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Abstract: We report on the synthesis and the crystal structure of the solvent-free coordination polymer
CoII(2,5-DMT) (1) with 2,5-DMT ≡ 2,5-dimethoxyterephthalate which is isostructural to the already
reported MnII and ZnII congeners (C2/c, Z = 4). In contrast, for M = MgII, a MOF with DMF-filled
pores is obtained, namely Mg2(2,5-DMT)2(DMF)2 (2) (P1, Z = 2). Attempts to remove these solvent
molecules to record a gas sorption isotherm did not lead to meaningful results. In a comparative study,
the thermal (DSC/TGA) and luminescence properties of all the four compounds were investigated.
The compounds of the MII(2,5-DMT) composition show high thermal stability up to more than
300 ◦C, with the ZnII compound having the lowest decomposition temperature. MII(2,5-DMT) with
MII = MnII, ZnII and 2 show a bright luminescence upon blue light irradiation (λ = 405 nm), whereas
CoII in 1 quenches the emission. While ZnII in ZnII(2,5-DMT) and MgII in 2 do not significantly
influence the (blue) emission and excitation bands compared to the free 2,5-DMT ligand, MnII in
MnII(2,5-DMT) shows an additional metal-centred red emission.

Keywords: coordination polymers; fluorescence; metal–organic frameworks; methoxy substituents;
terephthalates

1. Introduction

Since their discovery more than 20 years ago [1,2], the research on MOFs (metal–
organic frameworks) at the border between coordination, solid state, and materials chem-
istry has continued to attract an ever-increasing amount of interest. The simple design
starting from a large variety of different metal cations or metal–oxo clusters as nodes and
an almost unlimited number of possible organic linker ligands has now led to more than
100,000 entries in the MOF subset [3] of the CSD database [4], although not all entries follow
strictly the recommendations of the IUPAC terminology for MOFs [5]. Since their first
introduction, many possible applications in the fields of gas storage [6] and gas separa-
tion/purification [7], catalysis [8], drug transport/delivery [9], sensing [10], or electronic
applications such as proton [11] and lithium-ion conductivity [12] have been discussed for
this class of materials.

With respect to sensing, fluorescent (or, more generally, luminescent) MOFs [13]
are being focused upon as a changing wavelength or a diminishing signal upon uptake
of an adsorbate is simple to detect. Luminescence can be either metal- or linker-based,
including ligand-to-metal charge transfer (LMCT) and metal-to-ligand charge transfer
(MLCT) processes [14]. For the former, lanthanide-based MOFs are most prominent, e.g.,
Eu3+-based materials with a strong red or Tb3+-based compounds with a strong green
luminescence [15]. There is an almost uncountable number of publications in this field, but
it is our impression that linker-based luminescence has rarely been investigated, although
even simple and very frequently used conjugated linkers such as 1,3,5-benzenetricarboxylic
acid (BTC) or 1,4-benzenedicarboxylic acid (BDC) show a weak emission at 440 nm [16] and
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388 nm [17], respectively. For potential sensing applications, linker-based luminescence
holds many promising perspectives due to a direct interaction between the linker and the
adsorbate, whereas a luminescent metal cation is somewhat “hidden” in its coordination
sphere, making the influence of a non-coordinating adsorbate on its emission properties
apparently weaker.

As a very spectacular result, linker-based luminescence was applied to detect de-
fects within crystalline MOFs with a high spatial resolution [18]. In this work, based
on MOFs with the UiO-67 topology, the authors used bulky fluorescein isothiocyanate
or rhodamine B isothiocyanate substituents for their approach. However, there are also
linkers with much smaller substituents, which show a strong luminescence. Among them,
2,5-dimethoxyterephthalic acid (2,5-DMT) shows a strong blue emission at λem = 410 nm
(λex = 370 nm)[this work], which compares well with the published results on its dimethyl
ester (λem = 402 nm with λex = 320 nm) [19]. In the literature, several coordination polymers
(CP) and MOFs have already been reported with the 2,5-DMT linker and the Mn2+ [20],
Zn2+ [20–22], Co2+ [23], Cu2+ [24], Th4+ [25], and Eu3+ metal cations [26]. To our surprise,
the luminescence properties of the resulting materials were not investigated in most of
these reports. The only exception is the Eu3+-based compound (doped with Tb3+), where a
mainly lanthanide-based emission was observed [26]. Mertens et al. reported solvent-free
coordination polymers MII(2,5-DMT) with MII = Mn2+, Zn2+ [20]. In the following, we add
CoII(2,5-DMT) to this series and compare the thermal stability as well as the luminescence
behaviour of all the three compounds. Additionally, we present the first Mg2+-based MOF
of the Mg2(2,5-DMT)2(DMF)2 composition, which is discussed in the context of the three
aforementioned CPs.

2. Materials and Methods
2.1. Synthesis of the Linker

All reagents were purchased commercially and used without further purification.
General: The synthesis of 2,5-dimethoxy terephthalic acid mainly followed the protocol

of a two-step synthesis provided in the literature [27], but with an increased reaction time
of the first step to increase the overall yield.

Synthesis of diethyl 2,5-dimethoxybenzene-1,4-dicarboxylate: The compound was
synthesised in dry glassware under an inert (argon) atmosphere: 1.337 g (5.26 mmol,
1.00 eq.) diethyl-2,5-dihydroxy-terephthalate and 2.326 g (16.8 mmol, 3.20 equiv.) potassium
carbonate were dissolved in 16 mL dry acetone; 1.1 mL (2.508 g, 17.7 mmol, 3.36 eq.) CH3I
was added and the suspension was stirred for 48 h at 60 ◦C. The solvent was evaporated
under reduced pressure and the resulting residue was dissolved in water and poured into a
separation funnel. After the recombination of the aqueous solutions, they were re-extracted
with ethyl acetate. The organic layers were collected and dried through the addition of
MgSO4. Filtration through a glass funnel and evaporation of the solvent under reduced
pressure led to a colourless powder with a yield of 93% (1.38 g, 4.90 mmol).

1H-NMR: 300 MHz, CDCl3: ppm = 7.37 (s, 2H, H-3/6), 4.39 (q, J = 7.1 Hz, 4H, H-8/11),
3.89 (s, 6H, H-13/14), 1.40 (t, J = 7.1 Hz, 6H, H-9/12).

13C-NMR: 75 MHz, CDCl3: ppm = 165.7 (C-7/10), 152.5 (C-2/5), 124.5 (C-1/4), 115.5
(C-3/6), 61.5 (C-8/11), 57.0 (C-13/14), 14.4 (C-9/12).

2.2. Synthesis of Coordination Polymers/MOFs

CoII(2,5-DMT) (1): 19.9 mg 2,5-dimethylterephthalic acid (0.087 mmol, 1.00 eq.) and
16.6 mg Co(NO3)2·6 H2O (0.090 mmol, 1.03 eq.) were dissolved in DMF (2.7 mL) in a glass
vial (10 mL). The vial was sealed and heated at 100 ◦C for 48 h.

MnII(2,5-DMT): 20.3 mg 2,5-dimethylterephthalic acid (0.089 mmol, 1.00 eq.) and
15.8 mg Mn(NO3)2·4 H2O (0.88 mmol, 0.99 eq.) were dissolved in DMF (2.7 mL) in a glass
vial (10 mL). The vial was sealed and heated at 100 ◦C for 48 h.



Chemistry 2023, 5 967

ZnII(2,5-DMT): 19.4 mg 2,5-dimethylterephthalic acid (0.085 mmol, 1.00 eq.) and
16.7 mg Zn(NO3)2·6 H2O (0.088 mmol, 1.03 eq.) were dissolved in DMF (2.7 mL) in a glass
vial (10 mL). The vial was sealed and heated at 100 ◦C for 48 h.

Mg2(2,5-DMT)2(DMF)2 (2): 17.1 mg 2,5-dimethylterephthalic acid (0.075 mmol, 1.00 eq.)
and 12.2 mg Mg(NO3)2·6 H2O (0.082 mmol, 1.09 eq.) were dissolved in DMF (2.7 mL) in a
glass vial (10 mL). The vial was sealed and heated at 100 ◦C for 48 h.

2.3. Analytical Methods

PXRD patterns were recorded on a Rigaku MiniFlex 600-C diffractometer (Cu Kα

radiation, Ni filter) (Tokyo, Japan) as flat samples. The typical recording times were
30 min. The obtained data were analysed and processed with the WinXPow programme
package [28]. Additionally simulated patterns were generated from the Crystallographic
Information Files of the respective substances with WinXPow [28]. The resulting data from
the measurements were visualised with Gnuplot [29].

DSC/TG measurements were conducted on a Mettler Toledo (Gießen, Germany) DSC1
coupled with a TGA/DSC1 (Star System). The measured samples were placed and weighed
in a corundum crucible under an argon stream (40 mL/min). Initially, the sample was
heated to 30 ◦C and held at this temperature for 10 min. Subsequently, the sample was
heated to 1000 ◦C with a heating rate of 10 ◦C/min. Finally, the data were evaluated with
the STARe program package.

Luminescence measurements were carried out using a FLS980 spectrometer from
Edinburgh Instruments (Livingston, UK) with a xenon lamp and a PMT detector. The
measurements in the solution (2,5-DMT) were carried out in DMF using quartz glass
cuvettes, the solid state measurements of 2,5-DMT and 2—between two quartz glass plates.
MnII(2,5-DMT) and ZnII(2,5-DMT) were measured as KBr pellets. All the measurements
were conducted at room temperature.

2.4. X-ray Single-Crystal Structure Analysis

The measurements were carried out on a Bruker D8 Venture diffractometer with either
Ag Kα (λ = 0.56086 Å) or Mo Kα (λ = 0.71073 Å) radiation and a multi-layered mirror
monochromator. For the reduction of the diffraction data by integration and absorption
correction, the SAINT [30] and SADABS/TWINABS [31,32] programs from the APEX4
program package [33] were used. The determination of the space group and the start-
ing model was carried out with the SHELXT program [34]. For further refinement, the
SHELXL-18 [35] program was applied using the least squares method. All non-hydrogen
atoms were refined with anisotropic displacement parameters. The hydrogen atoms were
refined isotropically on the calculated positions using a riding model with their Uiso values
constrained to 1.5 times the Ueq of their pivot atoms for terminal sp3 carbon atoms and
1.2 times for all other carbon atoms. The data obtained from the SCXRD measurement
of 2 revealed a non-merohedral crystal twin whose two domains were tilted by 4◦ with
respect to each other. These two domains were integrated separately and subjected to twin
absorption correction. Based on the reflections of the more dominant domain, an HKLF
4 file was generated, from which the structure was initially solved and refined. The final
structure model was refined against the reflections of both domains (HKLF 5).

2.5. Further Software Programs

Visualisations of all crystal structures were made with the Diamond 4.6 program
package [36]. Visualisation of the fluorescent data and DSC/TGA measurements was
completed using the Origin 8.5 program package [37]. The ChemDraw Professional 15.0
program package [38] was used to visualise the organic molecules.
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3. Results and Discussion
3.1. Synthesis and General Characterisation

Through a solvothermal reaction of (1:1) 2,5-dimethoxyterephthalic acid (2,5-DMT)
and the respective metal nitrates (MII(NO3)2·x H2O with MII = Co, Mg, Zn, x = 6 and
MII = Mn, x = 4), coordination polymers MII(2,5-DMT) with MII = Co (1), Mn, Zn and the
Mg2(2,5-DMT)2(DMF)2 MOF (2) were obtained. The reactants were thoroughly mixed,
dissolved in dimethylformamide (DMF), and heated for 48 h at 100 ◦C in a 10 mL glass vial.
The resulting precipitates were filtered and dried. Powder X-ray diffractograms (PXRD,
Figures S1–S4, Supporting Information) revealed that the MII(2,5-DMT) coordination poly-
mers with MII = MnII, ZnII (C2/c, Z = 4) [20] known from the literature and the new CoII

compound 1 crystallise isostructurally to each other. The PXRD patterns confirm that all
the three compounds were obtained as samples with a high degree of purity (Table 1). The
PXRD pattern of 2, however, looks completely different to the other three, thus revealing
that a material with a different structural arrangement was synthesised. After solving its
crystal structure (P1, Z = 2; vide infra), it became evident that a MOF-type structure with
DMF-filled channels was formed. Again, a very good correlation between the experimental
PXRD pattern and the pattern simulated from the solved crystal structure confirms a high
purity of this material. Single crystals of 1 and 2, which exhibit a block-shaped habitus, were
isolated from the precipitates mentioned above and measured on an X-ray single-crystal
diffractometer. The crystals of 1 are transparent pinkish violet, whereas the crystals of
2 are—as expected—colourless.

Table 1. Calculated/observed values of the elemental analysis of MII(2,5-DMT) with MII = CoII (1),
MnII, ZnII and Mg2(2,5-DMT)2(DMF)2 (2) with an error tolerance of ±0.3%.

CoII(2,5-DMT) (1) MnII(2,5-DMT) ZnII(2,5-DMT) Mg2(2,5-DMT)2(DMF)2 (2)

N –/0.21 –/0.08 –/0.20 4.36/4.40

C 42.43/42.76 43.03/43.20 41.48/41.55 48.56/48.20

H 2.85/2.84 2.89/2.81 2.79/2.70 4.70/4.73

S –/– –/– –/– –/–

3.2. Crystal Structures

Complete crystallographic data can be found in the Supporting Information (Tables S1–S10).
The three isostructural coordination polymers crystallise in the monoclinic space group
C2/c [20]; the novel Mg MOF crystallises in the triclinic space group P1. For comparison,
selected crystallographic data of all the four compounds are given in Table 2.

The CoII CP (1) crystallises isostructurally to the known MnII and ZnII CPs, which
have already been described in the literature [20]. Therefore, the crystal structure of 1
is only briefly discussed. Its asymmetric unit (ORTEP plot) is given as Figure S5 in the
Supporting Information. In these compounds, the MII cation is coordinated by four oxygen
atoms stemming from the carboxylate groups of four different 2,5-DMT linkers (four shorter
MII–O distances given in Table 2). This leads to a distorted tetrahedral coordination, which
is depicted for 1 in Figure 1. To quantify the distortion of the coordination spheres, we
used the continuous shape measures approach (CShM) [40]; the respective values for a
tetrahedral coordination (T-4) are given in Table 2. Values much larger than 1 indicate a
severe distortion of the tetrahedral coordination. In Figure 1, two further oxygen atoms
with significantly longer MII–O bonds (cp. Table 2) are depicted stemming from the
methoxy groups of two 2,5-DMT linkers. Thus, a distorted octahedral coordination can
be assumed, but CShM values (OC-6) >> 1 again indicate a strong distortion. However,
it is remarkable (cp. Table 2) that a decreasing distortion of the tetrahedral coordination
from the Co compound to the Mn and the Zn compounds goes along with an increasing
distortion of the octahedral coordination. Obviously, with these methoxy substituents in
terephthalate-based linkers, pockets are formed to accommodate metal cations. The size of
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the metal cations seems to have a direct influence on the pocket’s shape, more tetrahedral
or more octahedral. This is also reflected in the CoII–O distances of 1, which show a large
spread from 1.9834(7) Å to 2.3533(7) Å, while in the CoII CPs with terephthalate ligands, a
less distorted octahedral coordination with CoII–O distances from 2.059(3) Å to 2.119(9) Å
is found [41,42].

Table 2. Selected crystallographic data of MII(2,5-DMT) with MII = CoII (1), MnII, ZnII and Mg2(2,5-
DMT)2(DMF)2 (2).

CoII(2,5-DMT) (1) MnII(2,5-DMT) ZnII(2,5-DMT) Mg2(2,5-DMT)2(DMF)2 (2)

Crystal system monoclinic monoclinic monoclinic triclinic

Space group, Z C2/c, 4 C2/c, 4 C2/c, 4 P1, 2

a/Å 16.1305(5) 16.7686(6) 16.5936(6) 8.833(3)

b/Å 8.6024(3) 8.4646(3) 8.4438(3) 9.691(3)

c/Å 7.3426(2) 7.4464(3) 7.4838(3) 18.674(6)

α/◦ 90 90 90 98.274(7)

β/◦ 96.425(1) 99.093(1) 97.649(2) 93.305(10)

γ/◦ 90 90 90 107.308(9)

Volume/Å3 1012.47(5) 1043.66(7) 1039.25(7) 1501.6(8)

Temp./K 100(2) 153(2) 153(2) 100(2)

Ionic radius,
CN = 4 [39] 0.72 Å (Co2+, hs) 0.80 Å (Mn2+, hs) 0.74 Å (Zn2+) 0.71 Å (Mg2+)

MII–O/Å
1.9834(7), 2×
2.0389(7), 2×
2.3532(7), 2×

2.0761(5), 2×
2.1391(6), 2×
2.5595(6), 2×

1.9547(13), 2×
2.0023(13), 2×
2.6223(14), 2×

Mg1: 1.961(3), 1.989(3),
2.007(3), 2.118(3), 2,198(3),

2.284(3)
Mg2: 2.042(4), 2.048(4),

2.080(3), 2.082(3), 2.100(3),
2.107(3)

CShM values [40] 4.896 (T-4)
1.697(OC-6)

3.847 (T-4)
2.848 (OC-6)

2.428 (T-4)
3.280 (OC-6)

Mg1: 2.915 (OC-6)
Mg2: 0.145 (OC-6)

Ref. CCDC-2225418[this work] CCDC-813469 [20] CCDC-813470 [20] CCDC-2225419[this work]

It should be noted that Mertens et al. chose a different description of their MnII and
ZnII CPs as they included two even more distant oxygen atoms, which led to CN = 8
and a distorted “super dodecahedron” [20]. None of these descriptions can be considered
wrong or correct, they are more an expression of the flexibility of metal coordination in
such compounds with 2,5-DMT ligands. MIIOn polyhedra are connected to chains running
along [001], which are interconnected through 2,5-DMT linkers to form a 3D coordination
network. The resulting topology shows some similarities with MOFs of the MIL series (sra
topology). For a more detailed description of these crystal structures, see [20]. Neither
Mertens et al. nor our group found an indication of permanent porosity in these materials
(cp. Figure S6, Supporting Information, showing a space-filling representation of 1).

Using the same reaction conditions that led to the formation of MII(2,5-DMT) with
MII = CoII (1), MnII, ZnII, we obtained a completely different compound when
Mg(NO3)2·6 H2O was used as the starting material. It was shown that this structure
was also formed when the cooling time was increased to 96 h and/or when lauric acid
was added as a monocarboxylic additive to improve the crystallinity. The resulting crystal
structure is shown in Figure 2. The asymmetric unit of Mg2(2,5-DMT)2(DMF)2 (2) consists
of two crystallographically distinguishable magnesium atoms (Mg1, Mg2), one complete
and two half-linker anions as well as two coordinating DMF molecules.
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Both Mg atoms form distorted octahedral MgO6 coordination spheres, which, however,
show large differences. Mg1 is coordinated by five oxygen atoms which stem from the
carboxylate groups of four different 2,5-DMT ligands (one carboxylate group coordinates in
a bidentate chelating mode). The sixth oxygen atom belongs to a methoxy group of one of
the four 2,5-DMT linkers. The resulting octahedron shows a severe distortion, as expressed
by the large CShM value of 2.915 (Table 2). This confirms, as found for MII(2,5-DMT) with
MII = CoII (1), MnII, ZnII, that, again, pockets are formed including the methoxy substituent,
which, due to spatial restrictions, leads to distorted polyhedra if the metal cations do not
fit perfectly into these pockets. In contrast, Mg2 is coordinated by four oxygen atoms of
the carboxylate groups of four different 2,5-DMT anions and two oxygen atoms of two
different DMF molecules. As there are no spatial restrictions, i.e., the oxygen atoms can be
freely arranged, an almost undistorted octahedron is observed with a small CShM value
(0.145). This is also reflected in the Mg–O distances: the Mg1–O distances range from
1.961(3) Å (O1) to 2.284(3) Å (O5), the Mg2–O distances—from 2.042(4) Å (O2) to 2.107(3) Å
(O14). As expected, the longest bond is found between Mg1 and the oxygen atom O5 of the
methoxy group. It is more than 0.1 Å longer than the typical Mg–O bond lengths found in
the literature [43,44].

O11 bridges both MgO6 octahedra, thus forming a corner-connected dimer. These
dimeric units are interconnected through the 2,5-DMT ligands creating a three-dimensional
network (Figure 3). This network forms channels into which the coordinating DMF
molecules protrude. The pore sizes were calculated with the PLATON program pack-
age [45] taking the respective van der Waals radii into account, resulting in diameters from
3.10 Å to 4.64 Å. The channels (Figure 4) penetrate the whole framework of 2 in a wave-like
fashion. It was assumed that these voids might be accessible to guest uptake after removal
of the coordinating DMF molecules. This will be discussed in more detail below.
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Figure 3. Section of the crystal structure of Mg2(2,5-DMT)2(DMF)2 (2) in a view along [010].
(Left): representation of the linker anions as wireframes, the MgO6 octahedra are emphasized in
green; (middle): space-filling representation considering the van der Waals radii with the DMF
molecules; (right): space-filling representation without the DMF molecules.
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It is remarkable that for Mg2+, a completely different structure is observed when
compared to Co2+, Mn2+, and Zn2+. This might be explained by the smallest ionic radius
of Mg2+ compared to the other three 3d metal cations Minor variations of the reaction
conditions always lead to materials with the crystal structure of 2. The major difference
between the two different structure types is that there is no coordination of the solvent
molecules in any of the three Co2+, Mn2+, and Zn2+ coordination polymers, whereas two
DMF molecules coordinate to Mg2 in the magnesium compound. This leads to small voids
and wave-like channels with a potentially accessible porosity (vide infra).

3.3. Thermogravimetric Analyses

All the compounds MII(2,5-DMT) with MII = CoII (1), MnII, ZnII and 2 were inves-
tigated with regard to their thermal stability by means of coupled thermogravimetry
(TG) and differential scanning calorimetry (DSC) using an inert Ar atmosphere and a
10 ◦C min−1 heating rate.

The TG curve of Mg2(2,5-DMT)2(DMF)2 (2) shows four separated weight losses up
to ~1000 ◦C (Figure 5, DSC curves are given as Figure S7, Supporting Information). The
first mass loss of 4.64% was detected between 50 ◦C and 140 ◦C. It was followed by the
second one between 140 ◦C and 250 ◦C. Calculations show that the sum of both fits almost
perfectly to the release of the two coordinating DMF molecules (calc.: 22.7%, detected:
23.4%). The two following mass losses describe the decomposition of the framework
starting above 300 ◦C.

For the three isostructural coordination polymers MII(2,5-DMT) with MII = CoII (1),
MnII, ZnII, a very similar thermal stability was found (Figure 5). For ZnII(2,5-DMT), the
first mass loss with 30.1% occurred between 280 ◦C and 430 ◦C, which would fit a total
decarboxylation of the linker molecule (calc.: 30.4%). Two further decreases were observed
at higher temperatures between 430–550 ◦C and 550–800 ◦C, respectively. The first decrease
could correspond to the release of a methanol molecule (obs.: 11.09%, calc.: 11.06%), which
is formed from the methoxy group. Unfortunately, the amount of the residue after heating
to 1000 ◦C was too small to record a PXRD pattern. In the case of MnII(2,5-DMT), a
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TGA curve very similar to that of the Zn compound was observed (Figure 5). The first
mass decreases were detected between 340–440 ◦C and 440–575 ◦C, i.e., at slightly higher
temperatures compared to the Zn CP. The agreement between the calculated and observed
values for a full decarboxylation and the cleavage of a methanol molecule is not as good as
for the Zn compound (obs.: 43.02%, calc.: 38.4%). CoII(2,5-DMT) (1) also shows thermal
stability up to at least 300 ◦C. Here, the first mass loss occurred at ~430 ◦C, very similar to
the MnII compound (obs.: 28.82%; calc.: 31.09% for a complete decarboxylation). Further
decreases occurred between 420–510 ◦C and 510–630 ◦C, most likely due to the cleavage of
the methoxy groups.
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Comparison of all the MII(2,5-DMT) compounds with MII = CoII (1), MnII, ZnII shows
that MnII(2,5-DMT) has the highest thermal stability, followed by CoII(2,5-DMT) (1) with
an only slightly decreased decomposition temperature, whereas ZnII(2,5-DMT) shows a
significantly lower thermal stability, by approx. 20 ◦C. As expected, the lowest thermal
stability was found for Mg2(2,5-DMT)2(DMF)2 (2), which is due to the release of the
coordinating solvent molecules (DMF) upon heating. Remarkably, above 300 ◦C, the TG
curve of 2 shows a very similar trend to the one found for the three solvent-free CPs starting
at room temperature. It is therefore suggested that a coordination polymer Mg(2,5-DMT)
isostructural to MII(2,5-DMT) with MII = CoII (1), MnII, ZnII (C2/c, Z = 4) might be formed
after the release of the two DMF molecules. To confirm this assumption, a sample of 2
was heated at 280 ◦C in an argon stream for one hour. However, the PXRD pattern of the
resulting material shows the same reflections as observed at room temperature, i.e., no
structural change occurred under these conditions. Only the crystallinity of the material
decreased significantly. Obviously, the framework of 2 collapses upon the release of the
coordinating DMF guests. This also explains why we were unable to activate 2 and record
a type I isotherm in the N2 gas sorption measurements.

3.4. Luminescence Properties

Since coordination polymers MII(2,5-DMT) with MII = CoII (1), MnII, ZnII are isostruc-
tural compounds, the comparison of their emission and excitation bands could allow
assumptions about the influence of different metal cations on the respective luminescence
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properties. The measured emission and excitation spectra are given in Figure 6 and com-
pared with the respective spectra of the free 2,5-DMT ligand (grey reference). Table 3
summarises the optical properties of MII(2,5-DMT) with MII = MnII, ZnII, 2, and the free
ligand. For CoII(2,5-DMT) (1), no emission was observed as it was quenched by the Co2+

cations as known from the literature [46]. Pictures of the excited MII(2,5-DMT) compounds
with MII = CoII (1), MnII, ZnII and 2 after blue light irradiation are shown in the Supporting
Information (Figure S9).
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Table 3. Maximum excitation, emission and absorption wavelengths of MII(2,5-DMT) with
MII = MnII, ZnII, 2, and the free 2,5-DMT ligand (s = shoulder).

Max. Excitation/nm Max. Emission/nm Max. Absorption/nm

2,5-DMT 370 410 220, 250(s), 360
MnII(2,5-DMT) 370, 420 400, 660 200, 260(s), 370(s)
ZnII(2,5-DMT) 390 410 205, 260(s), 390(s)

Mg2(2,5-DMT)2(DMF)2, 2 390 420 205, 250(s), 325

For ZnII(2,5-DMT) and Mg2(2,5-DMT)2(DMF)2 (2), the emission and excitation bands
are similar to those observed for the free 2,5-DMT ligand. The excitation bands of both com-
pounds are slightly red-shifted compared to the ligand’s excitation band due to a weak in-
teraction with the metal centre, while the emission band centres are almost identical for the
coordination compounds and the ligand. This is consistent with the measured absorption
spectra (Table 3), where the absorption bands of ZnII(2,5-DMT) and Mg2(2,5-DMT)2(DMF)2
(2) do not significantly differ from the absorption of the free ligand. Therefore, we attribute
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the emission bands in 2 and ZnII(2,5-DMT) to a ligand-centred transition, while the metals
do not participate in the radiative pathway in a significant way.

The ligand-centred emission band is also identified for the MnII(2,5-DMT) coordination
polymer. In addition, a second emission band at 660 nm is observed after excitation at
410 nm, resulting in a red emission of the coordination polymer (cp. Figure S9). This
emission band is attributed to a metal-centred transition of the Mn2+ ion as it has not been
observed for the Zn2+ and Mg2+ coordination compounds and the free ligand. Through the
red emission, it is possible to make an additional statement about the coordination, which
cannot be unambiguously identified via X-ray single-crystal structure analysis as discussed
above. While tetrahedrally coordinated Mn2+ emits green light, a red-light emission is
observed for octahedrally coordinated Mn2+ ions caused by a transition from the excited
4T1g(4G) state to the 6A1g(6S) ground state [47,48]. Therefore, from these UV–vis spectra,
one can conclude that the coordination sphere of Mn2+ in MnII(2,5-DMT) is best described
as an MnO6 octahedron.

4. Conclusions

We synthesized a new coordination polymer CoII(2,5-DMT) (1) containing a fluorescent
2,5-DMT (2,5-dimethoxyterephthalate) linker; 1 is isostructural to the known MnII and
ZnII congeners. Attempts to synthesize an Mg2+ analogue led to the synthesis of Mg2(2,5-
DMT)2(DMF)2 (2) with coordinating DMF molecules and a MOF-type structure. Attempts
to remove the DMF guests upon heating failed so that no permanent porosity could
be proven. In a comparative study, thermal stability of all the four compounds was
investigated. The solvent-free MII(2,5-DMT) coordination polymers with MII = CoII (1),
MnII, and ZnII showed a very similar decomposition behaviour, with the ZnII compound
being a slightly less stable material. Nonetheless, all the three compounds decomposed
clearly above 300 ◦C. MII(2,5-DMT) with MII = MnII, ZnII, and 2 as well as the pristine
linker 2,5-DMT exhibited a strong emission upon irradiation with blue/UV light, while in
the Co2+-containing material (1), the emission was quenched. ZnII(2,5-DMT) and Mg2(2,5-
DMT)2(DMF)2 (2) showed a mainly ligand-based blue emission, while for MnII(2,5-DMT),
an additional metal-based red emission was found. The latter points to an octahedral
coordination of Mn2+. This is remarkable from a structural point of view, as in solvent-
free MII(2,5-DMT) compounds, pockets around the M2+ cations are formed with an inner
(distorted tetrahedral) and an outer coordination sphere. The inner sphere is solely formed
by four oxygen atoms of carboxylate groups, whereas in the outer sphere, two oxygen atoms
of the methoxy groups are also included, leading to a distorted octahedral coordination.
Although the Mn–Omethoxy distances are distinctively longer than the Mn–Ocarboxylate

distances (by more than 0.4 Å), the UV/vis spectra of MnII(2,5-DMT) clearly indicate that
there is still a significant Mn–Omethoxy interaction.

We believe that the 2,5-DMT ligand is an attractive linker for the construction of
luminescent coordination polymers and MOFs. Especially in MOFs with a permanent
porosity, it might lead to interesting materials for sensing applications. The synthesis of
such porous and luminescent MOFs is in the focus of our current research in this field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemistry5020065/s1, Figure S1: PXRD pattern of [CoII(2,5-
DMT)] (1); Figure S2: PXRD pattern of [MnII(2,5-DMT)]; Figure S3: PXRD pattern of [ZnII(2,5-
DMT)]; Figure S4: PXRD pattern of [Mg2(2,5-DMT)2(DMF)2] (2); Figure S5: Asymmetric unit of
[CoII(2,5-DMT)] (1); Figure S6: Space filling representation of [CoII(2,5-DMT)] (1); Figure S7: DSC
curves of [MnII(2,5-DMT)], [ZnII(2,5-DMT)], [CoII(2,5-DMT)] (1), and [Mg2(2,5-DMT)2(DMF)2] (2);
Figure S8: UV/vis measurements of 2,5-DMT and [MnII(2,5-DMT)], [ZnII(2,5-DMT)], and [Mg2(2,5-
DMT)2(DMF)2] (2); Figure S9: Photographs of fluorescence of [MnII(2,5-DMT)], [ZnII(2,5-DMT)],
[CoII(2,5-DMT)] (1), and [Mg2(2,5-DMT)2(DMF)2] (2) upon blue light irradiation; Tables S1–S5:
Crystallographic data of [CoII(2,5-DMT)] (1); Tables S6–S10: Crystallographic data of [Mg2(2,5-
DMT)2(DMF)2] (2).

https://www.mdpi.com/article/10.3390/chemistry5020065/s1
https://www.mdpi.com/article/10.3390/chemistry5020065/s1
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