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Abstract: The metal–organic framework (MOF) is a kind of porous material with lattice materials. Due
to its large surface area and structural diversity, it has made great progress in the fields of batteries,
capacitors, electrocatalysis, etc. Conductive MOF (c-MOF) increases the conductivity based on the
original advantages of the MOF, which is more suitable for the development of batteries, capacitors,
electrocatalysis, and other fields. This review summarizes the preparation of c-MOF and the research
progress of conductive MOFs in the field of electrochemical energy storage and conversion.
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1. Introduction

With sustainable energy development in the 21st century, electrochemical energy
storage and conversion has become a new field competing for development at home and
abroad. At the same time, electrochemical energy storage and conversion technology
pave the way for sustainable energy development [1]. The more popular electric energy
storage carriers are supercapacitors and various batteries. The electrode materials that can
determine their energy density, conductivity, and capacitance have become the focus of
research. Electrocatalysis is the key to the conversion of electric energy and chemical energy.
Meanwhile, the consumption of non-renewable energy also promotes the development of
sustainable energy conversion technology. Figure 1a shows the application of conductive
MOFs in batteries, supercapacitors, and electrocatalysis, and also shows various metal ions
combined with conductive MOF ligands. As shown in Figure 1b, the number of articles
published by researchers in the field of conductive MOFs has increased year by year in
the last ten years, and the conductive MOF has gradually become a hot research field.
Figure 1c visually shows the percentage of conductive MOFs in various fields of energy
storage and conversion.

In general, batteries and supercapacitors consist of electrodes, electrolytes, current
collectors, and voltage dividers. The mechanism is that the charging or discharging process
occurs under the action of the electrode materials by applying an appropriate potential
between current collectors. The charge carrier connected to the circuit through the shunt
is driven by potential energy. In the process of discharge, the electrostatic potential of the
supercapacitor and the chemical energy of the battery are converted into electrical energy.
In charging, electric energy is converted into potential and chemical energy. Supercapacitors
have a high power density due to the rapid physical charging and discharging process
between the electrode material and the electrolyte. What happens in batteries is a REDOX
reaction, a slow chemical change, and batteries usually have a high energy density. The
high power density and high energy density generally do not coexist [2]. Among them,
the electrode is the key component that determines the performance of the supercapacitors
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and batteries. The electrode materials of supercapacitors and batteries usually involve key
properties, such as electrical conductivity, porosity, surface area, chemical stability, and
manufacturing cost. Therefore, choosing the appropriate electrode materials is the key
strategy to make the electrochemical energy storage devices have better performance [3–9].
At the same time, the development of advanced electrochemical reaction electrocatalysts
has an important meaning in the development of batteries, electrolysis, and electrocatalysis.
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Up to now, many carbon-based materials [10] (including activated carbon, carbon
nanotubes, graphene, etc.), conductive polymers [11–13], MXenes [1], metal oxides [2],
metal hydroxides [14], and metal sulfides [15] have been proved to be very promising
electrode materials. However, each material has its advantages and limitations. For
example, most carbon-based materials have good electrical conductivity and excellent
structural/chemical stability. Although activated carbon has a large specific surface area, its
amorphous structure is not suitable for adjusting the synthesis results. Conductive polymer
has good specific capacitance, processability, and conductivity, but poor stability. MXenes
have high conductivity and high specific volume capacitance, but their electrochemical
window is relatively narrow; however, the large capacitance of metal oxides has the
defects of poor cycle stability and relatively short life [16,17]. Due to the limitations
of these materials, it becomes more and more important to find new and more perfect
electrode materials.

Metal–organic frameworks (MOFs) have high crystallinity and good pore struc-
tures [18–21]. Due to its unique properties, the MOF has potential applications in the
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field of electrochemical energy storage and conversion [22–28]. In addition, the shortcom-
ings of MOF, such as low electrical conductivity, poor chemical stability, and relatively
high manufacturing cost, limit its practical application in these fields [29]. Therefore, many
modification strategies of MOF materials have been explored to improve their performance
in conventional lithium batteries, supercapacitors, and electrocatalysis, especially to solve
the main disadvantage of low conductivity [30–37].

The conductive metal–organic framework is a kind of crystal material formed by the
self-assembly of metal ions and organic ligands. In addition to inheriting the advantages
of large specific surface area, it possesses the controllable morphology and structure,
regular pore structure, and rich active sites of common MOF materials. Conductive metal–
organic frameworks also have high electrical conductivity and can be directly used as
electrode materials without the need for other preparation processes. Conductive MOFs
with monodisperse channels and controllable topology can be used as a new system
for nanoscale computational simulation. Conductive MOF ligands include carboxylate,
imidazole, azazolate, sulfonate, etc. Common ones include: HITP = 2,3,6,7,10,11-hexamino-
triphenyl, HAB = hexaminobenzene, HHTP = 2,3,6,7,10,11-hexahydroxytriphenyl.

At present, there are three strategies to improve the conductivity of MOF materials.
The first is to develop different composites based on MOFs so that the properties of
composites are better than those of individual components. The MOF composite partially
solves the inherent problem of low electrical conductivity of the original MOF. However,
this affects the excellent performance of MOFs in terms of surface area and porosity [38–40].
Secondly, the MOF derivatives obtained by in situ electrochemical conversion or pyrolysis
generally have better performance than the original MOF. However, most MOF derivatives
will lose their original adjustable chemical functional groups and good porosity. Finally,
different types of organic ligands can be designed to generate new conductive MOFs. In
addition to inheriting the advantages of ordinary MOF, conductive MOF also has high
conductivity and can be used as an electrode material for electrocatalysis without other
modifications. In particular, the highly ordered nanochannels in the conductive metal–
organic framework can reduce the collision between ions and layers and improve the power
density [17].

In this paper, the efforts to synthesize and design different conductive MOF materials
in recent years, as well as the progress in the performance of batteries, supercapacitors, and
electrocatalytic properties using conductive MOF electrodes are reviewed. We hope that
this review will promote the development of new ideas for conducting MOFs in energy
storage and transfer by absorbing knowledge and experience from reported studies [41].

2. Synthesis

So far, there are many methods to synthesize pure conductive MOFs. In this part, we
mainly introduce the water bath method, interface method, solvothermal method, and
other methods. Possible characterization methods are also briefly described [42].

2.1. Synthesis of Conductive MOFs
2.1.1. Hydrothermal Method

The hydrothermal method refers to the method of preparing materials by dissolving
and recrystallizing powder in a sealed pressure vessel with water as a solvent. Compared
with other powder preparation methods, the powder prepared by the hydrothermal method
has the advantages of complete grain development, small particle size, uniform distribution,
light particle agglomeration, cheap raw materials, easy-to-obtain suitable stoichiometry,
and crystal shape [43].

Hmadeh et al. made (CAT) by heating an appropriate amount of HHTP and the corre-
sponding metal acetate by soaking in solution at 85 ◦C for 24 h [44]. The preparation method
of CAT is to mix a certain proportion of HHTP (=2,3,6,7,10,11-Hexahydroxytriphenyl) with
the corresponding metal (II) acetate hydrate in aqueous solution and heat it at 85 ◦C for
24 h to obtain needle-shaped crystals. CAT and Co(II) and Ni(II) ions form an extended
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porous 2D skeleton, and the new crystalline material called metal catecholate (M-CAT)
exhibits excellent chemical stability, thermal stability, and high porosity. Nam et al. pre-
pared the positive electrode material of a water-based secondary battery according to the
above synthesis method. The schematic diagram of the rechargeable Zn-2D MOF battery
and the structure of Cu3(HHTP)2 are shown in Figure 2a. Cu3(HHTP)2 has a reversible
capacity of 228 mAh g−1 at 50 mAh g−1 and maintains 75.0% of its initial capacity after
500 cycles at a high current density of 4000 mAh g−1 (~18 C). The shape and macropore of
the synthesized one-dimensional nanorod Cu3(HHTP)2 are beneficial to the diffusion of
zinc ions (Figure 2b) [45]. Li and his team reported that a conductive MOF (Cu-CAT) was
grown on carbon fiber paper to form nanowire arrays (NWA) in a controlled manner. The
material can be directly used as an integrated electrode in supercapacitors and exhibits high
porosity and excellent electrical conductivity [45]. Figure 2e shows the crystal structure
of Cu-CAT. Copper ions coordinate with the HHTP ligand to form a 2D hexagonal lattice,
which forms a cellular porous structure by model stacking. The effective orbital overlap
makes Cu-CAT have good charge transport performance. Cu-CAT nanocrystals grown on
carbon fiber paper uniformly cover the entire fiber (Figure 2f,g). According to the image,
the nanowire is a hexagonal prism. As shown in Figure 2h, by comparing the performance
of copper-based and carbon-based symmetric solid-state supercapacitors, this study shows
that transforming the morphology of MOF materials into highly oriented nanowire arrays
can significantly improve the electrochemical properties of MOF materials, such as the
rate performance and capacitance, and make full use of their high porosity and good
electrical conductivity.

Chen and his colleagues synthesized Ni3(HITP)2 through a simple water bath reac-
tion, and it was modified by ultrasonic stirring in the dispersant [46]. The results show
that Ni3(HITP)2 has a 2D layered crystal structure, hexagonal pore structure, and one-
dimensional channel structure. However, it is not just tiny holes that help to improve
material properties. The sodium-ion hybrid capacitors (SICs) studied by Dong et al. use
a c-MOF, Ni3(hexaaminobenzene)2 (Ni-MOF), as the electrode material [47]. Although
Ni-MOF has a relatively large porous structure, it still needs sodium desolvation dur-
ing discharge. On the shuttle effect in lithium–sulfur batteries, the 2D layered structure
graphene-like Ni3(HITP)2 was synthesized by Cai et al. by π-π conjugate. Its highly porous
and effective physical barrier and chemisorption of polysulfide effectively inhibit the shut-
tle effect in the cycling process [48]. Figure 2i shows the synthesis of Ni3(HITP)2, and
it can be seen that it has a 2D lamellar structure. This structure not only provides high
conductivity but also has uniform one-dimensional channels and abundant polar centers
that can capture polysulfides.

Park and his team reported a new cobalt-based 2D conductive metal–organic frame-
work, Co-HAB, for high-power energy storage devices, such as sodium-ion batteries. It
can effectively solve the problems of low electron conductivity and poor stability under
REDOX conditions [49]. Park et al. chose hexaminobenzene (HAB) as an organic linker
to construct 2D conductive MOF (Figure 2m). Theoretically, HAB can carry out REDOX
reactions with up to six electrons. This structure provides abundant and dense REDOX
active centers. Figure 2n shows the three-position computational structure of Co-HAB
and its three-electron reversible reaction. This work also proved for the first time that
Co-HAB can store three electrons in organic electrolytes, thus showing relatively high
specific capacity and relatively stable cycle life [50].

Generally, the hydrothermal method can only prepare oxide powder, but there is no
in-depth research on the control of influencing the nucleation process and crystal growth
process and satisfactory conclusions have not yet been obtained. The hydrothermal method
needs high temperature and high pressure, which makes it highly dependent on production
equipment, which also affects and hinders the development of the hydrothermal method.
Therefore, the hydrothermal method tends to develop to low temperature and low pressure
under hydrothermal conditions with temperature below 100 ◦C and the pressure close to 1
standard atmospheric pressure.
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Figure 2. (a) Schematic illustration of the rechargeable Zn−2D MOF cell and structure of
Cu3(HHTP)2. (The cyan, red, and gray spheres represent Cu, O, and C atoms, respectively. The
H atoms are omitted for the sake of clarity.) Expected redox process in the coordination unit of
Cu3(HHTP)2. (b) LD-HRTEM images at scale bars in 50 nm along the [010] direction. (c) Rietveld
refinement of PXRD patterns. (d) PXRD patterns of the Cu3(HHTP)2 electrode in the pristine, first
fully discharged/charged states at a rate of 50 mA g−1, and 500th fully charged states at a rate of
4000 mA g−1. (e) Crystal structure of Cu−CAT viewed along the c-axis. (f,g) SEM and photographic
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image of the Cu−CAT NWAs growing on carbon fiber paper. (h) Performance comparison of
Cu−CAT NWAs and carbon materials based on symmetric solid-state supercapacitors. (i) Schematic
diagram of the synthesis of Ni3(HITP)2 and its application in Li−S batteries. (j) The cycling perfor-
mance of S@Ni3(HITP)2−CNT cathode at 0.2 C for 100 cycles. (k) The SEM images of Ni3(HITP)2

at 200 nm. (l) The SEM images of S@Ni3(HITP)2 at 200 nm. (m) Synthetic scheme of Co-HAB. (n)
Three-electron reversible reaction in Co-HAB and the structure of Co-HAB in 3D. (o) HRTEM images
of Co−HAB−D. (p) SEM images of Co−HAB−D. ((a–d) Reproduced with permission [46]. NATURE
COMMUNICATIONS, 2019. (e–h) Reproduced with permission [48]. WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim, 2017. (i–l) Reproduced with permission [51]. WILEY-VCH Verlag GmbH & Co.
KGaA, Weinhei, 2019. (m–p) Reproduced with permission [52]. American Chemical Society, 2018.).

2.1.2. Solvothermal Method

The solvothermal method is the development of the hydrothermal method, which
is different from the hydrothermal method in that the solvent used is an organic solvent
instead of water. In the solvothermal reaction, by dissolving one or more precursors
in a non-aqueous solvent, the reactants are dispersed in the solution and become more
active under liquid or supercritical conditions. The reaction takes place and the product
slowly forms. The process is relatively simple and easy to control, which can effectively
prevent the volatilization of toxic substances and prepare air-sensitive precursors in a
closed system [53].

Dincă and his team first used the solvothermal method to synthesize Ni3(HITP)2. It
is a pioneer in preparing Ni3(HITP)2 by the solvothermal method. The two-dimensional
metal–organic skeleton Ni3(HITP)2 is synthesized by 2,3,6,7,10, 11-hexamine-triphenyl
and Ni2+ in aqueous ammonia solution under aerobic conditions. The conductivity of the
surface phase and bulk phase is 40 and 2 S·cm−1, respectively, which shows extraordinary
conductivity by using two probes and van der Bau electrical measurement. As shown in
Figure 3a, it is a synthetic diagram of Ni3(HITP)2, and it is proved by elemental analysis and
X-ray photoelectron spectroscopy that it is a diimine-pphenylquinate structure. Only the
closed-shell resonance structures are shown, with the possible presence of a double radical
nickelbisdiimide bond in Ni(lsq)2 shown at the bottom. From the powder X-ray diffraction,
it can be seen that Ni3(HITP)2 has an obvious crystal structure, 2θ = 4.7◦, 9.5◦, 12.6◦, and
16.5◦, which proves that it is long-range ordered on the ab plane (Figure 3f). There is a
weaker and wider peak at 2θ = 27.3◦, which proves that the long-range order in the direction
is relatively poor. According to the information analysis in the figure, the possible stacking
arrangement of two-dimensional pieces of Ni3(HITP)2 is AA or AB. The potential energy
surface (PES) shown in Figure 3f is a Lagrangian polynomial obtained by interpolating
the total DFT energy with 2D, which shows that the AA structure is asymmetric in energy,
while the AB structure is the most stable. Sem analysis shows that the films grown on
quartz substrate exhibit large pore surface characteristics and good coverage (Figure 3j,k).
Finally, all these data prove that Ni3(HITP)2 is a hexagonal structure. The charge transport
characteristics and potential excellent electrical properties of Ni3(HITP)2 deserve further
study [51].

Shuai et al. designed a conductive MOF based on catechol, Ni−HHTP (HHTP = 2,3,6,7,10,
11−hexahydroxy triphenyl), which is beneficial to the synergistic enhancement of polysul-
fide chemisorption in Li−sulfur batteries, thus promoting the conversion of polysulfide in
Li−sulfur batteries. The Ni−HHTP can not only inhibit the free diffusion of polysulfides
but also reduce the adsorbed polysulfides to solid Li2S. Thus, the utilization rate of active
materials in lithium−sulfur batteries can be improved. The improvement of the perfor-
mance of the Ni−HHTP@CP anode material battery is of great significance for the rational
design of the lithium-ion battery anode material with the combination of strong polysulfide
adsorption and good electronic conductivity. Figure 3b shows the synthesis of Ni−HHTP
from Ni(OAC)2 and 2,3,6,7,10,11−6 hydroxyphenyl (HHTP) under solvothermal conditions.
Ni−HHTP is a bilayer structure. Level 1 punishes the male with the hexagonal top lacking
snow, and level 2 unloads the top mountain. They form parallel one-dimensional channels
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through p-p bond interactions and overlapping hydrogen bonds. Figure 3h shows the
constant current−charging curves of the Ni−HHTP@Cp positive battery at 0.1, 0.2, 0.5, 1,
and 2 ◦C [52].
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Figure 3. (a) Synthesis of Ni3(HITP)2. (b) Schematic illustration of the LSG/Ni−CAT MOF hybrid.
(c) Schematic illustration of the synthetic procedure of Ni−HHTP. (d) The synthesis process of the
2D Cu−BHT MOF. (e) A zoom−in representation of the Li−ion storage process at the Cu−BHT
molecule. (f) Experimental and simulated PXRD patterns of Ni3(HITP)2. (g) XRD patterns of LSG
and Ni-CAT MOF nanorods (baseline corrected). (h) Galvanostatic discharge−charge profiles of
batteries with Ni−HHTP@CP cathode at 0.1, 0.2, 0.5, 1, and 2 C, respectively. (i) XRD patterns of
the Cu−BHT powder after soaking in different solvents for 25 h. (j,k) SEM micrographs for films
of Ni3(HITP)2 at various magnifications. (l) SEM images of LSG/Ni−CAT MOF. (m) TEM image
of LSG/Ni−CAT MOF. (n) SEM image of Cu−BHT. (o) HRTEM image of Cu−BHT. ((a,f,j,k) Re-
produced with permission [54]. American Chemical Society, 2014. (b,g,l,m) Reproduced with
permission [55]. WILEY−VCH Verlag GmbH & Co. KGaA, Weinheim, 2019. (c,h) Reproduced
with permission [56]. Science Press and Dalian Institute of Chemical Physics, Chinese Academy of
Sciences, 2021. (d,e,i) Reproduced with permission [57]. American Chemical Society, 2020.).

Conductive 2D metal−organic frameworks (MOFs) have incomparable advantages
in electrochemical applications. Hao and his team have developed a nickel-based MOF
with good electrical conductivity, Ni−CAT, and they propose a new process for selec-
tively growing Ni−CAT MOF on 3D laser-engraved graphene (LSG) [51]. They combined
laser wounding with thermal growth in a low-temperature selective solvent to create a
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symmetrical electrochemical micro-supercapacitor, which significantly improved its elec-
trochemical behavior. Polyimide membrane, a carbon base, and 3DLSG was patterned
directly to selectively grow Ni-CAT nanorods as a 3D conductive matrix. At the same time,
the LSG/Ni-CAT-based supercapacitor shows good rate performance and cycle stability.
The scanning electron microscope (SEM) image (Figure 3l) and TEM image (Figure 3m)
show that the LSG films are porous, almost vertically intersected with polyimide substrates.
The X−ray diffraction map reacted at 4 h and 8 h to record naked LSG and nano bar
powder, and the results showed that increasing the holding time would lead to a decrease
in crystallinity, which may reduce the electrochemical behavior of the electrode (Figure 3g).
The work of Hao et al. showed that a conductive MOF can be used as an electrode for
micro-supercapacitors in miniaturized energy storage systems.

Jie and his colleagues solved the limitation of aromatic heterocyclic conjugated molecules
in lithium−ion batteries due to low conductivity and easy solubility in electrolytes by
immobilization of the nitrogen-rich aromatic molecules tricyclic quinazoline (TQ) and
CuO4 units into a two-dimensional conductive metal−organic framework to release their
ability to store lithium ions. The two−dimensional conductive MOF Cu−HHTQ was
obtained by solvothermal synthesis of N, N−dimethylformamide (DMF) and water at
858 C for 24 h. It facilitates Li+/e− transport and ensures that the electrode is elastic,
resulting in a high capacity of 657.6 mAhg−1 at 600 mAhg−1, with good magnification
capacity and excellent circularity [58]. In Jamie’s research, by studying the capacitive
properties of Cu3(HHTP)2 and acetonitrile-based electrolytes, some basic problems of
applying two-dimensional conductive MOF to electric double-layer capacitors are expected
to be solved. These include: the influence of capacity performance by metal defects or the
properties of organic bonding molecules on capacity performance is limited in draw-type
MOF. They found that at a current density of 0.04–0.05 Ag−1, the capacity was increased
twice as much as that of 110–114 Fg−1. Meanwhile, by comparing Cu3(HHTP)2 with the
previously reported analog Ni3(HITP)2, the results show that organic binding molecules
with almost the same properties or structures as metal nodules are largely unrelated
to the permittivity of MOF. A limited stable bilayer voltage window of 1 V was found,
with 30,000 cycles, and the median capacity retention rate was 81% [59]. Using divalent
copper salt and benzenhexaethiol salt (BHT) as precursors, Zhenzhen et al. synthesized
a two-dimensional conductive metal–organic skeleton with REDOX properties, Cu-BHT,
which has a theoretical capacity of 236 mAhg−1 in lithium-ion batteries. The Cu-BHT
anode has an excellent reversible capacity of 175 mAhg−1 at a high current density of
300 mAhg−1 and an ultra-low capacity degradation (0.048%/time) after 500 cycles. The
Cu-BHT MOF is synthesized in the Figure 3d format. Without adding any additives, the
BHT monomer reacts with the divalent copper ion salt in an ethanol solution, and the
final powder obtained is nearly three times higher than that obtained by the interfacial
method. As shown in Figure 3e, this represents the lithium-ion storage process on the
Cu-BHT molecule. As an excellent cathode material, excellent lithium storage performance
can be obtained even in a short charge–discharge time. The thermogravimetric analysis
curves show that Cu-BHT has good thermal stability up to 456 ◦C. The PXRD spectrum
shows that the crystallinity of Cu-BHT remains good under different electrolyte conditions
(Figure 3i). Compared with conventional MOF, Cu-BHT can withstand a wider PH range,
rapidly changing REDOX conditions in the battery, and the complex electrolyte composition.
Based on the excellent REDOX properties and cycle stability of the Cu-BHT electrode, they
concluded the possible reasons: the ideal diffusion path of lithium ions and electrons in the
lattice; intrinsic electronic conductivity; BHT interacts with Cu through the coordination
of d-π conjugate. If a semi-battery cathode with Cu-BHT was used, the high theoretical
capacity of 236 mAhg−1 was obtained based on the four-electron reactions from 3.0 V to
1.5 V(VS Li+/Li). When the current density was 50 mAhg−1, the specific capacity was
232 mAhg−1, and the REDOX active centers on Cu-BHT were fully utilized. With current
densities of 300 mAg−1 and 1000 mAg−1, Cu-BHT demonstrated ultra-long cycle stability
and magnification capacity of 500 cycles, which is superior to bulk organic polymer and



Chemistry 2023, 5 2449

MOF anode materials. During the second Li-ion exchange at 300 mAhg−1, this cathode had
a discharge/charge capacity of 175 mAhg−1 with a Coulomb efficiency of approximately
100%, which corresponds to 75% of the theoretical capacity. At the same current density, it
can maintain 94% capacity in the first 100 cycles. Research by Zhenzhen et al. showed that
Cu-BHT is a promising cathode material for the next-generation lithium-ion battery [60].

At present, the solvothermal synthesis challenge has the advantages of large scale,
high efficiency, and low cost, but it also has some limitations [61]. These limitations include:
the solvothermal method is particularly sensitive to solvent, temperature, and reaction time,
and harsh on experimental conditions; the generated crystals are usually polycrystalline
powders or tiny single crystals, which makes them unable to be integrated into efficient
electronic devices. Some reactions require high temperatures and long periods (days),
resulting in huge energy costs [62].

2.1.3. Interfacial Method

The interface method is a synthetic method that reacts at the interface of two phases.
It is generally used to prepare nanowire arrays or multilayers with uniform surfaces and
controllable thickness (from microns to centimeters) [54,63].

Ni3(HITP)2 is a conductive MOF with relatively good conductivity and stability so
far. Ni3(HITP)2 films prepared by the interfacial method show excellent performance
in supercapacitors and batteries. Weiwei et al. prepared Ni3(HITP)2 films by the gas–
liquid interface method and used them as capacitive electrodes for flexible transparent
supercapacitors. The Ni3(HITP)2 electrode has excellent photoelectric and optical properties
including a Watermark rate(T) of 78.4%, italic resistance(rs) of 51.3 OHMsq−1, and surface
weight (CA). The drawing speed of 1.63 mFcm2, is 5000 V−1. Compared with most known
flexible supercapacitors, flexible transparent symmetric or asymmetric supercapacitors
with Ni3(HITP)2 as electrodes can show higher surface capacitance and multiplication
performance. As shown in Figure 4a, the structure design and general synthesis method of
the Ni3(HITP)2 electrode were synthesized by the gas–liquid interface method. HITP·6HCl
and NiCl2·6H2O solution were mixed and heated to 60 ◦C, and then NH3·H2O was added
to the plane of the mixed solution. A Ni3(HITP)2 film is formed uniformly at the gas–
liquid interface, and ITO/PET is covered on the surface (Figure 4b). The electrochemical
properties of the electrodes with different reaction times were tested in a three-electrode
system. From the cyclic voltammetry curve with a scanning rate of 10 mVs−1, it can be
seen that the current density increases with the increase in active material loading from
3 min to 60 min (Figure 4d). The GCD curve in the figure also shows the same trend.
The reason for this phenomenon is that the capacitance activity becomes better with the
increase in the active materials, but there is a limit. After 50 min, the film will have serious
cracks, which will hinder the effective electron transmission, thus weakening the capacitive
activity. The electrochemical capacitance of the Ni3(HITP)2 electrode prepared at 30 min
was comprehensively evaluated. The corresponding GCD curves have a triangular profile
when the current density is increased by 40 times (200 L cm2), and the surface capacitance
(1.0 LF cm2) remains at 61.3%, indicating good reversibility, ideal capacitance behavior,
and high-rate capacity in the charging and discharging process [55,57,64–66]. The study
of Weiwei et al. provides a new idea for exploring the application of conductive MOF
Ni3(HITP)2 films as electrode materials in flexible transparent supercapacitors [57]. In the
production of Ni3(HITP)2 electrode materials by the gas–liquid method, there are also Guo
et al.’s applications in the research of FET. Scanning electron microscopy (SEM) and atomic
force microscopy (AFM) showed that the top surface of their films was flat, dense, and
uniform, with an RMS roughness of about 1 nm [54].
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Figure 4. (a) General synthesis route of Ni3(HITP)2 MOF. (b) Schematic diagram of the
Ni3(HITP)2/ITO/PET electrode prepared by the Langmuir–Schafer method at the gas−liquid in-
terface. (c) Schematic representation of Ni3(HITP)2−modified separator growth at the liquid−solid
interface on a lithium−sulfur battery. (d) CV curves of Ni3(HITP)2 electrodes at scan rates of 200,
300, 500, 1000, 1500, 2000, 3000, and 5000 mV/s, respectively. (e) Charge and discharge curves
of Ni3(HITP)2/PP at rates of 0.2, 0.5, 1, 2, 3, 4, and 5 C, respectively. ((a,b,d) Reproduced with
permission [67]. Science China Press. Published by Elsevier B.V. and Science China Press, 2020.
(c,e) Reproduced with permission [68]. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2018).

Ying and his team used the liquid−solid interface method to fabricate crystalline micro-
porous membranes. When the Ni3(HITP)2 film is grown on an industrial diaphragm in situ,
the MOF film has good affinity, larger than surface area, and is more conductive, which can
significantly improve the capacity, cycle stability, and rate performance of lithium−sulfur
batteries. Their Ni3(HITP)2 film, which was directly prepared on a commercial separator,
significantly improved the ratio and cycle performance. Figure 4c shows the growth process
of a Ni3(HITP)2-modified diaphragm induced by the interface on a lithium–sulfur battery.
It can be seen that Ni3(HITP)2 has a 2D layered structure and uniform one-dimensional
channels. Ni3(HITP)2 grown directly on commercial polypropylene (PP) substrates can be
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used directly in lithium–sulfur batteries. According to the SEM, primitive (PP) thin films
have a very porous structure with angular diameters ranging from tens to hundreds of
nanometers. The surface is covered with two layers of relatively dense Ni3(HITP)2, and
there is a small hole on the right. To evaluate the polysulfide adsorption performance of
Ni3(HITP)2, compared with conventional materials (such as graphene, carbon nanotubes
(CNT), carbon black (CB), MOF HKUST-1, and ZIF-8), Ni3(HITP)2 has a much stronger
ability to capture polysulfide than the other five materials, as shown in Figure 4e. The
liquid–solid interface method proposed by Ying et al. provides a new idea for preparing
large areas, relatively controllable thickness, and crack-free MOF films [65]. Shengyang
and his colleagues used the liquid–solid interface method to grow Ni-MOF on cellulose
nanofibers (CNF) and obtained CNF@Ni-MOF hybrid nanofibers, which showed high elec-
trical conductivity and graded microporous structure up to 100 S·cm−1. The supercapacitor
assembled with hybrid nanofibers as electrodes has high cycle stability, and the capacity
retention rate is as high as 99% after continuous charging and discharging 10,000 times [69].
Tetsuya et al. synthesized Ni-BHT through the coordination reaction between benzenhex-
aethiol (BHT) and nickel acetate [Ni(OAc)2]. The gas–liquid and liquid–liquid interface
reactions are used to realize the controllable coordination between the two components [70].

Victor and his team used a liquid–liquid interface method to fabricate an ultrathin
MOF film, Cu-CAT, with a thickness of 10 nm. They use self-assembled monolayer substrate
modification and bottom-up technology to fabricate ultrathin MOF films with preferred
orientation and use them as semiconductor materials [56]. Xing et al. used the solid–
solid interface method to grow a conductive MOF Cu3(HHTP)2 nanowires array in situ
at the interface between solid copper foil and a solid organic precursor, to some extent
overcoming the difficulties of the high biochemical temperature of organic ligands and low
decomposition temperature of conductive MOF. Using the Cu3(HHTP)2 nanowire array as
a symmetrical electrode, the normalized capacitance of surface area is higher than that of
most previous carbon materials. Their research extends the previous liquid or gas reaction
to solid–solid reactions, providing a broader scope for the preparation and application of
conductive MOF and its supercapacitors [71].

Compared with the c-MOF films prepared by the solvothermal method, the MOF
films prepared by the interfacial method are smoother and denser, and the nanowire
arrays prepared by the interfacial method have orderly structure and high crystallinity.
However, conductive MOF prepared by each method has its disadvantages: the liquid–
liquid interface method is not easy to adjust the film thickness and direction; the roughness
of films prepared by the gas–liquid interface method is usually random; the solid–liquid
interface method requires a high substrate before deposition; the solid–solid interface
method is only suitable for gaseous organic linkers. In short, the interface method is not
suitable for mass production [17].

2.1.4. Other Methods

In addition to the widely used methods described above, unique methods to improve
the conductivity of MOFs are being developed. Pingping et al. reported the preparation of
a conductive MOF, Cu-CAT-1, by the oxygen-assisted cathodic method, whose uniform
film was synthesized at the cathode. The electroplating of copper is avoided by oxygen
reduction. The thickness of the films is usually between 70–1700 nm [72]. Since the products
prepared by the solvothermal method were not completely uniform, smooth, and dense,
Choi and Park proposed a method for defect repair, which used the same linker to repair
the defects and then prepared Cu3(HAB)2 with high crystallinity. The conductivity was
1.56 × 10−2 S·cm−1, which is nearly 700 times higher than that without treatment [73].
The defect repair method is a post-processing method, which is used to make up for
the defects prepared by traditional methods, to improve the performance of conductive
MOFs. However, this method is only effective when it is used to repair defects caused by
inadequate synthesis [74]. Leily and her colleagues prepared a conductive MOF, Cu-THQ,
by liquid phase stripping and applied it to a cathode material for Li–oxygen batteries, which
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showed better performance in terms of sustained low charging potential than reported
non-conductive MOF-based and MOF-derivative positive batteries. Cu-THQ was applied
to the Li-O2 battery system, using Cu-THQ NFS, 1 M LiNO3, 0.1 M InBr3, and TEGDME
solvents. The HRTEM image clearly shows the dense and uniform pore structure arranged
in a honeycomb pattern, with an average of less than 1 nm (Figure 5d). Figure 5g shows
the charge–discharge curve of a battery with a capacity of 2000 mAhg−1 and a current
density of 1 A g−1. When the discharge point reaches the cut-off voltage of 2.5 V, that
is, after 150 cycles, the battery cycle stops. Figure 5h shows the results obtained with
a limited capacity of 2000 mAh g−1 and a current density of 2 A g−1. The battery can
discharge 100 cycles [75]. Similarly, Rashid and his team obtained a multilayer conductive
MOF by stripping n-butyl lithium from an n-hexane solution in a liquid phase, which is a
conventional hydrothermal synthesis method based on Co3(HITP)2. The specific surface
area increased from 856 to 2338 m2 g−1, and the electrical conductivity reached 67.8 S·cm−1.
The product had excellent electrochemical performance and good cycle stability, and the
capacity retention rate can reach 85% after 10,000 cycles [76]. The liquid stripping method
is also a post-treatment method, which can improve the specific surface area and electrical
conductivity without changing the structure of the conductive MOF. However, this method
is usually only suitable for 2D nanosheets, and the solvent used for stripping is not common
and may be dangerous.
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Figure 5. (a) Diagram of the synthesis path of Ni3(HITP)2. (b) Expansion of the microfluidic device.
(c) SEM image of Ni3(HITP)2 film grown on a quartz substrate. (d) Transmission electron microscope
image of Cu−THQ MOF. (e) Scanning electron microscopy (SEM) image of the cathode after the
tenth discharge of Cu−THQ as the positive electrode of the Li−O2 battery running at 2 A g−1 in a
solvent containing 1 M LiNO3, 0.1 M InBr3, and TEGDME. Inset is a SEM image of the cathode after
the tenth charge. (f) Transmission electron microscope image of the cathode after the tenth discharge
of Cu−THQ as the positive electrode of the Li−O2 battery running at 2 A g−1 in a solvent containing



Chemistry 2023, 5 2453

1 M LiNO3, 0.1 M InBr3, and TEGDME. The inset is a diffraction pattern of a Cu-THQ catalyst. (g)
Charge and discharge voltage distribution of Cu−THQ in Cu−THQ NFS, 1 M LiNO3, 0.1 M InBr3,
and TEGDME solvents in a battery with a current density of 1 Ag−1. (h) Charge and discharge
voltage distribution of Cu−THQ in a 2 Ag−1 current density cell. (i) Solid−state cyclic voltammetry
image of cathode material at scanning speed of 0.5 mV s−1. (j) Charge−discharge characteristics
of Fe(dhbq) at 0.1 C, or 28 mAg−1. ((a–c) Reproduced with permission [71]. Wiley−VCH GmbH,
2021. (d,g,h) Reproduced with permission [77]. Wiley−VCH GmbH, 2021. (i,j) Reproduced with
permission [78]. American Chemical Society, 2021.).

Noemi et al. demonstrated that microgravity effects in a space station can be simu-
lated on the ground using a microfluidic device. This microfluidic method is also used
to prepare 2D c-MOF Ni3(HITP)2 films. Figure 5a is a schematic diagram of the synthesis
path of Ni3(HITP)2. The reaction took place in the device shown in Figure 5b. Under these
conditions, the formed Ni3(HITP)2 has almost no defects, and the film shows conductivity
up to 40 S cm−1 in a wide range. Scanning electron microscopy showed that the films
were smooth, dense, and continuous without cracks, with a uniform thickness of about
100 nm (Figure 5c). This method of simulating a microgravity environment can control
the thickness and orientation of a 2D molecular skeleton to a certain extent. However,
at present, this method is not popular, and there are certain requirements for the experi-
mental equipment [67]. Kon and his colleagues reported a rare electron conduction MOF,
Fe(DHBQ), which was oxidized by in situ air. The electrochemical behavior of the com-
pounds was studied by solid-state voltammetry. The reduction peak observed at 2.1 V
corresponds to the two-electron reduction of the (DHBQ) ligand. The oxidation peak
observed at 2.4 V may be related to the two-electron reduction process (Figure 5i). The
constant-current characteristics are studied by using a half-cell configuration. As shown
in Figure 5j, Fe(DHBQ) is relatively stable in the 2.0–2.2 V range, which corresponds to
the two-electron reduction process of the (DHBQ) ligand [68]. Lu and his team used an
anodic electrodeposition method to fabricate homogeneous 2D c-MOF, NiPC-MOF, on
nickel foam and directly applied it to the electrodes of supercapacitors without adding any
additives. The synthesized NiPc-MOF has a high conductivity of about 0.2 S cm−1 and
a large specific surface area of about 593 m2 g−1, which makes it a promising electrode
material for supercapacitors. This electrochemical deposition technology allows 2D c-MOF
to grow in situ on the substrate without the need for binders and conductive additives. Its
reaction conditions are mild and all parameters can be precisely controlled, but this method
has not been widely used [79]. These methods are effective in preparing c-MOF, but they
cannot be widely used due to their defects. Many methods still need to be studied and
exploited. The characteristics and synthesis methods of common conductive MOFs are
shown in Table 1.

Table 1. Characteristic and synthesis methods of conductive MOFs.

Material Method σ [S·cm−1] (300 K) SSA[m2 g−1] Ref.

Cu-BHT Interface synthesis method 1414 [80]
Cu-BHT Interface synthesis method 1005–1532 [81]
Ni-HAB Solvothermal method 0.7 ≈180–350 [82]
Cu-HAB Solvothermal method 0.11 ≈180–350 [82]
Zn-HAB Solvothermal method 8.6 × 10−4 ≈145 [83]

Cu-HHTP Interface synthesis method 1 × 10−4 334 [56]
Ni3(HITP)2 Solvothermal method 58.8 766 [84]

Cu3(HHTP)2 Liquid-phase epitaxial method 0.02 [85]
Co3(HITP)2 Solvothermal method 11.5 281 [85]

Cu3(HHTQ)2 Solvothermal method 0.005 516.99 [86]
NiPc-Ni Solvothermal method 7.22 × 10−4 101 [77]
NiPc-Cu Solvothermal method 1.43 × 10−2 284 [77]
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2.2. Characterization of c-MOFs

Since the first conductive MOF was synthesized in 2014, the research on conductive
MOFs has made some progress. At the same time as synthesizing materials, the characteri-
zation of materials is also important [17]. The measurement of the conductivity, specific
surface area, pore size distribution, crystal morphology, and size of the conductive MOF
also has a key impact on the material properties and the continued development and
application of the materials in the future [87]. Among them, the electrical measurement has
a certain challenge, as electrical performance not only depends on the material itself, but
also on the electrical wire, contact solder paste, substrate, and other material manufacturing
devices which may have a significant impact on it [78,88].

Some basic characterization techniques and schemes include: (1) single-crystal X-ray
diffraction (XRD), which can give relatively accurate structural information; (2) powder
X-ray diffraction which can determine the phase purity and crystallinity of materials; (3)
the adsorption/desorption isotherm of nitrogen determines the spacing and calculates the
surface area; (4) SEM can measure the size and morphology of crystals and, combined with
energy-dispersive X-ray spectroscopy, measure the composition and distribution of ele-
ments; (5) inductively coupled plasma optical emission spectroscopy is used to determine
the purity and elemental ratio of the sample; (6) NMR spectroscopy can quantify the ratio
of the mixed junctions in the MOF to determine the overall purity of the sample [87].

Powder X-ray diffraction: allows for the determination of MOF crystallinity. After the
crystallinity is determined, the size of the unit cell can be determined. The phase purity of
MOF can be determined by comparing this pattern with the single-crystal X-ray diffraction
pattern [89]. The powder sample is placed on a sample rack made of plastic, glass, or
aluminum. The method is used to prepare PXRD analysis samples.

Single-crystal X-ray diffraction: a method used to determine the structure of MOF.
However, only when the crystal size is larger than 5–10 µm can reliable data be collected.
Single-crystal X-ray diffraction should be used only in coordination with other characteri-
zation methods.

Nitrogen adsorption and desorption isotherms: the MOF needs to be activated to
collect isotherms. According to experience, only when the sample size multiplied by the
specific surface area of the sample is greater than or equal to 100 square meters can reliable
data be obtained, but sometimes it is not absolute [90,91].

Scanning electron microscopy: most MOF materials have poor electrical conductivity,
which will affect the quality of SEM images undercharging. The most common method is
to coat the sample with a conductive material. Higher resolution images can be obtained
under the electron beam acceleration voltage, but surface defects or pollution details cannot
be seen. Excessive acceleration voltage will increase the local temperature rise and may
damage the crystal structure of the MOF.

Analysis of the luminescence spectrum by inductively coupled plasma: although
ICP-MS can be used to detect very low concentrations, it is best to process a relatively large
number of samples in a higher concentration range.

NMR spectroscopy: most MOFs are insoluble in conventional NMR solvents. Similar
to inductively coupled plasma emission spectroscopy (ICP-AES) analysis, the sample must
be completely dissolved to be meaningful. Solid nuclear magnetic resonance spectroscopy
can also characterize MOFs, especially in detecting the local chemical environment within
MOFs [92–94]. This method can be used to characterize specific functional groups or
chemical states in MOFs [95].

Thermogravimetric analysis: since the decomposition path of the MOF may be differ-
ent in different environments, it is very important to choose the measured gas atmosphere
when measuring the thermal stability of the MOF. Similarly, thermogravimetric measure-
ment needs to be combined with other characterization methods, including PXRD and
adsorption measurement of materials at different temperatures to ensure the stability of
MOF materials at different temperatures [96,97].
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Aqueous stability testing: the functional groups of most MOFs are not necessarily
neutral, but most likely alkaline or acidic, so a certain amount of water should be added
before each test. The pH value of the water was tested before adding the MOF and after
MOF filtration to ensure the accuracy of the results. Solutions for measuring pH values
should also be configured with sodium hydroxide or hydrogen chloride, respectively, and
the misleading effect of buffer and counter ions on the experimental results should be taken
into account [98,99].

As mentioned earlier, the measurement of electrical conductivity is not mature because
it depends on the equipment conditions. The definition states that conductivity requires the
measurement of the conductance (G), length (L), and area (A) of the conducting channel:

σ = G L/A = I/V × L/A, (1)

Since conductance follows Ohm’s law, measuring conductance requires either a ratio
between current (I) and voltage (V) or a linear I–V curve. However, it should be noted that to
make the I–V curve linear, you must keep the current or voltage as small as possible, because
this is the only way that Ohm’s law works [100]. Dincă et al. describes the measurement
techniques for electrical conductivity, which they divided into the two-contact method,
four-contact method, four-point method, and van der Wave method [101,102]. Since the
two-contact method measures the total resistance of the material, wire, and shock, the
resistance of the material to be measured must be much greater than that of the measuring
equipment and contacts to avoid errors. The four-contact method and the van der Wave
method can eliminate the electric shock and wire resistance, so they can be better applied
to the conductive MOF with high conductivity [101]. The shape of the MOF has a great
influence on the conductivity. For example, most 3D MOFs have very low conductivity and
produce a large resistance in the conductive channel. This is more suitable for measurements
using double-contact technology. The 2D form of MOF conductivity is very high, which is
more suitable for measurement by the four-contact method and the Fender wave method.
Moreover, in many cases, the electrical conductivity values of MOF materials measured by
the same method are different, because different values will be given for MOF materials
with different physical forms, such as sheet, polycrystalline film, single-domain film, or
single crystals [103,104]. On the other hand, the influence of environmental factors on the
conductivity of MOFs cannot be ignored. For example, because MOF materials have a large
specific surface area, they can significantly interact with surrounding gases or solvents,
resulting in changes in electrical conductivity. Thus, it can be seen that the ideal intrinsic
conductivity value is very strict with the environmental conditions and the conditions
of the crystal material itself. The ideal criteria for the ideal comparison of conductive
MOFs are four-contact measurements of single crystals or van der Wave measurement of
single-domain thin films in a vacuum, constant temperature, and darkness [87].

3. Application

Since the research and development of conductive MOFs, certain breakthroughs have
been made in the design, synthesis, and mechanism research, and many achievements
have been made in electrochemistry. The application of conductive MOFs in these fields is
briefly summarized in Figure 6.

3.1. Supercapacitor

Unlike batteries, supercapacitors store electric energy in the form of static electricity,
which is rapid physical adsorption of oppositely charged ions. This makes it have a high
power density and good cycle stability. Therefore, it is a good electrochemical energy
storage device. c-MOF can provide a large number of active centers and has excellent
pseudo-capacitance. Bao and his colleagues combined transition metals such as Ni2+ and
Cu2+ with organic ligands (HAB) to construct a 2D c-MOF. This is a high-performance
electrode for supercapacitors. The MOF material has a honeycomb-arranged square plane
coordination geometry and fine, hierarchical pores. The HAB MOF electrode has a volume
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capacitance of up to 760 F·cm−3 and a surface capacitance of 20 F·cm−2. Its good cycle
stability shows that the capacity can still be maintained at about 90% after 12,000 cycles. Dif-
ferent from MOFs, these MOFs have little change in acidic and alkaline aqueous solutions
and have excellent chemical stability [105].
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Liu and his team prepared a 3D conjugated metal–organic framework (Cu-DBC) based
on divalent copper ions (Figure 7a). The π-d conjugate orbit in its structure makes a
large number of delocalized charges exist in the polymer chain, so it has good electrical
conductivity. The conductivity of Cu-DBC MOF at room temperature is about 1.0 S m−1.
They tested this material in nine common solvents and concluded that it is chemically
stable. The electrochemical performance of Cu-DBC in 1 M NaCl aqueous solution was
tested by a three-electrode system. As shown in Figure 7f, the cyclic voltammetry curves
of Cu-DBC in 1 M NaCl solution at different scanning rates show a large, enclosed area
and highly reversible REDOX activity, indicating that the capacitance characteristics of
Cu-DBC are jointly determined by the EDL capacitance and the Faraday REDOX reaction.
The excellent conductivity and REDOX reversibility of the Cu-DBC MOF give it excellent
capacitor performance, reaching a weight-specific capacity of 479 F·g−1 at a discharge rate
of 0.2 A·g−1. The symmetrical solid-state supercapacitor with Cu-DBC as an electrode has
an area capacitance of about 879 mFcm−2 and a volume capacitance of about 22 F·cm−3.
These data are better than most MOF-based supercapacitors, and Figure 7f summarizes
the performance comparison of Cu-DBC and other MOF-based materials for supercapaci-
tors [106]. These data are superior to most MOF-based supercapacitors, showing a good
application prospect [107].
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Figure 7. (a) Synthesis of Cu-DBC. (b) 3D structural diagram of Co-BPY. (c) Synthetic mechanism of
hetero-nano-structured E-BP/ZIF-67. (d) Depiction of the synthesis of the high-performance MOF-
based electrode by step-by-step tailoring of the electronic structure of the components. (e) Superca-
pacitor performance of Cu-DBC in 1 m NaCl. Supercapacitance of Cu-DBC and other MOF-based
materials. (f) Supercapacitor performance of Cu-DBC in 1 m NaCl. Cyclic voltammetry profiles at
different scan rates. (g) The nano-sized pore distributions of bulk BP, E-BP, and E-BP/ZIF-67. (Inset:
typical nitrogen adsorption/desorption isotherms.) (h) The specific capacitances of E-BP/ZIF-67 at
different current densities. (i) Electrochemical performance comparison of Co0.24Ni0.76-bpa-200//AC
and some related asymmetric devices. (j) CV curves at various scan rates. (a,e,f) Reproduced with
permission [108]. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015. (c,g,h) Reproduced with
permission [109]. Wiley-VCHGmbH, 2021. (b,d,j) Reproduced with permission [110]. Wiley-VCH
GmbH, 2021.).

Wu and his colleagues developed a black-scale/metal–organic skeleton composite con-
taining a P-O-Co covalent bond structure with a large specific surface area of 632.47 m2 g−1

and a microporosity of 0.38 cm3 g−1, whose capacitance reached 1347 F·g−1 at 0.5 A g−1 in a
KOH electrolyte. Figure 7c shows the synthesis mechanism of E-BP/ZIF-67 nanostructures.
The flexible supercapacitor with this material as an electrode has a high-volume energy
density (109.8 mW cm−3), a large capacitance (506 F·cm−3), and maintains good stability
after 12,000 cycles. Figure 7g shows the pore distribution and specific surface area of block
BP, E-BP, and E-BP/ZIF-67. The micropore characteristics of E-BP/ZIF-67 smaller than 2 nm
have been significantly improved. The flexible supercapacitors Wu et al. integrated with
the material can provide relatively stable power for some smart devices and can operate
for long periods under harsh conditions such as low/high temperatures. Figure 7h shows
the general specific capacitance. This work opens up key opportunities for new electrode
structural systems and practical applications [111].

Xia and his team prepared a nanoscale MOF with ultra-high stability and semiconduc-
tor properties, Co0.24Ni0.76-bpa-200, which has a specific surface area of 4.2 × 10−3 S m−1.
The proper positive nickel ions doped in the MOF can reduce the activation energy of the
system, increase the concentration of the carrier, and realize effective charge transfer so
that MOF has good electrical conductivity. Analysis of the single-crystal structure shows
that Co-BPY has a columnar layered three-dimensional structure (Figure 7b). Figure 7d
describes the preparation process of the MOF-based material electrode. The picture shows
a rich pore structure, which can provide a smooth channel for the diffusion of electrolytes,
promote the rapid transmission of electrons, and thus facilitate charge and discharge.



Chemistry 2023, 5 2458

Figure 7j shows the sweep rate in the range 20–70 mV·S−1 in the potential window of
0–1.4 V. The quasi-rectangular matrix curve coupled with the REDOX peak represents the
combined capacitance behavior of the electronic double-layer capacitor and the pseudo
capacitor. Due to its unique structure, the cycling stability of Co0.24Ni0.76-BPA-200MOF
remains at about 86.5% after 10,000 cycles [112].

The above research shows that to meet the requirements of supercapacitor application,
it is necessary to maintain the structural advantages of MOF while achieving high electrical
conductivity and high structural/chemical stability. When designing supercapacitors, it
is suggested that the coordination atoms in organic ligands with large atomic sizes and
low electron affinity should be selected to obtain a stable MOF structure. In addition, it is
advantageous to select metal ions with favorable atomic orbitals in terms of increasing elec-
trical conductivity, as this will affect the orbital overlap between them and the coordination
atoms [113]. The properties of common conductive MOFs as electrode materials and their
synthesis methods are shown in Table 2.

Table 2. Performance of c-MOFs in supercapacitors.

Electrode
Materials Electrolyte Operating

Voltage [V] Cyclic Stability
Specific

Capacitance
[F·g−1]

Electrode
Fabrication

Method
Ref.

Ni3(HITP)2 0.5 M Na2SO4 0–1.00 84% (after 100 000
cycles 0.1 mAcm−2) 170 electrophoretic

deposition [114]

CNF@Ni-HITP PVA/KCl gel 0–1.00 90% (after 10 000
cycles 1.0 Ag−1) 141 neat conductive

MOF [115]

Cu3(HHTP)2
1 M

NEt4BF4/ACN 0–1.00 81% (after 30 000
cycles 1.0 Ag−1) 114

conductive
additives and

binders
[59]

Cu–CAT NWAs 3 M KCl −0.40 to 0.50 80% (after 5000 cycles
0.8 Vs−1) 202 neat conductive

MOF [45]

Ni-HAB 1 M KOH −0.75 to 0.25 90% (after 12 000
cycles 10.0 Ag−1) 420

conductive
additives and

binders
[105]

Ni3(HAB)2 0.5 M Na2SO4 0–1.00 81% (after 50 000
cycles 1.0 mAcm−2) 279 electrophoretic

deposition [116]

Cu-HAB 1 M KOH −0.55 to 0.10 215
conductive

additives and
binders

[105]

Co-HAB 1 M NaPF6 0.50–3.00 100% (after 50 cycles
50.0 mAg−1)

conductive
additives and

binders
[49]

3.2. Batteries

Supercapacitors and batteries are the two main ways of storing power. Batteries, by
contrast, have been the focus of research because of their high energy density. With the
development of electronic devices, the power density and energy density of batteries are
required to be higher [117]. Figure 8 shows a wide range of applications for batteries,
including trolley charging, cell phone charging, wind power generation, and solar power
generation, where conductive MOF can also be applied. In this section, we will review the
latest progress in the application of c-MOFs in lithium/sodium/zinc batteries.

3.2.1. Lithium-Based Batteries

The lithium battery is a kind of battery with lithium metal or lithium alloy as the
positive/negative electrode material and uses a non-aqueous electrolyte. The lithium-ion
battery (LIB) is a type of rechargeable battery, which mainly depends on lithium ion moving
between the positive and negative terminals for charging and discharging [118]. From
the energy storage mechanism of the battery, lithium-ion batteries should use electrode
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materials with REDOX activity, and REDOX reactions will occur during the insertion and
extraction of lithium ions [119].
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Nishihara et al. reported a metal conducting double (diimide) nickel skeleton (NiDI)
prepared with nickel salt and HAB as the nickel source and organic mixture system, which
was used as the positive electrode material of a LIB [101]. It has the energy storage principle
of both cationic and anionic insertion. The nickel-based c-MOF has a unique unit of
REDOX activity, Ni(Lisq)2(L = o-diimimylbenzodiaminodiquinate), and its REDOX process
includes two electron oxidation and two electron reduction processes, as each metal site
has four electron transfers (Figure 9a). The unique intercalation-mediated multielectron
transfer characteristics of NiDI are applied to a rechargeable energy storage system. The
properties of the material were further investigated in the charge and discharge tests with
a current density of 10–500 mA g−1 (Figure 9b). The specific capacity depends heavily
on the current density. At the current density of 10 mA g−1, the specific capacity reaches
155 mAh g−1, or the specific energy density of 434 Wh kg−1. The cycle performance check
at 250 mA g−1 shows the stable performance of up to 300 cycles (Figure 9c). Through DFT
calculation, the estimated state densities of elements near the Fermi level in NiDI show a
widely dispersed nature and the characteristics of a non-innocent coordination network
reflected by delocalized electrons (Figure 9d).
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Guo and his team designed a scalable bottom-up preparation of a 1D Cu-based c-MOF,
Cu-CAT, using solvothermal methods, and used it as a cathode material for lithium-ion
batteries. The material exhibits a very high reversible capacity with a magnification of
about 631 mAh g−1 at 0.2 A g−1 and about 381 mAh g−1 at 2 A g−1. The discharge
capacity remains at about 81% after 500 cycles at 0.5 A g−1 [122]. Gu and his colleagues
explored the synthesis of a new conducting metal–organic skeleton, Cu3(HHTP)2, and used
it as a cathode material for LIBs. The reversible discharge and charging capacity of the
Cu3(HHTP)2 cathode is about 95 mAh g−1 in the working voltage range of 1.7~3.5 V. When
used as the cathode of the LIB, the material can maintain stable REDOX cycle performance
even at current ratios up to 20 C [123].

Compared with the LIB, the lithium–sulfur battery (LSB) has a higher theoretical
specific capacity, low cost, and abundant resource utilization [124]. However, the volume
expansion of sulfur and insulation performance will lead to the deterioration of cycle
stability and multiplier performance of LIBs [125]. At the same time, the shuttle effect
caused by soluble polysulfide in the process of charge–discharge will seriously affect
the application of LSBs [126]. The c-MOF has high conductivity and adjustable pore
size and is a good material for sulfur carriers. Gao et al. explored and developed a 2D-
hexaminophenyl coordination polymer, 2D-HAB-CP, as a candidate material for the cathode
of LSBs. Figure 9e shows the structure of 2D-HAB-CP synthesized by the top-down method.
The 2D-HAB-CP has two coordinated nitrogen atoms, excellent electrical conductivity,
abundant structural pores, and a high proportion of transition metal atoms [127].

3.2.2. Sodium-Ion Batteries

Sodium-ion batteries (SIBs) are considered a new generation of energy storage equip-
ment after LIBs because of their wide distribution, low potential, and low cost [93]. The
molar mass and ionic radius of sodium ions are larger than those of lithium ions. Although
the working principle of SIBs is similar to that of LIBs, the most commonly used lithium-ion
electrode materials are not suitable for the insertion and extraction of sodium ions. The
large molar mass and ion radius will delay the transmission delay of sodium ions, and
the efficiency, tolerance, and energy density of sodium-ion batteries will decrease [108].
Therefore, the electrode material used for SIBs must have a large tunnel size, and REDOX
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activity occurs during the insertion and extraction of sodium ions. Compared with inor-
ganic materials and organic materials, c-MOF materials with REDOX activity may be more
suitable as electrode materials for secondary sodium-ion batteries, because the combination
of metal parts and organic connectors can show higher electron conductivity and structural
robustness [109].

Bao and his colleagues prepared a cobalt-based c-MOF (Co-HAB) with high stability
and good conductivity [49]. The results show that Co-HAB batteries exhibit a very low self-
discharge rate and high area capacitance. Liu et al. reported on SIHC, which was led by the
Ministry of Finance metal conduit structure, anode material Cu-CATt, or Cu3HHTP2 [128].
The results show that the reversible capacity of the prepared Cu-CAT nanowires loaded on
nickel foam as a negative electrode is 260 mAh g−1 at the current density of 0.1 A g−1. The
results show that the anode of Cu-CAT nanowires stores sodium ions through coordination
with oxygen atoms in the carbon–oxygen bond and associated reduction of copper ions.
Feng and his team reported in 2019 a perfectly conjugated cupric phthalocyanine-MOF,
M2-O8-PcCu sodium–iodine cell using iodine as a positive electrode material [129]. Fe2-O8-
PcCu/I2 shows excellent cycle durability after atomic level modulation, and the specific
capacity of Fe2-O8-PcCu /I2 reaches 150 mAh g−1 after 3000 cycles. There are many Fe-O4
planar nodes in the network frame of Fe2-O8-PcCu, which can bond poly iodine and inhibit
its solution in the nation, which is one of the keys to improving its cycling durability.

The organic part and the metal part of the c-MOF system have considerable chemical
adjustability. The application of the c-MOF sodium-ion series is still in its infancy, so it
is necessary to further explore the basic knowledge of the electrochemical process and
reaction principle, to provide effective guidance for the design of c-MOFs which can be
applied in sodium-ion batteries.

3.2.3. Zinc-Based Batteries

A rechargeable zinc-based battery is a kind of water-based battery with high safety and
relatively low cost. Compared with lithium and sodium batteries, it effectively reduces the
safety risk of leakage and combustion of organic electrolytes. Zinc-based batteries usually
use zinc as the negative electrode and use hydrolyses, which makes the rechargeable
zinc-based batteries have the advantages of low cost, high safety, and high theoretical
capacity [110]. Compared with the lithium battery and sodium battery, the zinc water-based
battery has remarkable rate performance and upper power density because of the excellent
ionic conductivity of the electrolyte in water. In addition, due to the small ion radius of
zinc ions, the c-MOF has open channels and rich REDOX activity during the insertion and
extraction of zinc ions and can be used as zinc-ion battery cathode material [130].

Yao and his team developed a novel self-sacrificing synthesis method in 2019 by self-
sacrificing synthesis of conductive vanad-based three-dimensional nano harness arrays
(V-EC-MOF) on carbon nanotube fibers to be used as binder-free positive electrodes for
zinc-ion batteries [131]. Figure 10a shows a self-sacrificing synthesis route for generating
a layered 3D V-MOF nano harness array on the surface of CNTF. The compound has
abundant active centers, layered porosity, and high conductivity. Figure 10c shows the
magnification capacity of zinc-ion batteries at different current densities. V-MOF-48//zinc
current density increased by 50 times to 64.3% of the initial capacity and V-MOF-24//zinc
current density increased by 50 times to 56.1% of the initial capacity, both of which show
excellent multiplier performance. However, V-MOF-12//zinc and VMF-60//zinc only
maintain 42.9% and 39.7% of the initial capacity when the current density increases 16 times
and 50 times, respectively, which is inferior to the former. The unique 3D multi-channel
hierarchical structure greatly shortens ion diffusion distances and increases ion transport
rates, thus enhancing rate capability, which is critical for practical applications. Figure 10d
is an all-solid fibrous V-MOF-48//zinc cell assembled with PVA electrolyte. The practical
applicability of the cell was evaluated using the Ragone diagram. The results showed good
electrochemical stability with an initial capacitance of 81.5% at 300 cycles with a current
density of 2.0 A·cm−3.
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Figure 10. (a) Schematic diagram of the preparation process of V-MOF@CNTF with a hierarchical
nanowire structure. (b) Possible zinc binding site with V-MOF-48@CNTF coordination. (c) Specific
capacities of V-MOF-12//zinc, V-MOF-24//zinc, V-MOF-48//zinc, and V-MOF-60//zinc at differ-
ent current densities. (d) Schematic diagram of an all-solid-state fibrous V-MOF-48//zinc battery.
(e) Schematic diagram of the Cu-BTA synthesis process. (f) An overview of the molecular structure of
one-dimensional planar conjugated Cu-BTA. (g) Structure evolution and protonation path of Cu-BTA
during discharge. (h) Comparison of Copper-BTA-H with other ZIB cathodes, including: Cu-HHTP,
26 Cu-TCNQ, 31 Cu2O/rGO, 32 Cu2S, 33 Mn-H3BTC, 34 poly (1, 5-NAPD), 35V-MOF, 36 Mn2O3,
37 Co/Mn-PB, 38 DTT, 39, and PANI-S. (i) The sequential binding energy of Cu-BTA/Ni-BTA with
different zinc ion loads. (j) The production of FAR nickel–zinc battery schematic diagram and section
diagram. (k) The energy power density of the prepared nickel–zinc battery was compared with
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and Coulomb efficiency of Ni-MOF/CNTF. (m) Cyclic voltammetry curves of Ni-MOF/CNTF at
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Stoddart et al. applied 2DMOF Cu3HHTP2 to the zinc cell cathode with 1D channel
and REDOX activity π-conjugated conduction [44]. The results show that Cu3HHTP2 has
good cyclic stability, with a capacity retention rate of 75% after 500 cycles and a reversible
capacity of up to 228 mAh g−1 at 50 mA g−1. Li and his colleagues directly synthesized
Ni-PTA-Mn, a metal–organic skeleton porous material with a large specific surface area
and electrical conductivity, using a one-step hydrothermal method [79]. When it is used as
the positive electrode of a water-based zinc-ion battery, the specific discharge capacity of
the battery at 0.1 A g−1 can reach 139 mA g−1, 1 A g−1, and the capacity retention rate is
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about 93% after 100 cycles. The excellent electrochemical performance is determined by the
proton conductivity of the metal–organic skeleton hydrogen bond network.

Sang and his colleagues obtained a highly crystalline π-d-conjugated conductive metal–
organic skeleton by coordinating the ultra-small 1, 2, 4, 5-phenyltetramine (BTA) ligand with
copper ions (Cu-BTA-H) (Figure 10e), which can be used as the positive electrode material
of zinc water-based batteries [134]. The compound has a one-dimensional (1D) Cu-BTA
chain with a π-π/π-d conjugate structure with abundant delocalized electrons (Figure 10f).
The results show that the reversible capacity of the cathode material is 330 mAh g−1 at 200
mA g−1, which shows excellent magnification performance and long cycle stability. After
500 cycles, the capacity is 106.1 mAh g−1 at 2.0 A g−1, and the Coulomb efficiency is ~100%.
The proposed c-MOF with a double REDOX active center provides an effective method
for the construction of fast, stable, and large-capacity energy storage devices. Stoddart’s
team is the first to use a conductive metal–organic skeleton (Cu3(HHTP)2) as a cathode for
a zinc-ion battery [44]. Cu3(HHTP)2 has very high conductivity and zinc ions can migrate
rapidly in the Cu3(HHTP)2 structure with minimal volume change during repeated ion
insertion extraction. Due to the existence of these characteristics, Cu3(HHTP)2 can obtain
high reversible capacity and multiplier ability.

Compared with the zinc-ion battery, the zinc–nickel battery has a higher specific capac-
ity, lower cost, relatively abundant resources, and relatively high operating voltage [135].
Yao et al. applied a nickel-based c-MOF nanosheet array directly grown on carbon nan-
otubes which will be applied to the cathode of a high-voltage nickel–zinc cell in a fibrous
form in 2020 [136]. The results show that the nickel–zinc battery has good conductivity,
unique structure, and can show good stability, and the initial capacity retention rate is
still 89% after 600 cycles. The successful application of the nickel–zinc battery provides a
new idea for the rational design of c-MOFs in the next generation of wearable electronic
devices. Although this is a successful attempt, the problems of low energy density and
poor cycle performance still exist. The reason is that the metal part of c-MOF plays a
decisive role in the REDOX center of Ni-MOF. C-MOF is less stable in alkaline solution. The
operating voltage of conducting MOFs in experiments is low, which limits the application
of conducting MOFs in zinc-ion batteries. Therefore, it is necessary to further explore the
strategy of improving the working voltage of the MOF-based conducting zinc batteries.
Table 3 summarizes the charge–discharge capacity and cycle stability of different electrode
materials and their synthesis methods in batteries. The performance of common conductive
MOFs in different batteries and their synthesis methods are shown in Table 3.

Table 3. Properties and synthesis methods of conductive MOFs in different batteries.

Electrode
Material

Charge and
Discharge Capacity

Cyclic
Stability Synthesis Method Apply Ref.

Cu-CAT 631 mAhg−1 81% Solvothermal method Lithium-ion battery [122]
Cu3(HHTP)2 95 mAHg−1 Solvothermal method Lithium-ion battery [123]

Co-HAB 260 mA h g−1 Solvothermal method Sodium-ion battery [131]
V-EC-MOF 81.5% Solvothermal method Zinc-ion battery [134]
Cu3HHTP2 228 mAh−1 75% Solvothermal method Zinc-ion battery [136]
Cu-BTa-H 330 mAh−1 32% Solvothermal method Zinc-ion battery [135]

Ni-MOF/CNTF 0.4 mA h cm−2 600% Water bath method Nickel–zinc battery [120]

3.3. Electrocatalysis

Electrochemical energy conversion technology is a kind of clean and renewable energy
storage technology [47,137]. C-MOF with REDOX ligands and metal junctions is considered
an ideal energy conversion electrocatalyst. Its advantages include: (1) the high conductivity
of intrinsic electrons which promotes charge transfer; (2) structural plasticity defines the
catalytic location; (3) the large surface area and the adjustable porosity promote the diffusion
of electrolytes co-catalyze guest active materials as host materials.
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Nishihara and his team prepared a new c-MOF (NiAT), which consists of nickel nodes
and a single layer of 1,3,5-aminophenyl-2,4,6-tri mercaptan [47]. The double nickel unit of
the c-MOF can be transformed into its double nickel structure by a proton-coupled REDOX
reaction, and the conductivity increases from 3 × 10−6 to 1 × 10−1 S·cm−1. Huang and
his colleagues designed and synthesized a c-MOF with high conductivity, Cu-BHT, which
generally maintains a conductivity of around 103 S·cm−1 [138]. As shown in Figure 11a,
thin films, nanocrystals, and nanoparticles of Cu-BHT were obtained through different
synthesis procedures. The experimental results show that Cu-BHT exhibits good activity
and stability under acidic conditions and high current density, and it is a very promising
electrocatalytic candidate material. Under the optimized conditions, the slope of Tafel is
about ~95 mV·dec−1 and the exchange current density is 10−3 mA·cm−2. Durability is
an important index to measure in a HER catalyst. Huang et al. evaluated the long-term
durability of NP-1 by performing 2000 cycle scans in a buffer solution with a pH of 0,
ranging from 0–0.75 V. After cycling, the catalyst showed a polarization curve similar
to that of the initial test (Figure 11b), indicating that the catalytic performance of NP-1
remained appropriate. The illustrations show that the NP-1-modified GCE can operate
at a current density of ~ 260 mA·cm−2, and in a highly acidic solution of −0.7 V, it can
operate continuously for more than 20 h with little loss. At an overpotential of 600 mV, the
impedance of the GCE/Np-1 electrode (110 Ω) is much lower than that of the GCE/NC-1
electrode (1300 Ω) (Figure 11c).

The morphology and properties of Cu-BHT in sulfuric acid show that, compared
with thin films and nanocrystals, the morphology of nanoparticles greatly reduces the
overpotential of oxygen evolution (OER). OER is a clean, reliable, and renewable energy
system of the core process; it occurs in the water decomposition process and the metal–
air batteries [121,139]. It is worth noting that a large number of proton-coupled electron
transfer and polyphase reaction processes involved in the OER process hinder the further
development of high-performance electrocatalysts [140,141]. High conductivity, abundant
active centers, and faster interfacial reactions are required for high-performance OER
electrocatalysts. Therefore, c-MOF with excellent pore structure and intrinsic conductivity
becomes a candidate material for an OER electrocatalyst. Peng et al. used copper foam as a
base to prepare copper hydroxide nanowires, and then synthesized 2D c-MOF(Cu3HITP2)
by in situ synthesis and used it as a bifunctional electrocatalyst [142]. The results show that
Cu3HITP2 prepared from copper hydroxide nanowires has a large electrochemical specific
surface area and can operate stably in 0.1 and 1.0 mol·L−1 KOH solutions. When the current
density reaches 10 mA·cm−2, the OER overpotential is only 1.53 V, which is superior to
the catalytic performance of commercial catalysts. Huang and his colleagues reported
a π-d-conjugated 2D Co3(HITP)2 with a good porous network and abundant oxygen
evolution active centers [143]. They synthesized Co3(HITP)2 using a simple method at
room temperature (Figure 11d). Co3(HITP)2 shows better conductivity than hole graphene,
generally around 1150 S·m−1. The results showed that Co3(HITP)2 showed significant
oxygen evolution activity in alkaline electrolytes. Figure 11e shows the timing potential
curve of Co3(HITP)2. The illustration shows the polarization curve of Co3(HITP)2 after
2000 cycles. Additionally, when the current density is 10 mA·cm−2, the overpotential
is 254 mV, which is better than most cobalt-based materials and commercial catalysts
reported to date. By the density functional theory calculation, it is shown that Co3(HITP)2
has high electron conductivity. The Tafel slope of Co3(HITP)2 is 86.5 mV dec−1, much
lower than that of HITP (530.3 mVdec−1), and similar to that of IrO2 (61.4 mVdec−1) and
RuO2 (69.1 mVdec−1). It is shown that Co3(HITP)2 has better catalytic kinetics for OER
(Figure 11f). It is a new way to develop highly efficient OER electrocatalysts to regulate the
electronic structure by the flexible structure of 2D conducting conjugated MOFs. Zhao and
his team designed and synthesized an array of NiFe-MOF ultrathin nanosheets grown on
nickel foam [144]. The material is prepared by adding organic ligands to a metallic brine
solution by a simple one-step chemical bath deposition method. As shown in Figure 11g,
the crystal structure of MOF consists of alternating layers of organic hydrocarbons and
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inorganic metallic oxygen. This material has graded porosity, good conductivity, and
abundant active metal sites, and at 10 mA·cm−2, the overpotential is 240 mV, 0.1 M KOH
(Figure 11h). It was the smallest of all the control samples. The Tafel map obtained from
the linear sweep voltammetry (LSV) (Figure 11i) shows that the NiFe-MOF electrode has
a higher OER efficiency than other laboratories; when it is used as an anode or cathode
catalyst, HER also shows considerable activity. The device provides only 1.55 V at 10
mA·cm−2, which is better than the platinum/carbon cathode materials and IrO2 anode
materials used commercially. Wang and his colleagues reported a c-MOF nanowire array
grown on carbon cloth as an electrocatalyst for OER [145]. They were able to grow Ni-HHTP
nanocrystals directly onto the carbon cloth by immersing it in a reaction solution. The
prepared Ni-HHTP nanocrystalline structure consisted of two different types of alternating
accumulation layers (Figure 11m,n). The OER activity of nanowire arrays at 1 M KOH
(pH = 14) was measured by LSV. As shown in Figure 11l, the Ni-HHTP nanowire array
obtains a current density of 10 mA·cm−2 at 1.61 V, corresponding to an overpotential of
~380 mV. The slope of the Tafel diagram (Figure 11k) of Ni-HHTP is 106 mV dec−1. When
Fe is doped, the slope drops to 96 mV dec−1, reflecting the enhancement of electrochemical
kinetics and the transfer of the rate-determining step from M-OH to M-O. It relies on
the principle that non-cracking c-MOF electrocatalysts can preserve the original intrinsic
molecular active center in MOFs. The overpotential of the prepared electrodes was ~213
and 300 mV at 10 mA·cm−2 and 150 mA·cm−2, respectively, which showed long-term
stability in 1 M KOH. Du et al. successfully synthesized a 2D c-MOF, NiPC-MOF, using a
top-down preparation method for high-efficiency water oxidation catalysis [146]. Figure 11j
shows the synthesis and chemical structure of the NiPC-MOF material. It has excellent
catalytic activity against OER. The NiPC-MOF films grown on FTO were designed and
showed very low initial potential and overpotential of 0.25 V, good catalytic stability, and
mass activity.

At present, the main electrocatalyst of ORR is platinum group metals [90,132,133,147].
However, due to its high cost, poor stability, poor safety, and other problems, its commercial
application in fuel cells is limited. Due to this, the preparation of new c-MOFs using non-
platinum group metals as electrocatalysts emerged. Oh and his colleagues report that a
bimetallic conducting MOF, CoxNiy-CAT, which has two metal ions (cobalt and nickel)
that are free to adjust the ratio, is a suitable electrocatalyst for ORR [148]. Compared with
mono-metal CoxNiy-CAT or Ni-CAT, bimetallic CoxNiy-CAT has better ORR properties,
exhibits an ideal four-electron transfer pathway, and lower hydrogen peroxide release
degree. In the ORR process, bimetallic CoxNiy-CAT retains the high diffusion limit current
density advantage of Co-CAT and the high initial potential advantage of Ni-CAT. Feng and
his team developed a phthalate group MOF conductor, PcCuO8-CO, as a high-performance
ORR catalyst [149]. After compositing with carbon nanotubes, this compound has a
very high ORR activity active Co-O4 node, unique conductivity, and weekly interval.
When the prepared PcCuO8-Co is used as the positive electrocatalyst of zinc–air cells, the
power density is up to 94 mW·cm−2, and the performance is better than that of the best
platinum/carbon electrodes.
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is the time dependence of the current density of GCE/NP-1 at a static overpotential of 700 mV.
(c) The electrochemical impedance spectra of GCE/NC-1 (green line) and GCE/NP-1 (red line) at
the same overpotential in the range of ~10 MHz were compared. (d) Structure and synthesis of
Co3(HITP)2. (e) The timing potential curve of Co3(HITP)2. The illustration shows the polarization
curve of Co3(HITP)2 after 2000 cycles. (f) Tafel comparison of Co3(HITP)2, HITP, IrO2, and RuO2.
(g) Synthesis of metal–organic skeleton nanosheet arrays. (h) LSV curves of NiFe-MOF, Ni-MOF,
block NiFe-MOF, and IrO2 at 10 MVS−1 and 0.1 M KOH. (i) Comparison of Tafel of NiFe-MOF,
Ni-MOF, and block NiFe-MOF. (j) Structure and chemical synthesis of NiPC-MOF. (k,l) LSV curves
and Tafel diagrams of Ni-HHTP NWS, Fe1Ni4HHTP NWS, carbon cloth (CC), and Ir/C in 1M KOH
alkaline solution. (m) Space-filling diagram of Ni-HHTP wrapper structure along the c direction.
(Blue for nickel, orange for oxygen, gray for carbon, and light gray for hydrogen). (n) Fill in the
diagram for the discrete layer space. ((a–c) Reproduced with permission [150]. American Chemical
Society, 2017. (d–f) Reproduced with permission [151]. Elsevier B.V., 2020. (g–i) Reproduced with
permission [149]. The Author(s), 2017. (j–n) Reproduced with permission [152]. The Royal Society of
Chemistry, 2019.).
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The molecular structure of carbon dioxide is very stable, which is a relatively difficult
challenge for CRR [153]. Given this, it is very advantageous to develop high-activity CRR
electrocatalysts. Therefore, it is of great significance to design a highly designable c-MOF
as a promising candidate electrocatalyst [150].

Copper is a very attractive metal that converts carbon dioxide directly into alcohols
or hydrocarbons [154]. Gu et al. reported the conductive metal oxide Cu2(CuTCPP)
of Cu-based porphyrins, could be used as an electrocatalyst for CRR. The results show
that Cu2(CuTCPP) has remarkable catalytic activity on the products of carbon dioxide
conversion, and the reaction efficiency is 68.4% at about 1.55 V to Ag/Ag tower potential.
This work also shows that the c-MOF has high selectivity and good stability. Table 4
summarizes the overpotential of different electrode materials and their synthesis methods.

Table 4. Properties and synthesis methods of conductive MOFs in different catalytic modes.

Electrode Material Overpotential Synthesis Method Apply Ref.

NIAT Water bath method HER catalyst [139]
Cu-BHT 95 mV Water bath method HER catalyst [121]

Cu3HITP2 1.53 V Solvothermal method OER catalyst [144]
Co3(HITP)2 254 mV Solvothermal method OER catalyst [146]
NiFe-MOF 240 mV Solvothermal method HER catalyst [147]

Ni-HHTP nanowire array ~380 mV Solid–liquid interface method OER catalyst [132]

NiPC-MOF 0.25 V
A top-down method for
preparing efficient water

oxidation catalysts
OER catalyst [90]

CoxNiy-CAT Hydrothermal method ORR catalyst [154]
PcCuO8-CO Hydrothermal method ORR catalyst [149]

Cu2(CuTCPP) 1.55 V Solvothermal method CRR catalyst [155]

4. Conclusions and Outlook

During the past twenty years, MOFs, as important multifunctional materials, have
been widely concerned and developed rapidly [156]. Up to now, more than 20,000 different
MOFs have been reported, which are flexible in structure and diverse in chemical compo-
sition. The MOF’s ultra-high porosity, specific surface area, adjustable functionality, and
impressive thermal and chemical stability make it an excellent candidate for diverse related
energy applications. Conducting MOF materials can make good charge transport and high
porosity coexist, which is conducive to the development of the next generation of energy
technology [157].

To sum up, giving electrical conductivity to MOFs is to incorporate traditional MOFs
into the field of conducting MOFs and to expand their electrochemical applications [158].
In this paper, we explored the synthesis of c-MOF, the design strategy of c-MOF electrodes,
and the latest progress of c-MOF in supercapacitors, lithium/sodium/zinc batteries, or
HRR/ORR, etc. [151]. Although many achievements have been made, the research on
c-MOF is still in the preliminary stage. Several deficiencies and defects of c-MOF are
summarized as follows:

1. The application of c-MOF in electrocatalysts is a hot topic in the field. At present, how-
ever, its performance cannot be compared with that of precious metal catalysts [152];

2. It is important to explain the relationship between the active center of c-MOF and the
potential generated by the electrode during ion insertion and extraction [159];

3. To obtain better ion storage capacity of charge transfer, the structure of c-MOF needs
to be adjusted accurately [160–166].

Given this, environmentally friendly and high-performance electrochemical devices
based on conducting MOFs will become the focus of future research [3]. In the future,
with the close collaboration of experimenters, theorists, and computational chemists in this
field, c-MOFs are expected to make a breakthrough as the next generation of functional
materials [167–170].
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To sum up, conductive MOFs have unique properties and show great application
potentials in energy storage and conversion. The development of MOFs has opened
up an entirely new way for the scientific application of porous materials, and making
MOFs electrically conductive so that they can be used as electrodes has become an
urgent task in the past decade. However, further in-depth and systematic study of the
above challenges and progress, as well as long-term research and application, are the
inevitable requirements for conducting MOF research to move from the laboratory to
industrial production [171–174].
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