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Abstract: Here, five bonds to carbon through tri-coordination are theoretically established in the
global minimum energy isomers of Al3C−

3 anion (1a) and Al3C3 neutral (1n) for the first time. Various
isomers of Al3C−/0

3 are theoretically identified using density functional theory at the PBE0-D3/def2-
TZVP level. Chemical bonding features are thoroughly analyzed for these two isomers (1a and 1n)
with different bonding and topological quantum chemical tools, such as adaptive natural density
partitioning (AdNDP), Wiberg Bond Indices (WBIs), nucleus-independent chemical shifts (NICS), and
atoms in molecules (AIM) analyses. The structure of isomer 1a is planar with C2v symmetry, whereas
its neutral counterpart 1n is non-planar with C2 symmetry, in which its terminal aluminum atoms are
out of the plane. The central allenic carbon atom of isomers 1a and 1n exhibits tri-coordination and
thus makes it a case of five bonds to carbon, which is confirmed through their total bond order as
observed in WBI. Both the isomers show σ- and π-aromaticity and are predicted with the NICS and
AdNDP analyses. Further, the results of ab initio molecular dynamics simulations reveal their kinetic
stability at room temperature; thus, they are experimentally viable systems.

Keywords: Al3C−/0
3 ; five bonds to carbon; anti-van’t Hoff-Le Bel; σ-aromaticity; π-aromaticity;

bonding; computational chemistry

1. Introduction

The concept of five bonds to carbon became indispensable since the discovery of metha-
nium ion (CH+

5 ) in the laboratory in 1950 [1]. Recording the infrared spectra of this simple
protonated methane molecule was quite challenging, as it took almost five decades from its
discovery [2]. The theoretical investigation of lithium carbides such as CLi5 and CLi6 [3]
and the experimental realization of CLi6 through mass spectroscopic measurements further
motivated the interest in hyper-coordinate carbon molecules [4]. While computational
studies on Si2(CH3)

+
7 [5] and C(CH3)

+
5 [6] provided further guidance on hyper-coordinate

behavior of group 14 elements, it is the experimental observations such as [CCH3]
2+
6 ,

HC[Au(PPh3)]+4 , [(C6H5)3PAu5C]+, [(Ph3PAu)6C]2+, C6[CH3]
2+
6 , etc., that gave chemists

the real grandeur of hyper-coordinate carbon molecules [7–11]. Akiba and co-workers have
shown penta- and hexa-coordinate anthracene moieties through x-ray crystallography and
ab initio calculations [12,13]. The iron–molybdenum nitrogenase cofactor existing in dia-
zotrophs is a clear example of hexa-coordinate carbon in biological systems [14]. From the
well-known concept of molecules with a planar tetra-coordinate carbon (ptC) atom [15–30],
the idea was extended to planar penta-coordinate carbon (ppC) [31–40] and planar hexa-
coordinate carbon (phC) [41–44]. Hill and coworkers experimentally reported the existence
of a penta-coordinate carbon atom in 1981 [45]. The penta-coordinate carbon atom was
also theoretically reported by Gleiter and coworkers [46] in the Cp2Zr[CH2(BH{C6F5}2)2]
complex. In 1996, the experimental proof of the first complex with a hyper-coordinate
ylidic carbon atom was also reported by Jones and coworkers [47]. While a gradual amount
of progress has been made in these classes of molecules to date, to a larger extent in the
literature, the concept of making hyper-coordinate carbon molecules was predominantly
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focused on making single bonds to the central carbon atom irrespective of whether they are
planar or non-planar [48]. However, in this article, the intent is to make five bonds to a car-
bon atom through tri-coordination instead of penta-coordination, as is normally carried out.
To this end, we have theoretically investigated the aluminum–carbon cluster, Al3C−/0

3 , in
both its anion and neutral forms and established the fact that the global minimum isomers
(1a and 1n) contain five bonds to carbon through tri-coordination (see Figures 1 and 2).
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Various aluminum–carbon clusters have continuously been investigated [16,17,49–52]
as they have potential applications in energy storage [53] and the production of nano-
powders [54,55] and solar cells [56]. Zheng and coworkers theoretically and experimentally
explored the Al4C−/0

6 system and found that the global minimum isomer in the neutral
state contains the planar hexa-coordinate aluminum [57]. In 2022, Kalita et al. reported the
planar penta-coordinate Al and Ga centers in Cu5Al+2 and Cu5Ga+2 systems, which were
global minimum structures, and found that the stabilizing factor was σ-aromaticity [58].
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Recently, Malhan et al. reported the Al2C4H2 system with ptC, planar tetra-coordinate
aluminum (ptAl), and planar penta-coordinate aluminum (ppAl) atoms with aromatic
characteristics [59]. The aforementioned discoveries have also inspired researchers to
look for further systems containing hyper-coordinate main group elements, such as group
13 elements. Wang and coworkers reported B−

8 and B−
9 clusters exhibiting planar hepta-

and octa-coordinate central boron atoms with combined experimental and computational
studies [60]. Li et al. reported the global minimum structure of the BCu5H−

5 system with
planar penta-coordinate boron (ppB) [61]. The global minimum isomer containing the ppB
atom in the B6H+

5 system with aromatic characteristics was reported by Wu and coworkers.
In 2021, Khatun et al. reported BAl4Mg−/0/+ [62], in which the global minimum structures
were found to have a planar tetra-coordinate boron (ptB) atom in its anionic and cationic
forms as well as a ppB atom in the neutral state. In 2022, Das and coworkers explored
the potential energy surface of CB6Al0/+ [63] and found that both neutral and cation
contain planar hexa-coordinate boron (phB) atoms in their global minima. Thompson et al.
experimentally reported the ptAl species [64]. The ptAl species of calix [4] pyrrole aluminate
was also experimentally reported by Greb and coworkers in 2019 [65]. In 2023, Merino
and coworkers also reported a quasi-ptC atom in the CAl−11 system [66]. These distinctive
bonding arrangements demonstrate not only the fundamental importance of improving our
knowledge of chemical bonding but also a completely new class of molecules in the world
of chemistry. Herein, the present work reports the Al3C−/0

3 system with tri-coordination;
that is, five bonds to the central allenic carbon atom via computational quantum chemical
modeling. The aluminum and carbon-based molecules have potential applications ranging
from cluster assembled materials [67,68], energy storage [69], and two-dimensional donor
materials in solar cells [70]. Dong et al. [71] have already reported the isomer 2n of the
Al3C3 system with hydrogen storage properties both experimentally and theoretically
at MP2/6-311+G* level of theory, which gives us confidence that the Al3C−/0

3 system
investigated here, has a high chance of synthetic viability in the future.

2. Computational Methodology

The initial geometries of the Al3C−/0
3 system were first generated through chemical

intuition, and then, using the in-house Python code, all other possible geometries were
explored on these two potential energy surfaces (PESs) using density functional theory
(DFT). All geometries were fully optimized using the hybrid functional PBE0 [72] coupled
with Grimme’s dispersion correction (D3) [73,74] and the def2-TZVP [75,76] basis set.
Frequency calculations were carried out at the same level of theory to ensure whether the
optimized geometries are true minima or maxima or higher-order saddle points. To get
more characteristic features on the chemical bonding of isomers 1a and 1n, the natural bond
order (NBO) analysis [77], adaptive natural density partitioning (AdNDP) analysis [78,79],
and Wiberg bond indices (WBIs) [80] were performed at the PBE0-D3/def2-TZVP level.
The nucleus-independent chemical shift (NICS) [81] calculations for 1a and 1n structures
were carried out at the same level to analyze the aromatic behavior of these systems.
Atoms in molecules (AIM) analysis [82] of the Laplacian of electron density and electron
localization function (ELF) [83] were carried out for isomers 1a and 1n using the wave
function file generated by the Gaussian program [84] at the PBE0-D3/def2-TZVP level.
The dynamic stabilities of 1a and 1n were evaluated using the atom-centered density
matrix propagation (ADMP) [85] at the same level of theory. The AdNDP and ELF were
analyzed through the Multiwfn program [86]. All the calculations were performed using
the Gaussian 16 package [84].

3. Results and Discussion

The PESs of the Al3C−/0
3 are explored, and we found that the global minimum en-

ergy geometry (1a and 1n) of both the anion and neutral system contains a carbon atom
(C4) with two π bonds and three σ bonds, exhibiting a total of five bonds through tri-
coordination. The ten low-lying isomers of the anion and the neutral system are given in
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Figures 1 and 2, respectively. All other isomers on the PES of the Al3C−/0
3 system are given

in the Supplementary Materials in Figures S1 and S2, respectively. The Al3C−
3 system has

a singlet spin state and the Al3C3 system corresponds to a doublet. Isomer 1a is a planar
structure with C2v symmetry, whereas isomer 1n shows C2 symmetry, in which the terminal
aluminum atoms are out of the plane (see Figure 3). The Al3C−/0

3 system also has structures
that exhibit planar penta-coordinate aluminum (ppAl) and planar tetra-coordinate carbon
(ptC) atoms as local minimum energy isomers (8a, 7n; and 3a, 13a, and 8n, respectively) on
their PESs. Nevertheless, our focus here is on the global minimum energy isomers, 1a and
1n, which exhibit five bonds to carbon through tri-coordination.
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3.1. Wiberg Bond Indices

The WBI values obtained from NBO analysis for the allenic carbon (C4) atom in
isomers 1a and 1n are critically analyzed. The WBI values and the bond distances are given
in Figure 3. The standard covalent bond lengths of C–Al and C=C are 2.01 and 1.34 Å,
respectively, which are in close agreement with the obtained values. The C4–Al1 bond
length of isomer 1n having 2.11 Å is slightly higher than that of isomer 1a with 2.04 Å. The
WBI values for the C=C bond in isomers 1a and 1n are 1.86 and 1.87, respectively, which
confirms the presence of π bonds in both isomers. This further proves that in both cases,
the C4 atom makes two π bonds with neighboring atoms. The C4–Al1 bond with WBI
values of 0.20 and 0.17 in isomers 1a and 1n suggests the dative bonding nature of the fifth
bond. The total bond order of C4 in isomers 1a and 1n is 3.99 and 3.97, respectively. This
indicates that the allenic carbon atom, C4, is surrounded by eight electrons but still makes
two π bonds with neighboring carbon atoms and also forms an additional dative bond with
the central aluminum atom.

3.2. Adaptive Natural Density Partitioning (AdNDP) Analysis

To further analyze the bonding scenario, the AdNDP analysis was carried out for the
delineation of n-center 2-electron (nc-2e) bonds in the investigated systems. The generated
AdNDP orbitals with occupation numbers (ON) for isomers 1a and 1n are shown in
Figure 4. As the neutral system is in a doublet state, only alpha orbitals are considered
for this analysis. The tri-coordinated C4 atom has two 2c–2e σ and two 2c–2e π bonds
with its neighboring carbon atoms, with ON 1.99 |e| and 1.85 |e|, respectively, which
confirms the presence of alternating π bonds in the isomer 1a. It also exhibits delocalization
of electron densities through 3c–2e σ, 4c–2e σ, 3c–2e π, and 4c–2e π bonds with ON ranging
from 1.89 |e| to 2.00 |e, which support the tri-coordination in the structure. The two
2c–2e π bonds in isomer 1n confirm the presence of alternating π bonds which also exhibit
delocalization of electron densities through multi-center 2e σ and π bonds, which supports
the structural stability. To support the observed AdNDP bonding pattern, the nucleus-
independent chemical shift (NICS) values are also calculated for isomers 1a and 1n, which
are shown in Figure S3. The negative values of NICS (0) and NICS (1) also confirm the
presence σ- and π-aromatic nature in both the isomers, respectively.
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3.3. Atoms in Molecule (AIM) Analysis

The AIM analysis is carried out to gain insight into the bonding characteristic features.
The color-filled plots of the electron localization function (ELF) and contour diagram for
the Laplacian of electron density (∆2ρ(r)) for isomers 1a and 1n are shown in Figure 5. The
ELF plot of isomers 1a indicates the interaction of the C4 atom with its neighboring atoms
and supports the delocalization of electron densities within the molecule. Apart from
the terminal Al2 and Al3 atoms, which are out of the plane, isomer 1n also supports the
delocalization of electron densities around the C4 atom. In 1a, bond critical points (BCPs)
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between the C4 and its neighboring atoms support the existence of bond paths. Isomer 1n
has BCPs between C4 and its adjacent carbon atoms and also has a ring critical point (RCP)
which dictates the dominant aromatic characteristics in the structure.
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3.4. Kinetic Stability

The ab initio molecular dynamics (AIMD) simulations are carried out for 3000 fs at
298 K and 1 atm pressure using the ADMP approach to explore the kinetic stability of
the investigated structures. The time evolution of energy plots for isomers 1a and 1n
are given in Figure 6. Slight structural deformation occurs during the simulation, which
causes an increase in nuclear kinetic energy. However, the present data reveal that the
overall geometry is not completely destroyed, which indicates that these molecules are
kinetically stable apart from their thermodynamic stability. As expected, for both isomers
1a and 1n, the five bonds to the C4 atom remain the same throughout the simulation period.
The structural stability of these isomers is well maintained during the simulation, and no
isomerization or other structural modifications occur in these molecules, suggesting that
they are indeed kinetically stable.
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4. Conclusions

Using density functional theory, various isomers of the Al3C−/0
3 system were explored

first by chemical intuition, and other possible isomers are then identified with the help of
the in-house Python code. The global minimum isomers 1a and 1n exhibit five bonds to
carbon through tri-coordination. The present work reports for the first time five bonds to
carbon through tri-coordination in the Al3C−/0

3 system as observed in isomers 1a and 1n,
respectively. Isomer 1a is a planar structure with C2v symmetry, whereas isomer 1n shows
C2 symmetry with the terminal aluminum atoms out of the plane. WBI analysis indicates
that the central allenic carbon atom in both the isomers (1a and 1n) forms five bonds
through tri-coordination and also obeys the octet rule simultaneously. The BCPs from AIM
analysis confirm the presence of bond paths between allenic carbon and its adjacent atoms.
The aromatic nature that stabilizes both the isomers 1a and 1n is well supported by AdNDP,
ELF, and NICS analyses. Both the isomers are kinetically stable as inferred from the ab
initio molecular dynamics simulations at 1 atm pressure and 298 K temperature up to
3000 fs of time. The obtained results on the Al3C−/0

3 system via computational calculations
may encourage experimentalists to design this new class of molecules in the future.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/chemistry5020076/s1, The optimized geometries of all
Al3C−

3 and Al3C3 isomers are given in Figures S1 and S2, respectively, NICSs in ppm for the isomers
1a and 1n are given in Figure S3, AdNDP bonding patterns with occupation numbers (ONs) for
isomers 1a and 1n are given in Figures S4 and S5, respectively, total energies (in a.u), Zero-point
vibrational energies (ZPVEs; in a.u), ZPVE corrected total energies (E+ZPVE; in a.u), relative en-
ergies (∆E+ZPVE; in kcal mol−1), and the number of imaginary frequencies (NImag) of all Al3C−

3
and Al3C3 isomers at PBE0-D3/def2-TZVP level are given in Tables S1 and S2, respectively, and
Cartesian coordinates of all Al3C−

3 and Al3C3 isomers at the PBE0-D3/def2-TZVP level are given in
Tables S3 and S4, respectively.
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