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Supplementary File 
Section 1: Psychometric Assessment of the Penn Computerized Neurocognitive Battery 

1.1. Spearman’s Hypothesis and the Method of Correlated Vectors 

Spearman’s hypothesis (SH), as formulated by Jensen [1], is the proposition that the AA-EA 
(black-white) group differences on tests of cognitive ability are primarily due to the g factor. SH can 
be thought of as taking two different forms: strong and weak. According to the strong form, the 
observed group differences are entirely a result of differences in g and not related to other, specific 
abilities. According to the weak form, endorsed by Jensen [1–3], group differences are only primarily 
due to differences in g. Both of these manifestations of SH can be contrasted with an alternative contra 
form, according to which the group differences “resides entirely or mainly in the tests’ group factors 
and specificity” and to which the “g factor contributes little or nothing” ([2], p. 372).  

Spearman’s hypothesis is typically assessed using a technique called the Method of Correlated 
Vectors (MCV). This method involves correlating the vector of subtest or item g loadings of an 
assessment battery with the vector of group differences for those items or subtests. The finding of a 
sizeable positive relationship between the vector of g loadings and the vector of group difference is 
taken to indicate a “Jensen effect,” whereas a negative or null relationship indicates that something 
is either an anti-Jensen effect or a non-Jensen effect [4,5]. Jensen effects are taken as evidence for 
Spearman’s hypothesis [6]. However, the MCV has been criticized as a tool for evaluating Spearman’s 
hypothesis because it lacks specificity and sensitivity [7,8], calling into question the validity of this 
interpretation of Jensen effects.  

1.2. An Alternative Method 

Some scholars have proposed using a more advanced technique called multi-group 
confirmatory factor analysis (MGCFA) [7,9–11] to assess the causes of group differences. MGCFA has 
the advantage of allowing scholars to assess measurement invariance (MI) where MCV-based 
analyses, at best, use congruence coefficients to assess bias. Mellenbergh [12] defined a test as 
unbiased when the following condition was met:  

f(Y|η) = f(Y|η,s)   

where Y and η are observed and factor scores, respectively while s is group membership. Thus, given 
someone’s latent score, η, the observed score, Y, does not depend on group membership. When 
observed scores are solely a function of factor scores and are independent of group membership, MI 
is said to hold [11,13–15]. Strict factorial invariance (SFI), where the residuals are constrained to 
equality in both groups, implies that the group differences are a subset of the within-group 
differences [11,15]. MI is typically assessed by fitting identical models of the assessment in question 
to different groups and then constraining these models in predefined steps [16]. These steps are 
described in Table S1 below. 

Table S1. Steps in Assessing Measurement Invariance. 

Mode
l Name Constraint 

Free 
Parameters Implication 

1 
Configural, Pattern, 
or Form Invariance 

Latent means 
and variances The rest 

Same number of latent 
variables, indicators, and 

pattern of constrained and 
estimated parameters 
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2 Metric or Weak 
Invariance 

Latent means, 
factor 

loadings 

Intercepts, 
latent 

variances 

Same underlying construct 
meanings, comparable latent 

variances and covariances 

3 
Scalar or Strong 

Invariance Intercepts Latent means Comparable latent means 

4 

Strict (Factorial), 
Omnibus, or Full 

Uniqueness 
Invariance 

Error 
variances - 

Identical latent variables and 
reliability 

5 
Homogeneity of 
Latent Variances 

Latent 
variances - 

Groups use equivalent 
ranges of the latent construct 

6 Homogeneity of 
Factor Means Latent Means - 

No difference between 
groups in the level of the 

latent construct 
Note: Constraints are added to the prior level and thus models are “nested”. 

Model fit is assessed with multiple indices including the comparative fit index (CFI), root mean 
square error of approximation (RMSEA), McDonald’s noncentrality index (Mc), the Tucker-Lewis 
Index (TLI), and the standardized root mean square residual (SRMR). χ2/df is one of the most 
commonly-used measures but we note that this statistic penalizes large sample sizes [17,18] and our 
sample sizes are large.  

1.3. MGCFA of the Philadelphia Computerized Neurocognitive Battery 

It is our aim to test for bias and assess Spearman’s hypothesis in the Philadelphia Computerized 
Neurocognitive Battery (PCNB) [19]. Hu & Bentler’s [20] adequate model fit measures (CFI  ≥ 0.95, 
Mc ≥ 0.9, and RMSEA ≤ 0.06) were used to find an acceptable initial model. Our criteria for 
determining non-invariance come from Cheung and Rensvold [21] and Chen [22]. The former argued 
that a ΔCFI of greater than −0.010 or a ΔMc greater than -0.020 between nested models indicates 
violation of measurement invariance while the latter showed using simulations that a change of ≥-
0.010 in CFI coupled with a change of ≥0.015 in RMSEA is a good criteria for large and equal samples, 
while a change of ≥ −0.005 in CFI coupled with ≥0.010 in RMSEA is good for small and unequal sample 
sizes. (cf. [23,24]). We regard a ΔCFI of greater than −0.01, a ΔMc greater than −0.02, and a ΔRMSEA 
greater than 0.01 as evidence that measurement invariance is untenable. 

A critical assumption underlying MGCFA is that observed variables are multivariate normally 
distributed [25]. Univariate skewness values were < 2 for all tests except for the LNB and all kurtosis 
values were < 7 except for the LNB, and so were deemed acceptable [26]. The LNB values were only 
barely non-normal (skewness −2.21, kurtosis 8.31) and log transformation put them within the normal 
range (−1 and 2.43) without substantially reducing the correlation to g. Multivariate skew and 
kurtosis was minor (b1p = 14.71; b2p = 127.81) and a Q-Q plot revealed that the distribution differed 
little from a normal one. Winsorization (Dixon, 1980) [27] or removal of responses deemed to be 
outliers (n = 82, 37 black and 45 white, or 1% of the sample) eliminated any violation of non-normality. 
Our data thus approximate a multivariate normal distribution and it is appropriate to conduct an 
MGCFA. We settled on a bifactor model [10,28]. Our initial MGCFA results using the theoretical 
model from Moore et al. [19] minus the social cognition factor are presented in Table S2 below. 

Table S2. Theory Bifactor Solution for African and European Americans on the Philadelphia Computerized 
Neurocognitive Battery. 

Model MI Step χ2 /df CFI ΔCFI  RMSEA ΔRMSEA Mc ΔMc SRMR 
0 Baseline 6.290 0.972 - 0.025 - 0.979 - 0.019 
1 Configural 4.577 0.984 0.012 0.021 −0.004 0.988 0.009 0.016 
2 Metric 4.556 0.979 −0.005 0.021 0 0.985 −0.003 0.018 
3 Scalar 5.975 0.969 −0.010 0.025 0.004 0.977 −0.008 0.022 
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4 Strict 6.866 0.959 −0.010 0.031 0.006 0.970 −0.007 0.024 
Note: Combined N = 8,143, with 3,067 African-Americans and 5,076 European-Americans Baseline is 
Three Stratum-II Factors without g. 

It is worth noting that the addition of a g factor considerably improved model fit relative to the 
model without it. When g was added, the factor loadings for Executive Functioning, Complex 
Cognition, and Episodic Memory decreased; additionally, subtest g loadings were virtually identical 
regardless of the subtests included in the analysis, as assessed by comparing models after adding and 
removing each subtest. Deterioration in model fit at the configural and metric stage was acceptable. 
At the scalar and strict phase, ΔCFI was −0.10. According to Cheung & Rensvold [21] this is acceptable 
because it is not greater than −0.10. RMSEA never increased by more than 0.006 and the Mc never 
decreased by more than 0.008, while the CFI exactly touched our threshold of -0.010 in the Scalar and 
Strict stages.  

Nonetheless, we reassessed the models with partial invariance, additional residual covariances, 
and using the variables after winsorization [27]. The winsorized data had a maximum ΔCFI of −0.008 
(for both the scalar and strict steps) and a model with covarying residual errors for the PLOT and 
PVRT and PLOT and PMAT tests had a deterioration in fit of ΔCFI -0.006 (CFI = 0.973) at the scalar 
step and −0.008 (CFI = 0.965) at the strict step. Further, freeing the PWMT (all subtest variables) 
residual in the strict step led to a ΔCFI of −0.007 (CFI = 0.966). Using the Winsorized data in 
conjunction with the model with covaried errors and the freed PWMT residual led to even smaller 
deterioration in fit (maximum ΔCFI = −0.006). Using the R package blavaan [29] to fit an approximate 
measurement invariance model [33], the scalar ΔCFI becomes -0.004. MI, as SFI, was deemed tenable.  

To be sure of this conclusion, an EFA was conducted resulting in a four factor model with a 
factor for the PCET, PLOT, PMAT, PVRT, and VOLT, a factor for the WRAT and PVRT, a factor for 
the VOLT, PWMT, and PFMT, and a factor for the PCPT, LNB, PVRT, and PCET, and a second round 
of MGCFA was done based on this. This had substantially better fit; the results can be seen in Table 
S3. 

Table S3. EFA Bifactor Solution for African and European Americans on the Philadelphia Computerized 
Neurocognitive Battery. 

Model MI Step χ2 /df CFI ΔCFI  RMSEA ΔRMSEA Mc ΔMc SRMR 
0 Baseline 5.516 0.981 - 0.027 - 0.986 - 0.021 
1 Configural 5.345 0.989 0.008 0.023 −0.004 0.992 0.006 0.015 

2 Metric 4.143 0.986 -0.003 0.020 −0.003 0.989 
−0.00

3 0.020 

3 Scalar 4.099 0.985 -0.001 0.019 −0.001 0.989 0 0.020 

4 Strict 4.917 0.980 -0.005 0.029 0.010 0.971 −0.01
8 

0.033 

Note: Combined N = 8,143, with 3,067 African-Americans and 5,076 European-Americans. Baseline is 
three stratum-II factors without g. 

Spearman’s hypothesis was assessed with latent variances fixed (which improved model fit) in 
both groups in the theory-based model. Both the strong (only group factors constrained to zero) and 
contra (as either only g constrained to zero or as g and episodic memory) hypotheses were rejected 
in terms of ΔCFI and ΔMc, as the former statistic was always > −0.01 and the latter was always > −0.02. 
The weak model was assessed by constraining only episodic memory, which is known to favor blacks 
net of g [1,2]. This model barely deteriorated (ΔCFI = −0.003; ΔMc = −0.004), but this is perhaps to be 
expected because this is effectively a much smaller constraint which is fitting for a theoretically much 
more relaxed model. As a result of this finding, the black-white cognitive ability difference in our 
data can be thought of as a product of differences in both g and specific abilities. Differences in the 
various abilities in the homogeneous latent variances model without additional constraints are given 
in Table S4 and differences in the weak Spearman’s model are given in Table 1 in the main paper. 
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Table S4. Factor Score Differences between African- and European-Americans based on the Model with 
Constrained Latent Variances. 

Factor Estimate SE Lower 95% CI Upper 95% CI 
g 1.108 0.020 1.069 1.147 

Complex 
Cognition 0.322 0.027 0.269 0.375 

Executive 
Functioning 

−0.095 0.029 −0.152 −0.038 

Episodic 
Memory −0.560 0.020 −0.599 −0.521 

Note: Positive values indicate higher white scores and vice-versa. Estimates are in terms of Cohen’s d. 

Our findings accord with the literature referenced in the main paper in that we find a black-
white difference of roughly 1.1 d. Furthermore, they illustrate that the residual gap (that is, without 
g) is small, favors blacks for some abilities, and does so especially strongly for our Episodic Memory 
factor, consistent with earlier findings. Given that g is central to group differences in our study, we 
regard Jensen effects as interpretable in the normal sense they’re used in the literature. See [31] for 
more information on g-based inferences. Final statistical notes for this section of the study include 
that EFA factor loadings had congruence coefficients around 0.99 between groups and correlated at 
that level with the MGCFA loadings, the ωh for this battery was 0.69, reaction time computed from 
the 50 RT measures in the study correlated at 0.21 with g, the Scarr-Rowe effect defined as the 
difference in heritabilities between blacks and whites (taken from Mollon et al., [32]) correlated at -
0.35 with subtest g loadings which indicates an anti-Jensen effect, and the group differences from an 
EFA correlated at 0.99 with the group differences derived from MGCFA. 

1.4. MGCFA of the NIH Toolbox Cognition Battery 

Kirkegaard et al. [33] evaluated the relationship between admixture and cognitive ability 
differences in the nationally-representative Pediatric Imaging, Neurocognition, and Genetics Study 
(PING; n = 1369). Their sample with genetic and test battery information included individuals who 
self-identified as White (n = 567), African-American (138), American Indian (4), Asian (120), Hispanic 
(323), Multi-ethnic (182), Other (19), and Pacific Islander (16), with an average age of 11.75 years. 
These authors did not assess whether their battery was MI, though they did report congruence 
coefficients which were greater than 0.9 for all group comparisons except Asians and AAs. We assess 
and report MI for their sample using data from AAs, EAs, and HAs noting that all univariate 
skewness and kurtosis coefficients are below 3 and the b1p is 10.04 and the b2p is 81.59 for their 
combined group. The model is derived from an EFA of the seven tests used in their study which 
yields three factors, verbal, spatial, and memory. After assessing MI, Spearman’s hypothesis is tested 
separately for the AA-EA and HA-EA models. These results are given in Tables S6 and S7. 

Table S6.  Bifactor Solution for African and non-Hispanic White Americans on the Pediatric Imaging, 
Neurocognition, and Genetics Study Battery. 

Model MI Step χ2 
/df 

CFI ΔCFI  RMSE
A 

ΔRMSE
A 

Mc ΔMc SRM
R 

1 Configural 3.27 
0.99

6 
- 0.060 - 

0.98
9 

- 0.010 

2 Metric 1.98 
0.99

5 
−0.00

1 
0.040 −0.020 

0.98
4 

−0.00
5 

0.037 

3 Scalar 1.74 
0.99

5 
0 0.034 −0.006 

0.98
6 

0.002 0.033 

4 Strict 1.94 
0.99

2 
−0.00

3 
0.039 0.005 

0.97
8 

−0.00
8 

0.044 

Note:  Combined n = 1140, with 228 African-Americans and 912 European-Americans. 
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Table S7.  Bifactor Solution for Hispanic and non-Hispanic White Americans on the Pediatric Imaging, 
Neurocognition, and Genetics Study Battery. 

Model MI Step χ2 /df CFI ΔCFI  RMSEA ΔRMSEA Mc ΔMc SRMR 
1 Configural 3.176 0.997 - 0.053 - 0.992 - 0.009 
2 Metric 1.316 0.999 0.002 0.020 −0.033 0.996 0.004 0.026 
3 Scalar 1.304 0.999 0 0.020 0 0.995 −0.001 0.024 
4 Strict 2.65 0.991 −0.008 0.042 0.022 0.971 −0.016 0.035 

Note: Combined n = 1240, with 328 Hispanic-Americans and 912 European-Americans. 

These models are unbiased and they fit well. The NIH Toolbox Cognition Battery can be 
considered an unbiased assessment for native English-speaking Hispanic and African Americans (see 
Wicherts & Dolan [34] on the effects of language bias). This study should serve as another datapoint 
in a future meta-analysis of group differences in latent cognitive ability. To note, the black-white 
difference was 0.97 d and the Hispanic-white difference was 0.62 d. SES in this sample was slightly 
above the national average.  

Regarding the black group, three models of Spearman’s hypothesis were fitted. These were the 
same strong, contra, and weak models used above. The contra model can be thought of as a model 
nested within the weak model, which involved restricting the spatial factor for this sample. The 
contra model simply adds a restriction to g. Resultantly, the CFI for the contra model was 0.752, 
RMSEA was 0.121, and the Mc was 0.336. The weak model fared much better with a CFI of 0.991, 
RMSEA of 0.040, and Mc of 0.953. However, perhaps due to the small number of tests and their wide 
diversity, the strong model, in which all non-g factors were constrained to zero, fit best, and in fact, 
fit better than any other model, with a CFI of 0.999, RMSEA of 0.018, χ2 /df of 3.86, and Mc of 0.968. 
This makes the results of Kirkegaard et al. [18] very appropriate, since they used a g score, and the 
best-fitting model here only involved g.  

The weak model for the Hispanic group was fitted first and it was fitted based on the verbal 
factor, which was constrained to zero. The resultant ΔCFI was -0.01, while ΔRMSEA was 0.09 and 
ΔMc was −0.078. The contra model, in which g was also constrained to zero, had a ΔCFI −0.013, a ΔMc 
of -0.037, and a ΔRMSEA of 0.013. The strong model, in which all group factors were constrained, 
had the best fit with a ΔCFI of −0.009, ΔMc of −0.027, and ΔRMSEA of 0.08. In this group, as in the 
last, the strong form of Spearman’s hypothesis seemed to show the best fit, while the contra appeared 
to be the worst with every parameter non-invariant and the weak showed a borderline fit. It is quite 
possible that the young age of the sample, the small number of tests, or the diverse composition of 
the relatively small battery play a role in the acceptance of the strong form of SH in these groups. 

To summarize the above, we found that the weak form of Spearman’s hypothesis holds for the 
AA-EA comparison in the TCP dataset. What’s more, we have found that the strong form of 
Spearman’s hypothesis holds in the PING dataset when comparing HAs and AAs to EAs, though the 
reason for this is uncertain. This implies that Spearman’s hypothesis has been confirmed with 
MGCFA three times here (in the TCP once and in the PING twice). In addition to these findings, we 
have found that all of these batteries display SFI and as such are unbiased cognitive assessments. 

1.5. Assessing SES Effects with MGCFA in the PCNB  

We tested how large of a biasing factor SES could be when modeled as a background variable in 
the PCNB homogeneous latent variances MGCFA model. When SES was modeled as affecting only 
the subtests, it reduced mean racial differences in g by 0.166 d and turned the differences in executive 
function and episodic memory insignificant. At the same time, this increased the difference in 
complex cognition by 0.548 d. SES had a significant effect on all subtests. Next, a model in which SES 
affected all subtests and latent factors was fitted and it was found that this model had insignificantly 
worse fit and latent differences compared to the other model, though SES no longer significantly 
affected the PFMT, LNB, PCET, VOLT, or PWMT subtests and it did not significantly affect the 
episodic memory factor directly. A model in which SES directly affected only latent abilities was 
fitted and had substantially worse fit (e.g., ΔCFI = 0.011 and ΔRMSEA = 0.012), though, to note, it 
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only made the difference in episodic memory insignificant and only significantly changed the 
difference in complex cognition, again, increasing the white advantage. Fitting the model in which 
SES affected subtests and latent abilities onto the weak SH model in which episodic memory was 
restricted led to no significant decrement in fit and reduced the difference in g by 0.116 d whilst 
making the difference in executive function insignificant and again increasing the difference in 
complex cognition, this time by 0.513 d. Only the path from SES to the PCPT was insignificant in this 
model. Overall, SES modeled in MGCFA only reduced the latent racial differences by a small amount. 

Next, we fitted a MGCFA model in which European admixture was a background variable 
affecting subtests and latent factors, like the best-fitting SES model. The inclusion of European 
admixture as a background variable increased the difference due to g by 0.24 d whilst decreasing the 
differences in complex cognition by 0.128 d and increasing the differences in episodic memory by 
0.607 d and making the difference in executive functioning insignificant. When this was fitted to the 
weak Spearman’s hypothesis model, all paths remained significant, but the difference in g was only 
slightly reduced by 0.062 d, whilst the difference in complex cognition increased by 0.349 d and the 
executive functioning gap was rendered insignificant. Next, modeling both variables simultaneously 
reduced the g gap by 0.188 d while rendering the gaps in episodic memory and executive functioning 
insignificant and increasing the complex cognition gap by 0.428 d. SES only significantly affected the 
WRAT, PVRT, PCPT, PMAT, PWMT, g, and complex cognition while the effects of European 
admixture were only significant for the PVRT, PLOT, g, complex cognition, and executive 
functioning. In the weak SH model, the difference in g was reduced by 0.259 d, whilst the difference 
in complex cognition increased by 0.599 d and the difference in executive functioning was rendered 
insignificant. In this final model, SES significantly affected the WRAT, PVRT, PCPT, LNB, g, complex 
cognition, and executive function whilst European admixture affected the PVRT, PCET, PLOT, g, 
complex cognition, and executive functioning.  

Overall, SES and European admixture modeled as background variables moderately affected 
the mean differences in the latent variables in the PCNB. It is possible that additional measures of 
SES or, better yet, a latent SES factor, could have offered more substantial mediation, but we were 
unfortunately unable to assess this possibility.  

Section 2: Color in Sibling Pairs  

In order to assess whether the effect of phenotype-based discrimination can account for the 
observed differences in part or in whole, it’s not enough to declare that the effect of skin color overall 
is minor or that its inclusion as an endogenous covariate in a regression leads to little change and no 
significant effect. In point of fact, in a regression of X on Y, the inclusion of correlated downstream 
variable Z as an endogenous covariate will still reduce the β for X despite being uninvolved in the 
relationship between X and Y. Similarly, a variable such as education can reduce a real main effect 
of, say, IQ on income if it subsumes the variance from IQ and additional income-relevant personality 
and opportunity variables, even if it has no actual impact on income.  

It’s inappropriate to conclude from our own data that skin color does not mediate the association 
between ancestry and intelligence, as colorist theorists would suggest, because in the population at 
large, ancestry and skin color are confounded; intelligence and skin color are thus also confounded. 
However, in full sibling pairs, color and ancestry are not related due to random segregation and it 
would be strange for the relationship between intelligence and skin color to be pleiotropic because of 
the differing complexities of the genetic architectures of the two traits (intelligence is extremely 
complex and skin color is not). A sibling control should, therefore, elucidate whether the relationship 
between skin color and intelligence is a causal one.  

Since the TCP does not supply sibling information we had to determine sibships by identity-by-
descent in PLINK. Full siblings and dizygotic twins were determined to be those between 38 and 62% 
IBD since this region of the IBD histogram was discontinuous with the lower (half-sibling and below) 
and higher (monozygotic twins) regions. Only black siblings were used since colorism does not 
generally predict an effect within white ethnicities. There were only 108 black full siblings to use after 
removing individuals with the correct amount of IBD but different family background variables. The 
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SD for color was 5.05, which was not much less than the full black sample. The relationship between 
color and intelligence within these pairs was an insignificant r = 0.01 (p = 0.92). This was itself 
significantly different from the relationship in the full black, mixed, and white sample and the 
relationship in the combined black and mixed samples, but not from the relationship in the only full 
black sample (p = 0.35) or from the relationship in the whole sample of black siblings (i.e., the sibling 
average; r = −0.065, itself not significant). On the other hand, the relationship between admixture and 
intelligence across sibling pairs was r = 0.071 and within them r = 0.059, neither of which is 
significantly different from zero or the relationship in the full black sample. These data should be 
incorporated into a future meta-analysis of the effect within sibling pairs. Incidentally, the effect of 
ancestry is significantly different from zero but not from the overall group figure, whereas the effect 
of color is just not significantly different from zero in a sample of all full siblings (black, mixed, and 
white) in the dataset.  

This analysis is inherently limited due to the small sample size and the fact that our measure of 
skin color is not actually a measure of skin color, but a genetic proxy. In order to assess whether 
results reached using this proxy are valid, we would need to replicate this analysis in a dataset 
containing both genetic data and skin color information. Since this was not available, not only these, 
but all of the results involving color will have to be considered tentative. Nonetheless, if a future 
analysis supports the tenability of this measure, the result should be considered for use in a future 
meta-analysis. It may even be useful to pool case-level data from siblings using this common measure 
in the future.  

Section 3: Additional Admixture Plots  

Below, we provide additional admixture plots. These show the relation between cognitive ability 
and either European ancestry or skin color. 



Psych 2019, 1, doi:10.3390/psych1010034 8 

 

Figure S1. The Relationship between g and European Ancestry with Group Means. 
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Figure S2. The Relationship between g and European Ancestry with Group Means in the PING Sample. 
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Figure S3. The Relationship between g and Color Scores. 
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Figure S4. Three-Dimensional Plot of Color, Admixture, and General Intelligence. 
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