ can be inadequate when an imbalance distribution of classes is involved, i.e., the
marginal probability of one class is much more (or less) greater than the others. For example,
BCS is typically normally distributed about BCS 2.75–BCS 3.0, so the reliability calculation
should ideally take into account the percentage distribution of each score. Krippendorff’s
α, a statistic with the same structure as κ but that differs from it in the definition of pe
in Equation (2) according to the method by [49]. The advantage of this approach is that
it supports categorical, ordinal, interval, and ratio type data and also handles missing
data [49]. The Krippendorff’s α calculation used the percentage distribution figures for the
BCS scores established for Validation farm 1.

As for Cohen’s kappa, Krippendorff’s alpha is defined via the formula in (2). Except
now, for po and pe the relative observed agreement among raters uses a weighted agreement
table where agreements are weighted inversely to statistical probability. Hence agreements
that are more likely are down-weighted, yielding a more conservative reliability score
compared to Cohen’s κ.

The model (trained on two farms) was run on the test set omitted from training (ba-
sically any cows whose number ended in 0 or 1) on the day they were scored for both
morning and evening. The results are in Figures 18 and 19.

Figure 18. Plot of scores recorded vs. predictions for entire herd on validation farm using model
trained with Algorithm 1 on research farm. Upper error bar values represent the deviation between
the two vets (BCS Reference 1 vs. BCS Reference 2) and lower error bar values represent the deviation
between one of the vets and Algorithm 1 (BCS Reference 1 vs. Algorithm 1).
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Figure 19. Morning/Evening Repeatability Analysis on 1st validation farm using model trained with
Algorithm 1 on research farm and validation farm.

The kappa values for this test set of 15 cows were as follows:

• The 4 reference BCS sores had a Krippendorff’s α of 0.51 (inter-rater reliability)
• Each vet had a Krippendorff’s α of 0.39 and 0.79, respectively, (intra-rater reliability)
• The Inferences morning and evening had a Krippendorff’s α of 0.70 (machine reliability)

Below is a correlation matrix between the observers and the machine on the day of
scoring on a test set of 14 cows which the model had not seen during training. Rater 1a and
1b denote the scores given by the first vet on their first and second sighting of the animal.
Rater 2a and 2b denote the same for the second vet. Algorithm 1 is the results of the best
2D model for the morning milking and Algorithm 1b is for the evening milking. Likewise,
Algorithm 2a and 2b are the results of the best 3D model for the morning and evening
milking. The 4 values in each cell correspond to Krippendorff’s α coefficient, accuracy,
accuracy within 0.25 and accuracy within 0.5 in that order. As can be seen, the machine is
better than the inter-rater results, more repeatable and more accurate than rater 2 and more
accurate but not as repeatable as rater 1. However, in the context of on-farm assessment, if
the sole goal of BCS is to only detect cows with extreme conditions (e.g., identifying too
thin cows as a sign of illness or nutrition deficiency and identifying over-conditioned cows
which may be more prone to disease at calving), it may be arguable whether such fine level
of precision of BCS is needed. As those extreme cows are rare in the population, it may be
sufficient for the system to be able to differentiate extreme from normal-condition cows to
allow benchmarking farms on cow welfare level (i.e., categorizing farms in percentages of
too thin, too fat and in ideal condition). On the other hand, from a management perspective,
it may be important to distinguish these extreme scores to monitor changes at the cow level.

The test was repeated for the second validation farm also. Below is a correlation matrix
between the observers and the machine on the day of scoring. This was computed on
recordings collected that morning. 122 cows were scored by the vets that day of which
110 were recorded machine-scored at least once and 73 were recorded and machine-scored
twice (some cows are missed due to not read by RFID, not detected to have come in-frame
by the algorithm or no score with high enough confidence produced).

The inter-rater and intra-rater repeatability metrics were again compared with the CNN
algorithm developed in Section 3.3. This test compares of the robustness of 2D vs. 3D deep
learning approaches. In this comparison, we denote the Mobilenet V2 model on normal map
in Table 2 which gave the best results at the research farm and validation farm as Algorithm 1.

The repeatability was evaluated for Algorithm 1 in Table 4, where Algorithm 1a and 1b
refer to the algorithms first and second look at the cow when she passed through the parlour
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the morning and evening of the same day. Poor agreement results (negative Krippendorff’s
α values (−0.135 to −0.149) means disagreement) between the vets and Algorithm 1 are
observed. This is suspected to be due to change in camera installation orientation to what
it was trained on in the UCD research farm, i.e., it is further back from the cow which was
necessary due to bars obstructing the view at the point the RFID is triggered. Furthermore,
cows are moving very fast and only one or two frames are available per sighting. Due
to this suspicion the latest 3D CNN (PointNet model in Table 3) were also tested and is
denoted as Algorithm 2 in Table 4.

Table 4. Correlation Matrix between the two human observers on the day of scoring on the 2nd
validation farm. The five values in each cell correspond to Krippendorff’s α coefficient, accuracy,
accuracy within 0.25, accuracy within 0.5, accuracy within 0.75 and accuracy within 1.0 BCS in
that order.

Rater 1a Rater 1b Rater 2a Rater 2b Algorithm 1a Algorithm 1b Algorithm 2a Algorithm 2b

Rater 1a 1.0000

Rater 1b

0.4920

1.0000
0.6890
1.0000
1.0000
1.0000

Rater 2a

0.2270 0.2850

1.0000
0.4750 0.5250
0.9340 0.9180
0.9840 1.0000
1.0000 1.0000

Rater 2b

0.1570 0.1900 0.3950

1.0000
0.4750 0.5080 0.6070
0.9180 0.9180 0.9020
1.0000 0.9840 0.9670
1.0000 1.0000 1.0000

Algorithm 1a

−0.1683 −0.2307 −0.2228 −0.2228

1.0000
0.1633 0.1224 0.0612 0.0612
0.6735 0.6531 0.4286 0.4286
0.8776 0.8980 0.7959 0.7959
0.9796 1.0000 0.9388 0.9388

Algorithm 1b

−0.1412 −0.2074 −0.1950 −0.2076 0.1570

1.0000
0.1429 0.1020 0.0408 0.0612 0.4750
0.4082 0.4490 0.2857 0.2653 0.9180
0.8571 0.8776 0.6939 0.6531 1.0000
1.0000 1.0000 0.8980 0.9184 1.0000

Algorithm 2a

−0.0530 0.0267 −0.0339 −0.0415 −0.0003 0.0452

1.0000
0.2857 0.3469 0.2245 0.2653 0.3265 0.3469
0.7551 0.7755 0.5510 0.5306 0.8571 0.7755
0.9796 1.0000 0.9184 0.8776 1.0000 0.9388
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Algorithm 2b

0.0484 0.0118 −0.0762 0.0290 0.3878 0.2245 0.3720

1.0000
0.3878 0.3673 0.2245 0.3878 0.8776 0.6939 0.5918
0.7551 0.8163 0.6327 0.8776 0.9592 0.9388 0.9592
1.0000 0.9796 0.8776 0.9592 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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As can be seen, the intra-rater reliability for the machine achieved slightly better
agreement with itself (Krippendorff’s α of 0.372) compared to the average intra-rater
reliability for the the vets (Krippendorff’s α of 0.289). However, the model is still not in
agreement with the vets with a Krippendorff’s α of −0.077. All inter/intra rater reliabilities
of the best 2D and 3D DL models are represented in a radar graph in Figure 20.

Figure 20. Radar chart of Intra/Inter Rater Agreement in BCS assessment of each of the validation
farms.

6. Conclusions

The results from deploying deep learning models developed for automatic cow moni-
toring, specifically in the task of BCS estimation in a research farm and two more validation
farms have many interesting findings. This investigation gave insights into the question;
given a real-world classification problem to be tackled with 3D depth-sensing cameras,
whether it is more advantageous to use the depth image and apply 2D CNNs or to use the
point cloud data and apply 3D Neural Networks? It was found that, while 2D approaches
can be advantageous in leveraging a wider breadth of datasets and pre-trained models,
it is more advantageous to use 3D methodologies which are more robust to noise and
inconsistent camera/subject pose for deployment in unregulated environments. Overall,
techniques towards minimising class imbalance and extracting curvature features (normal
map calculation) were found to be effective in improving the performance of the models.
The respective best 2D and 3D methodology achieved BCS estimation accuracies of 54.6
and 77.04% within 0.25) when deployed to a different farm which indicates that the 3D
method was more robust.

However, deploying the classification algorithms to several farms and comparing the
agreement between vets scores and the scores generated by the model has indicated that
while the model can achieve the same repeatability as expert observers (a Krippendorff’s
α coefficient of 0.289), it does not agree well with the observers for that herd having
been trained on a different herd (a Krippendorff’s α coefficient of −0.077). This article
presents strong evidence that there is an issue with the reliability of manual scoring which is
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problematic when trying to train a machine learning model with human-provided ground
truth across farms. This means that trying to emulate a single scorer on one farm may
not necessarily yield enough sensitivity to be able to alert the farmers to changes in BCS
reliably and quickly enough for effective and prompt correction. We intend to tackle this
problem in an upcoming paper.
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