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Abstract: Although significant advances have been witnessed in the application of nanozymes in
recent years, exploring new strategies to enhance the enzyme-like activity of nanozymes is of urgent
importance. Herein, we investigate the feasibility of accelerating the peroxidase-like reaction rate
of CuO nanostructures through Fe doping. The coprecipitation method was used to synthesize
Fe-doped CuO (Fe-CuO) nanozymes, and the results indicate that the diversified valence of Fe
benefits the redox reaction driven by CuO-based nanozymes. With the improved peroxidase-like
activity, the Fe-CuO nanozyme enables the significant chromogenic oxidation reaction of 3,3′,5,5′-
tetramethylbenzidine (TMB), facilitating the construction of a visual sensing platform for the sensitive
and selective determination of ascorbic acid. Under optimal conditions, the absorbance at 652 nm
decreases linearly with the concentration of ascorbic acid in the range of 5–50 µM, with a limit
of detection as low as 4.66 µM. This work exemplifies the activity enhancement for peroxidase-
mimicking nanozymes with a metal-doping strategy and provides a broad prospect for the design of
more high-performance nanozymes for biosensing applications.
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1. Introduction

The biosensing of biomarkers and small molecules is of great significance in biomedicines,
the environment, and the food industry [1–3]. A variety of nanomaterials with unique opti-
cal, electrical, and catalytic properties and recognition functions play important roles [4–8].
Among them, nanozymes, as a collection of nanomaterials with natural enzyme-like activi-
ties, have been used in the field of biosensors to replace natural enzymes because of their
high stability, low cost, and ease of mass production [9–15]. Although massive kinds of
nanozymes have received tremendous attention over the past years, the catalytic activity of
some nanozymes is still relatively low, which restricts their potential applications [16,17].
Notably, as an essential metal element to life, Cu is an important part of many natural
enzymes [15]. However, the catalytic activity of various existing Cu-based nanozymes, for
example CuO nanozyme, is still lower than that of natural PODs, making the development
of new methods to enhance the activity of the CuO nanozyme still challenging.

Recently, various strategies have been developed to enhance the activity of
nanozymes [18–20]. For example, higher peroxidase (POD)-like activity can be obtained by
fabricating hybrid nanomaterials, tuning the morphology of nanomaterials, or modifying
with functional molecules on the surface of nanozymes [14,15]. Another effective route
was reported in which doping with suitable heteroatoms could enhance the enzyme-like
catalytic activity of nanomaterials. For instance, Mo-doped Co3O4 nanotubes endow an
enhanced POD-like activity compared with pristine Co3O4 nanotubes, which was

Attributed to the additional reaction of oxygen species by the doping elements [21].
Therefore, it was a great opportunity to improve the POD-like activity by preparing novel
types of heteroatom-doped CuO nanomaterials.
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Fe3O4 is considered to be the first reported metal-based nanozymes [9]. The diversified
valence of Fe benefits the redox reaction driven by the nanozyme which acts similarly to
the natural oxidoreductase. Thus, we are inspired to introduce Fe into CuO nanostructures
to improve the POD-like activity of CuO nanozyme. In this contribution, Fe-doped CuO
(Fe-CuO) nanostructures are first fabricated using a coprecipitation method. After verifying
that the Fe-CuO nanozyme only possesses POD-like activity, the steady-state kinetics are
systematically investigated and the roles of radicals in the Fe-doping-enhanced nanozy-
matic catalysis are studied. Moreover, we figure out the linear relationship between the
concentration of H2O2 and the absorbance of the colorimetric reaction. Thus, a fast colori-
metric sensing strategy based on the Fe-CuO nanozyme is proposed for the highly sensitive
and selective detection of ascorbic acid (AA). Additionally, on the basis of the superior
POD-like activity of the Fe-CuO nanozyme, we constructed a total antioxidant capacity
(TAC) biosensor with AA as an antioxidant model by expressing TAC as an AA-equivalent
antioxidant capacity.

2. Materials and Methods
2.1. Chemicals

FeCl2·4H2O, CuCl2·2H2O, NaOH, hydrogen peroxide (H2O2, 30% wt), ascorbic acid
(AA), glycine (gly), lysine (lys), phenylalanine (phe), glucose, KCl, and CaCl2 were pur-
chased from the Sinopharm Chemical Reagents Co., Ltd. 3,3′,5,5′-tetramethylbenzidine
(TMB), terephthalic acid (TA), and 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) were pur-
chased from Adamas beta. All chemicals are of analytical grade without further purification
before use. Ultrapure water (18.25 MΩ·cm−2, 25 ◦C) used in the experiment is from the
Millipore Milli-Q system.

2.2. Apparatus and Characterization

The morphologies of CuO and Fe-CuO were characterized using a JEM-2100 Plus
(JEOL, Tokyo, Japan) transmission electron microscope (TEM) operating at 300 kV. X-ray
diffraction (XRD) patterns were carried out on a D8 (Bruker, Karlsruhe, Germany) using
Ni-filtered Cu Ka radiation (l = 1.5406 Å). The UV-Vis spectra were recorded at room
temperature on a UV-2600 (Shimadzu, Kyoto, Japan) using a quartz cuvette with an optical
path of 10 mm. Fluorometric data were obtained on a spectrofluorophotometer (F-7000,
Hitachi, Tokyo, Japan).

2.3. Preparation of CuO and Fe-CuO

The preparation of CuO and Fe-CuO was carried out using a coprecipitation method
as described in previous work with little modification [22]. The doped and undoped
CuO nanostructures were prepared in a 50 mL flask. First, 248.5 mg of FeCl2·4H2O and
1917.9 mg of CuCl2·2H2O were dissolved in 25.0 mL water and stirred for 30 min at room
temperature. After the addition of 5.0 mL of NaOH (15.0 M), the solution was stirred for
2 h at 70 ◦C. Subsequently, the colloidal solution was cooled down to room temperature.
The resulting product was centrifuged at 5000 rpm for 10 min and washed with ultrapure
water and acetone twice each to remove the unused salts. The precipitate was dried under
a vacuum oven at 373 K for 2 h and ground in a mortar to make fine powders.

2.4. POD-like Activity Assay for Fe-CuO Nanozymes

The peroxidase activity of undoped CuO and Fe-CuO nanozymes was studied using
the catalytic oxidation of TMB with H2O2. In a typical experiment, 36 µL of TMB solution
(10 mg·mL−1) and 150 µL of H2O2 (100 mM) were added to acetate buffer (pH 4.0) at 25 ◦C.
Then, 270 µL of CuO or Fe-CuO nanozymes (1 mg·mL−1) were introduced to make the final
acetate (0.2 M) buffered solution of 3 mL. After 5 min of reaction, the solution was filtered
using an ultrafilter film to collect the filtrate. The UV-Vis spectrum and the absorbance at
652 nm of the filtrate were measured using a UV-Vis spectrophotometer.
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To calculate kinetic parameters, the Michaelis–Menten equation and its Lineweaver–
Burk double reciprocal representation were used:

V =
Vmax [S]
Km + [S]

1
V

=
Km

Vmax
· 1
[S]

+
1

Vmax

where V0 and Vmax are the initial and maximum reaction velocities, respectively. [S]
represents the substrate concentration. Km represents the Michaelis–Menten constant.

To determine the POD-like catalytic kinetic parameters, 90 µg·mL−1 of CuO and
Fe-CuO were used in 0.2 M acetate buffer (pH 4.0) to measure the initial reaction rate at
25 ◦C. When evaluating the kinetic parameters obtained for TMB or H2O2 as the substrate,
a constant concentration of H2O2 (5 mM) or TMB (0.12 mg·mL−1) was used, respectively.
The V0 value is calculated using the following equations:

V0 =
c
t

c =
A

b× ε652

where A and t represent the absorbance of oxTMB at 652 nm and the reaction time, respec-
tively. ε652 = 39,000 M−1·cm−1 and b = 1 cm.

2.5. Detection of AA Using Fe-CuO Nanozymes

Colorimetric detection of AA was carried out as follows. First, 36 µL of TMB solution
(10 mg·mL−1), 45 µL of H2O2 (10 mM), and a series of AA solutions with various concen-
trations were added to acetate buffer (pH 4.0) at 25 ◦C. Then, 270 µL of Fe-CuO nanozyme
(1 mg·mL−1) was introduced to make the final acetate (0.2 M) buffered solution of 3 mL.
After 5 min of reaction, the solution was filtered using an ultrafilter film to collect the filtrate.
The absorbance at 652 nm of the filtrate was measured using a UV-Vis spectrophotometer.
The experiment was repeated three times under the same conditions. The limit of detection
(LOD) was calculated as LOD = 3σ/k, where σ is the standard deviation of the experiment
and k is the slope of the linear curve.

2.6. TAC Assay

A commercial beverage (Mizone) was used for the TAC assay. The above-mentioned
protocol for AA detection was employed. The beverage was diluted appropriately for
the sample preparation. After the addition of 30 µL sample, the reaction of 3 mL system
containing 120 µg·mL−1 TMB, 150 µM H2O2, and 90 µg·mL−1 Fe-CuO nanozyme in
0.2 M acetate buffer (pH 4.0) was conducted at 25 ◦C for 5 min. In the spiked recovery
experiments, the standard AA solution with the concentration of 1 mM was introduced to
calculate the recovery.

3. Results and Discussion
3.1. Characterization of CuO and Fe-CuO Nanozymes

To prepared CuO-based POD-mimicking nanozymes, CuO and Fe-doped CuO (Fe-
CuO) nanostructures were synthesized using a classical coprecipitation method (Figure 1).
The expected molar ratio of Fe and Cu is 1:9 for Fe-CuO. Thus, for the preparation of doped
nanostructures with a nominal composition of FexCu1-xO (x = 0.1), FeCl2 is mixed with
CuCl2 in the stoichiometric ratio first. The addition of NaOH at 70 ◦C induces the reactions
as follows.
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Figure 1. Scheme for the preparation of CuO and Fe-CuO nanozymes and the digital photograph of
the synthesized CuO and Fe-CuO nanozymes.

For undoped CuO,

CuCl2 + 2 NaOH = Cu(OH)2 + 2 NaCl→ CuO + H2O. (1)

For doped Fe-CuO,

CuCl2 + FeCl2 + 2 NaOH = FexCu1-x(OH)2 + 2 NaCl→ FexCu1-xO + H2O. (2)

After the resultant solution was filtered, washed, and dried, it was seen that the
prepared samples were fine powders with dark colors (Figure 1).

The morphologies of CuO and Fe-CuO were characterized using SEM. Figure 2a,b
indicates that CuO nanostructures have leaf-like profiles, while Fe-CuO nanostructures look
more like rough leaves with major veins and rods. The change in morphology should be
ascribed to the interstitial of Fe ions at Cu sites in the CuO lattice. Moreover, we conducted
an elemental analysis of CuO and Fe-CuO to prove the successful introduction and uniform
distribution of Fe (Figure 2c,d). The EDX spectrum further confirms that only copper and
oxygen elements appear in CuO (Figure 2e). On the contrary, Fe-CuO nanostructures have
an Fe/Cu weight ratio of 1:13.3 and an Fe/Cu atomic ratio of 1:11.6 (Figure 2f), which
confirm that the elemental stoichiometry is basically in accordance with the ratio of the
precursors used in the synthetic procedure.
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Figure 2. SEM images of the synthesized CuO (a) and Fe-CuO (b) nanozymes. Elemental analysis
images of the synthesized CuO (c) and Fe-CuO (d) nanozymes. In panel (c) and (d), the red, cyan, and
purple dots indicates the appearance of O, Cu, and Fe, respectively. EDX spectra of the synthesized
CuO (e) and Fe-CuO (f) nanozymes.

Representative TEM images further reveal the flat nanostructures of CuO and the
rough nanostructures of Fe-CuO (Figure 3a,b). These patterns are well corroborated with
the surface morphology results obtained from SEM. In addition, we examined the XRD
patterns of CuO and Fe-CuO for the crystal structure and phase analysis (Figure 3c). The
diffraction peaks could be indexed to the phase of CuO (JCPDS#48-1548). Interestingly, it
is noted that characteristic peaks remain unchanged after doping with Fe. This indicates
that the crystal structure of CuO is not distorted in Fe-CuO, which may result from the
similarity of the ionic radii of Fe and Cu. Therefore, the above investigations verify the
successful preparation of Fe-CuO with the uniform doping of Fe.

3.2. Fe-Doping-Enhanced Peroxidase-like Activity of CuO

Five different reaction systems were designed to study the influence of Fe doping
on the peroxidase-like catalytic property of CuO (Figure 4a). TMB is a commonly used
substrate for the chromogenic oxidation reaction catalyzed by peroxidases with the presence
of H2O2. During the reaction, the amino group of TMB loses an electron to become a
cationic free radical and forms a charge-transfer complex which has maximum absorptions
at 371 nm and 652 nm, gifting the oxTMB a characteristic blue color [23]. The oxidation
of TMB by H2O2 under different conditions is displayed in Figure 4b. Compared with
the reaction catalyzed by the CuO nanozyme (curve #2), the doping of Fe results in a
significant increase in the absorption at 652 nm for the Fe-CuO nanozyme (curve #1). As
a comparison, the Fe-CuO nanozyme cannot catalyze the reaction between O2 and TMB
(curve #3), indicating that the Fe-CuO nanozyme does not possess an obvious oxidase-like
activity. Moreover, it is not surprising to find that neither the reaction between H2O2 and
TMB without any catalysts (curve #4) nor the reaction system in the absence of TMB as a
visible indicator (curve #5) exhibit a negligible absorbance. The above results substantiate
that Fe doping enhances the POD-like activity of CuO in the proposed Fe-CuO nanozyme.
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Figure 4. (a) Photographs of different reaction systems. (b) The corresponding UV-Vis absorption
spectra of different reaction systems. Systems (1–5) shown in panel (a) are identical to those in panel
(b). The reactions of 3 mL system containing 120 µg·mL−1 TMB, 5 mM H2O2, and 90 µg/mL CuO or
Fe-CuO nanozyme in 0.2 M acetate buffer (pH 4.0) were conducted at 25 ◦C for 10 min.
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3.3. Steady-State Kinetic Assay

As is known, the catalytic behaviors of enzyme mimics follow the Michaelis−Menten
equation. To further understand the peroxidase-like catalytic activity of CuO enhanced
by Fe doping, the kinetic parameters of CuO and Fe-CuO nanozymes were analyzed and
compared. By fixing the concentration of one substrate (TMB or H2O2) and varying the
concentration of the other substrate, the initial catalytic rates for both CuO and Fe-CuO
were tested. Thus, we obtained the reaction velocity vs. substrate concentration curves,
which follow the classic Michaelis–Menten equation (Figure 5, insets). Furthermore, the
catalytic kinetic parameters (Vmax and Km) of H2O2 and TMB were calculated by using the
double reciprocal Lineweaver–Burk diagram (Figure 5).
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Figure 5. (a) Lineweaver–Burk plot (inset: Michaelis–Menten kinetics) of the nanozymatic activ-
ity of Fe-CuO with H2O2 as the substrate. (b) Lineweaver–Burk plot (inset: Michaelis–Menten
kinetics) of the nanozymatic activity of CuO with H2O2 as the substrate. (c) Lineweaver–Burk plot
(inset: Michaelis–Menten kinetics) of the nanozymatic activity of Fe-CuO with TMB as the substrate.
(d) Lineweaver–Burk plot (inset: Michaelis–Menten kinetics) of the nanozymatic activity of CuO with
TMB as the substrate. The reactions of a 3 mL system containing 120 µg·mL−1 TMB, 5 mM H2O2,
and 90 µg/mL CuO or Fe-CuO nanozyme in 0.2 M acetate buffer (pH 4.0) were conducted at 25 ◦C
for 2 min to obtain the initial velocity of the reaction. Error bars in all graphics represent the standard
deviation from three repetitive experiments.
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In enzymatic catalysis, the value of Km indicates the affinity of the enzyme and
substrates. For both CuO and Fe-CuO nanozymes, the Km and Vmax for H2O2 and TMB
are summarized in Table 1. It is seen that, when using H2O2 as the substrate, the Km
of Fe-CuO is 15.9 mM, which is 5.5 times lower than that of CuO (Km = 87.9 mM). The
results suggest that Fe-CuO possesses a stronger affinity to H2O2 in comparison with CuO.
Interestingly, we find that the affinity to TMB of Fe-CuO (Km = 0.986 mM) is slightly lower
than that of CuO (Km = 0.497 mM). It is rationally speculated that a typical ping–pong
mechanism occurs over the Fe-CuO nanozyme, which indicates that the Fe-CuO nanozyme
reacts with the first substrate and then releases the first product before reacting with the
second substrate. However, the Vmax of Fe-CuO for TMB is larger than that of CuO for
TMB. The faster reaction rates for the colorimetric substrate make up for the deficiency
of weak affinity between Fe-CuO and TMB to a certain extent, suggesting an accelerated
rate of enzymatic conversion of the substrate by the CuO-based nanozyme after Fe is
doped. Since Fe doping strengthens the POD-like activity of CuO, the kinetic parameters
(including Km and Vmax) of the Fe-CuO nanozyme are comparable to other state-of-the-art
POD-mimicking nanozymes reported recently (Table 1).

Table 1. Comparison of the kinetic parameters of the Fe-CuO nanozyme, CuO nanozyme, and other
catalysts with POD-like activity for catalyzing TMB and H2O2 reaction at room temperature.

Catalysts
Km (mM) Vmax (µM/min)

References
H2O2 TMB H2O2 TMB

Fe-CuO 15.9 0.986 6.05 7.40
This workCuO 87.9 0.497 22.03 3.27

HRP 3.7 0.434 5.23 6.0 [9]
Cu(PDA)(DMF) 28.6 0.169 1.9 1.32 [24]
Fe3O4@C NWs 0.23 0.20 1.45 0.80 [25]

Fe3O4@C/Ni NW 0.059 0.10 2.17 2.34 [26]
Por-CuCo2O4 9.96 0.044 4.97 5.96 [27]

Au/Cu2O 10.56 0.21 4.01 3.65 [28]
MoS2-CPBNPs 3.17 0.22 0.89 3.82 [29]

MIL-88B-NH2/Pt 0.026 0.00213 1.24 0.62 [30]
Por-CoMoO4 0.63 0.26 1.23 56.81 [31]

Pc(OH)8-CoFe LDH 1.55 0.361 2.86 7.47 [32]

3.4. Reactive Oxygen Species in the Nanozymatic Catalysis

To further confirm the catalytic mechanism of the Fe-CuO nanozyme, we investigated
reactive oxygen species as they are usually known to be produced in nanozymatic catalysis.
It is known that DMPO is a kind of free radical scavenger, which can specifically combine
with short-lived hydroxyl (•OH) radicals to form longer-lived DMPO-OH•. Thus, by
simply adding DMPO to the catalytic reaction, •OH radicals will be trapped to generate
the aforementioned long-lived radical adducts. Therefore, it can be qualitatively judged
whether •OH radicals are produced from the ESR measurement. Therefore, we performed
ESR spectroscopy analysis for the determination of •OH radicals. A total of 20 µL of
as-prepared Fe-CuO dispersion (4 mg·mL−1), 20 µL of H2O2 (100 mM), and 20 µL of
DMPO aqueous solution (1 M) were sequentially added into a final solution of 200 µL
containing 200 mM acetate buffer (pH 4.0). The mixture was reacted for 10 min before
recording the EPR spectra. Figure 6a clearly shows that the characteristic quartet peak of
•OH radicals (1:2:2:1) exists in the Fe-CuO and H2O2 mixture system, which suggests that
a Fenton-like reaction occurs in TMB oxidation. In addition, •OH radicals in the system
were also investigated using the oxidation of terephthalic acid (TA), which reacts with
•OH radicals to produce 2-hydroxyterephthalic acid exhibiting a strong emission peak
at 450 nm. Figure 6b indicates that the Fe-CuO nanozyme can catalyze H2O2 into •OH
radicals (black curve). While the other systems (including the system of Fe-CuO and TA,
the system of H2O2 and TA, and the system of TA only) do not exhibit notable fluorescence
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peaks, respectively. These results further confirm that the TMB oxidation originates from
•OH radicals. Accordingly, we propose that the POD-like activity of the Fe-CuO nanozyme
is ascribed to the Fenton-type mechanism.
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Figure 6. (a) Electron spin resonance (ESR) spectra of •OH radicals in the reaction system contain-
ing 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the spin trap. The reactions of a 0.2 mL system
containing 100 mM DMPO, 10 mM H2O2, and 400 µg/mL Fe-CuO nanozyme in 0.2 M acetate buffer

(pH 4.0) were conducted at 25 ◦C for 10 min before the ESR measurement. (b) Fluorescence emission
spectra of different reaction systems excited by 315 nm light. The reactions of a 0.5 mL system
containing 10 mM TA, 20 mM H2O2, and 320 µg/mL Fe-CuO nanozyme in 0.2 M acetate buffer (pH
4.0) were conducted at 25 ◦C for 5 min before fluorescence measurements.

3.5. H2O2 Concentration-Dependent Colorimetric Signals Using Fe-CuO Nanozyme

On the basis of the above results, we constructed a platform for H2O2 detection
by monitoring the absorption intensity changes of oxTMB at 652 nm [33]. To achieve
higher sensitivity, the dependence of the reaction system on the concentration of the Fe-
CuO nanozyme, pH of the reaction system, reaction temperature, and reaction time were
systematically investigated to figure out the optimized experimental conditions of the
sensing strategy (Figure 7).

The concentration of the catalyst will greatly affect the intensity of the colorimetric
signal, so it needs to be optimized first. By comparing the absorbance of different Fe-
CuO nanozyme concentrations, it is found that as the concentration increases from 0 to
210 µg·mL−1; the absorbance of oxTMB at 652 nm gradually increases (Figure 7a). The low
catalyst concentration only causes a weak signal; however, too many catalyst nanoparticles
affect the light transmittance of the resultant solution and cause a waste of the materials.
Therefore, 90 µg·mL−1 of Fe-CuO nanozyme was used as the catalyst concentration for
subsequent experiments.

For lots of nanozymes, the pH of the reaction system is a key factor that influences the
POD-like activity. Thus, the effect of different pHs (3.0, 3.5, 4.0, 4.5, 5.0, and 5.5) was also
investigated (Figure 7b). It is found that the nanozyme system has good POD-like activity
in the range of pH from 3.0 to 5.0. As a result, pH 4.0 was selected as the optimal pH for
subsequent experiments.
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Figure 7. The optimizations of experimental conditions for H2O2-induced TMB catalyzed by Fe-CuO
nanozyme. The reactions were conducted in 0.2 M acetate buffer containing 100 µg·mL−1 TMB and
5 mM H2O2 with various concentrations of Fe-CuO nanozyme (a), pHs of the reaction system (b),
temperatures (c), and reaction times (d). Other fixed reaction conditions were 90 µg/mL Fe-CuO
nanozyme, pH 4.0, 25 ◦C, and 5 min. All experiments were repeated three times.

Moreover, in addition to the catalyst concentration and pH of the reaction system, the
effect of the reaction temperature is also very important. When the temperature varies from
20 to 35 ◦C, the absorbance value of oxidized TMB is continuously increased (Figure 7c).
Considering the convenience of conducting the nanozymatic reaction procedure, 25 ◦C was
chosen as the optimal temperature for subsequent experiments.

Lastly, the reaction time was explored based on the optimal conditions of 90 µg·mL−1

of Fe-CuO nanozyme, pH 4.0, and 25 ◦C (Figure 7d). As the incubation time prolongs,
the absorbance of oxTMB gradually increases during 45 min. Therefore, in order to
save the detecting time for H2O2 assay, 5 min was selected as the reaction time for
subsequent experiments.

Encouraged by the optimization of experimental conditions, we constructed a col-
orimetric H2O2 bioassay. It is seen that as the H2O2 concentration rises, an obvious color
change from colorless to blue occurs (Figure 8a). Therefore, we obtained a linear range of
5–150 µM with a limit of detection (LOD) of 7.07 µM (Figure 8b).
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Figure 8. (a) Digital photograph of the resultant systems in the presence of H2O2 with different
concentrations (5, 10, 30, 50, 100, and 150 µM). (b) Linear calibration plot for H2O2 detection from
5 to 150 µM. The reactions of 3 mL system containing 120 µg·mL−1 TMB and 90 µg·mL−1 Fe-CuO
nanozyme in 0.2 M acetate buffer (pH 4.0) were conducted at 25 ◦C for 5 min. Error bars in panel (b)
are the standard deviations of three parallel experiments.

3.6. Analytical Performance of Fe-CuO Nanozyme-Based AA Detection

Ascorbic acid (AA), is one of the important vitamins that can participate in many
important biological reactions to adjust the normal physiological function of the body [34].
AA is also considered to be an important indicator of the freshness and nutritional quality
of fruits [35]. Thus, it is vital to develop fast and sensitive methods for detecting AA. As
a typical reducing agent, AA can effectively reduce oxTMB to its reduction form, leading
to a discoloration of the solution. By introducing AA to the chromogenic TMB oxidation
reaction catalyzed by Fe-CuO nanozymes, the shade of the blue color can reflect the amount
of AA. Accordingly, we are inspired to develop a colorimetric AA sensing strategy by
utilizing the improved POD-like activity of Fe-CuO nanozymes (Figure 9a).

Figure 9b shows that the blue color of the resultant solution becomes lighter as the
concentration of AA increases. Thus, a good linear relationship between the absorbance at
652 nm and AA concentration is established in the range from 5 to 50 µM with R2 = 0.991
(Figure 9c). The results are averaged values obtained from three repetitive measurements
under the same experimental conditions, which represent a good reproducibility of the
method. At a signal-to-noise ratio (S/N) of 3, the limit detection for AA is calculated to
be 4.66 µM, which is comparable to the AA detection methods proposed in recent reports
(Table 2). The results of this analysis indicate that the high sensitivity of AA detection with
Fe-CuO nanozymes has a good usability.

Table 2. Comparison of the present work for AA detection with recently reported methods.

Materials Linear Range LOD Reference

Fe-CuO 5–50 µM 4.66 µM This work
CP (600C−6) 0.8–80 µM 35 µM [36]

SNC-900 100–5000 µM 80 µM [37]
CuCo2O4 1–10 µM 0.573 µM [38]
TPyP-CuS 1–30 µM 0.419 µM [39]

CuO NPs-POM 0.02–500 µM 0.015 µM [40]
Zn/Mo DSAC-SMA 0.1–5000 µM 0.76 µM [41]

Au/T15/Pt 1.25−22.5 µM 0.853 µM [42]
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Figure 9. (a) Schematic illustration of the colorimetric detection of AA based on the POD-like activity
of Fe-CuO nanozymes. (b) Digital photograph of the resultant systems in the presence of AA with
different concentrations (2.5, 5, 10, 15, 20, 25, 30, 40, and 50 µM). (c) Linear calibration plot for
AA detection from 5 to 50 µM. For sensitivity evaluation, the reactions of 3 mL system containing
120 µg·mL−1 TMB, 150 µM H2O2, and 90 µg·mL−1 Fe-CuO nanozyme in 0.2 M acetate buffer (pH 4.0)
were conducted at 25 ◦C for 5 min. (d) Digital photograph of the resultant systems in the presence
of gly, lys, phe, glucose, Na+, K+, Ca2+, vitamin B6, vitamin B2, and AA. (e) Selectivity of the TiO2

PNZ-based colorimetric sensor for the determination of AA. For selectivity evaluation, the reactions
of 3 mL system containing 120 µg·mL−1 TMB, 5 mM H2O2, 90 µg·mL−1 Fe-CuO nanozyme, and
500 µM AA or 1000 µM interferences in 0.2 M acetate buffer (pH 4.0) were conducted at 25 ◦C for
5 min. Error bars in panel (c,d) are the standard deviations of three parallel experiments.

To validate the selectivity of the proposed colorimetric AA sensing system, a variety
of possible interferences, including amino acids, glucose, metal ions, and other vitamin
molecules, were challenged (Figure 9d). As expected, only the presence of AA results in a
significant decrease in the absorbance at the same substrate concentration (Figure 9e). This
selectivity test substantiates that the proposed detection strategy has excellent specificity for
AA. Therefore, the above results indicate that highly sensitive and selective AA detection
with Fe-CuO nanozymes has a good usability.
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3.7. Practicability for TAC Assay in Real-World Scenarios

As a critical indicator for estimating antioxidants in antioxidant foods and medicines,
the sensitive determination of TAC is attractive [36,37]. AA is usually selected to be the
antioxidative model for a TAC assay. With the sensing strategy proposed in this work,
we developed a TAC biosensor for real-world samples to verify the feasibility of the Fe-
CuO nanozyme-based biosensor for practical usage [43]. For example, Mizone is one of
the popular functional sports drinks produced by Danone. After appropriate dilution of
the commercial beverage, the content of equivalent AA was detected using the proposed
method, followed by the spiked recovery experiments using the standard addition method
to verify the accuracy of our biosensor (Table 3). It is found that the concertation of
equivalent AA in Mizone is 59.1 mM. Moreover, the recoveries of the standard AA are
in the range of 98% to 104%, while the corresponding relative standard deviations (RSD)
of three repetitive experiments are less than 10%. Thus, the competency of the Fe-CuO
nanozyme-based biosensor for TAC assays in practical applications is proved.

Table 3. Quantification of equivalent AA in the real-world sample with Fe-CuO nanozymes.

Sample Detected (µM) * Added (µM) Found (µM) Recovery (%) RSD (%)

Mizone 14.78 ± 0.58
10.00 9.872 ± 0.916 98.70 9.3
15.00 15.26 ± 0.35 101.7 2.3
20.00 20.77 ± 1.24 103.8 6.0

* The commercial drink was diluted 40 times for detection.

4. Conclusions

In summary, we developed a facile strategy to synthesize Fe-CuO nanozymes, in
which the doping of Fe can enhance the POD-like activity of CuO. Working as an effective
nanocatalyst, Fe-CuO can promote the chromogenic oxidation reaction between TMB and
H2O2. Based on the splendid POD-like activity, a proof-of-concept colorimetric sensing
platform for AA detection was established. The proposed sensing strategy exhibits a
LOD of 4.66 µM and excellent anti-interference ability. The current work provides a facile
metal-doping method to prepare effective CuO-based nanozymes with improved catalytic
activity, which also extends the toolkit for building facile biosensors.
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