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Abstract: Keggin-type heteropolyacid cesium salts have been regarded as potential candidates for
heterogeneous catalytic reactions. This review describes the success of Keggin-type heteropolyacids
cesium salts (Cs-HPA salts) as efficient catalysts in various synthesis processes. The Cs-HPA catalysts
can be synthesized as solid salts through the metathesis of a solution containing precursor HPA
and another solution containing soluble Cs salt, which will give Cs-HPA salt as a solid precipitate.
Alternatively, they can be also obtained from the commercial precursor HPA. In this review, all the
routes to prepare the different cesium salts (i.e., saturated, lacunar, metal-doped) were described.
These salts can be used in acid-catalyzed reactions (i.e., esterification, etherification, acetalization,
dehydration) or oxidative transformations (oxidative esterification, oxidation, epoxidation). All
of these reactions were addressed herein. Aspects related to the synthesis and characterization of
these catalyst salts were discussed. This review aims to discuss the most pertinent heterogeneous
catalytic systems based on Keggin HPA Cs salts. The focus was to correlate the physicochemical
properties of these salts with their catalytic activity. Ultimately, the most recent advances achieved in
the applications of these Cs-HPA salts as catalysts in the synthesis of industrial interest compounds
were discussed. Cesium heteropoly salts are an alternative to the traditional soluble mineral acids as
well as to solid-supported catalysts.

Keywords: Keggin heteropolyacids; solid heterogenous catalysts; transition metal-doped cesium
salts; lacunar cesium salts

1. Introduction

The development of heterogeneous catalysts has attracted widespread attention due
to economic and environmental reasons [1,2]. Important characteristics such as simple
synthesis routes, uniform pore size distribution, large specific surface area, and high
strength of acidity are essential to an efficient solid acid catalyst. Ideally, a heterogeneous
catalyst should be stable under reaction conditions, operate for long periods without the
necessity of activation steps, achieve high conversions and selectivity toward the goal
product, and allow an easy recovery and reuse without loss activity [3,4]. Nonetheless,
understanding the reaction mechanisms involved in the conversion of different substrates
over heterogeneous catalysts to fine chemicals or fuels is still a challenge [5–7].

Zeolites, clays, molecular sieves, sulfonated carbon, sulfonic resins, nano-, meso-, or
microstructures solids are the most common choices for acid-catalyzed reactions, however,
sometimes some drawbacks hamper the use of these catalysts at the industrial scale [8–10].
The high cost of these heterogeneous catalysts besides the laborious syntheses and the
requirements of more drastic reaction conditions comprises some challenges to be over-
come [11].

Keggin heteropolyacids (HPAs) are acid solids with a high strength of Brønsted
acidity [12]. They are a cluster of metal-oxygen compounds belonging to the class of
polyoxometalate (POMs) and have been used in several fields in materials and catalysis
science, such as energy store, photocatalyst, electrocatalysis, and as homogeneous or
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heterogeneous catalysts [13–15]. Keggin HPAs are protonated POMs with a stronger
acidity strength [16]. Among them, phosphotungstic acid deserves highlighting due to its
highest Brønsted acidity strength [17,18]. However, they are solid with a low surface area
(<5.0 m2/g), hampering their straight use as a heterogeneous catalyst [19,20]. Moreover,
they are soluble in water or polar organic solvents. However, even having a low surface
area, in apolar solvents they are insoluble and can be used as solid catalysts, likewise the
cesium salts.

To circumvent these drawbacks, two options have been adopted; the first one and
the more traditional, which is to support the Keggin KPAs on the surface area high solids
matrixes [21]. Depending on the synthesis processes, catalyst load and type of support,
positive aspects have been achieved [22]. For instance, Hβ zeolite, zirconium, niobium,
silica, activated carbon, and mesoporous materials (i.e., SBA, MCM) have been the most
common supports selected [23–28]. Notwithstanding, these supported catalysts have the
same disadvantages as other ones mentioned herein, such as undergoing leaching in a
highly polar reaction medium.

The strength of acidity of Keggin HPAs can be modulated by performing modifications
either in the structure of Keggin heteropolyanion or changing total or partially their protons
with other metal cations [29]. This way, Keggin HPAs containing both Lewis and Brønsted
acid sites have been developed. Even when all the protons are exchanged with a metal
cation, remains a residual Brønsted acidity.

On the other hand, Keggin HPAs can have their composition modified by removing
one unit MO (M = W, Mo) giving origin to the lacunar HPAs, or still having this vacancy
filled with transition metal cations [30]. Those POMs salts can also have their Mo6+ or W6+

addenda cations replaced by V5+ ions [31]. All these modifications allow Keggin HPAs,
initially used only in acid-catalyzed reactions, to become also efficient catalysts in oxidation
processes [32,33].

The second approach is converting the Keggin HPAs to solid salts, which can be used
as heterogeneous catalysts. Depending on the cation ionic radium, it is possible to produce
materials with a reasonable surface area and porosity, and insoluble in polar solvents [34].
In particular, cesium-exchanged Keggin heteropolyacid salts have been the most used
catalysts, and therefore, they are the goal of this work [35–37]. Although presently the
supporting of Keggin Cs HPA salts on solid matrixes has also attracted attention, we judge
it more profitable to address only the reactions where these salts were used as solid catalysts,
avoiding this way the effects triggered by the support.

In this review, our main goal was to demonstrate how the Keggin HPAs Cs salts act
as heterogeneous catalysts in a plethora of organic transformations. The main synthesis
routes and characterization techniques will be discussed, aiming to correlate their impacts
on the catalytic performance of these Keggin HPAs Cs salts.

2. Main Routes to Synthesize POMs Salts
2.1. Synthesis of Keggin HPAs: Phosphotungstic, Phosphomolybdic and Silicotungstic Acid
Cesium Salts

The most common synthesis route of Keggin HPA cesium salts starts from the reaction
of an aqueous solution of commercial HPAs with another solution containing a stoichio-
metric amount of CsCl(aq) or Cs2CO3(aq), which was slowly added giving a white or yellow
precipitate (i.e., Cs3PW12O40, O3, Cs4SiW12O40, or Cs3PMo12O40) [35–40]. This method is
named direct precipitation. After 3 h of magnetic stirring and heating to 333 K, the solution
was vapoured under a vacuum releasing HCl(g). Afterwards, the solid salt was dried in
an oven at 423 K for 12 h. This procedure is depicted in Schemes 1 and 2 for the three
Keggin HPAs.

It is important to note that no modification happens in the Keggin heteropolyanion
structure; its integrity is preserved, and it maintains the same composition as the precursor
acid; sometimes they are named saturated salts.
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Scheme 2. Synthesis of cesium phosphomolybdate or phosphotungstate from the reaction of phos-
phomolybdic acid and cesium chloride.

Another strategy is the partial replacement of protons with cesium, which generate
salts with higher remaining acidity. In this case, stoichiometry is responsible for the level of
exchange of protons [41]. In this review, cesium partially exchanged heteropolyacids salts
had their catalytic activity addressed in Section 4 [35,36].

Beyond the direct precipitation method, there is also the reactive synthesis method [42].
Gu et al. synthesized cesium salts using the two methods and evaluated the catalysts in
alkylation reactions of toluene with benzyl alcohol (Scheme 3) [43].
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Scheme 3. Synthesis of cesium phosphomolybdate from the reaction of phosphoric acid, molybdenum
oxide, and cesium nitrate.

Those authors heated the slurry to 100 ◦C for 6 h under vigorous stirring, and then
evaporated to dryness at 110 ◦C, obtaining the Cs3PMo12O40 solid salt [43]. This same pro-
cedure can generate cesium phosphotungstate exchanging the molybdenum for tungsten
oxide. Similarly, replacing the phosphoric acid with the silicic acid led to the obtention of
cesium silicotungstate salt.
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2.2. Synthesis of Lacunar Keggin HPA Cesium Salts

Cesium lacunar salts CsyXM11O39 (X = Si or P; M = W or Mo; y = 8 or 7, respectively)
have been synthesized by precipitation according to the procedure adapted from the
literature [21,41]. This procedure can be carried out in a two-step synthesis. In the first
procedure, the lacunar heteropolyanion is obtained by hydrolysis saturated anion present
in precursor acid (Scheme 4); after the hydrolysis, the solutions of HPAs (i.e., H3PW12O40,
H3PMo12O40, or H4SiW12O40) become solutions of unsaturated anions (Scheme 4).
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In the second stage, this lacunar anion (i.e., normally a sodium salt) reacts with a
solution of cesium chloride giving a lacunar cesium heteropoly salt, which is filtered and
dried in an oven (Schemes 5–7).
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Scheme 5. Synthesis of lacunar cesium phosphotungstate from the reaction of lacunar sodium
phosphotungstate and cesium chloride [21,41].

In these procedures, lacunar sodium salt reacts with cesium chloride giving a precipi-
tated lacunar cesium salt, which is posteriorly filtered, and dried as in Schemes 1 and 2.
Although simple, this is a two-step process: in the first, Keggin HPA is converted to the
lacunar sodium salt, and in the second one, lacunar HPA cesium salt is precipitated.
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Scheme 7. Synthesis of lacunar cesium phosphomolybdate from the reaction of lacunar sodium
phosphomolybdate and cesium chloride [21,41].

Alternatively, this route can be performed in a one-pot synthesis (Schemes 8–10).
Typically, an acidic aqueous solution of the sodium tungstate or molybdate precursor
(i.e., Na2WO4 or Na2MoO4) is added to the other solution containing the silicon or phos-
phorus precursor salt (i.e., Na2SiO3 or Na2HPO4), depending on the goal heteropolyanion
(i.e., SiW12O40

4−, PW12O40
3− or PW12O40

3−). This same procedure was previously used to
synthesize lacunar potassium salts [34,44].
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Scheme 10. One-pot synthesis of lacunar cesium phosphotungstate.

The addition of NaHCO3 (ca. 0.10 mol L−) adjusted the pH to the adequate range
(pH = 5.4, SiW11O39

8− and PW11O39
7−; pH = 4.5, PMo11O39

7−), converting the saturated
anions to lacunar anions. These solutions are then stirred and heated at 353 K/60 min.
Afterwards, they are cooled to room temperature, and 0.1 mol of CsCl(s) is added to give
precipitate the cesium HPA salt. The solid salt is washed twice (50 mL, 1.0 mol L−1 CsCl(aq)),
and once with 50 mL of cold distilled water, being then dried in air. After this step, cesium
salts were dried in an oven at 423 K/5 h.

2.3. Synthesis of Metal-Substituted Lacunar Keggin HPA Cesium Salts

To synthesize the metal-doped cesium heteropoly salt, any one of the two procedures
previously described can be used (i.e., one-pot synthesis or two-step route). Schemes 11–13
summarize the process for the three metal-doped Keggin cesium salts. However, the
solution containing the precursor metal chloride must be added before the precipitation of
heteropoly with CsCl [45].

When the lacunar heteropoly sodium salt is in the solution, it acts as a “monoden-
tate ligand” and can bind the metal cation. Therefore, the addition of CsCl precipitates
this “POM complex”, which can act as a bifunctional catalyst. Besides the activity of
heteropolyanion containing the addenda metal active sites (i.e., Mo or W), now the POM
has yet a metal cation that frequently can trigger a synergism with the heteropolyanion,
due to its catalytic activity [46].
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Scheme 13. Metal-doped cesium phosphomolybdate salt.

The sodium ions of NaHCO3 and chloride ions belonging to the metal or cesium
chloride remain in the solution and are separated when the solid metal-doped cesium
heteropoly salt is filtered. on the catalytic activity of cesium heteropoly salts.

All the cesium salts described until now (i.e., saturated, lacunar, metal-doped) demon-
strated to be active catalysts in a plethora of reactions, which will be addressed in this
review. However, before that, a brief discussion about the main characterization techniques
could be useful to understand how they act.

3. Characterization Techniques of Keggin HPA Salts

There are several techniques used to characterize Keggin HPAs in a solid or liquid
phase. We will focus only on the most used. The most of characterization data presented
were described in the Doctorate Thesis of a researcher’s group and were partially reported
in the references mentioned [35–37].

3.1. Infrared Spectroscopy

Infrared spectroscopy is a valuable tool to obtain information about the primary
structure of Keggin HPAs (i.e., heteropolyanion). The typical chemical bonds present in the
Keggin anion have their main vibrations bands placed at the fingerprint region between
400 to 1300 cm−1 in the infrared spectrum. To check if the primary structure was kept
constant after the synthesis of cesium salts, it needs to verify if any shoulder, new band, or



Chemistry 2023, 5 669

strong shift has occurred in the characteristic vibration bands of main chemical bonds after
the synthesis.

The following spectra (Figure 1) were recorded in Varian 660-IR equipment with
attenuated total reflectance accessory (FT–IR/ATR), in a spectral range of 550 to 1650 cm−1.
The oxygen atoms were distinguished by subscripts as follows; Oa refers to the oxygen
atom bonded to the phosphorous or silicon atom; Ob oxygen atoms belong to the WO6 or
MoO6 octahedral units sharing corners; Oc oxygen atoms are in edges and Od are terminal
oxygen atoms linked to the tungsten or molybdenum atoms [35–37].
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Figure 1. Infrared spectra of phosphotungstic, phosphomolybdic, and silicotungstic acids and their 

partially−exchanged cesium salts (adapted from refs. [35–37]). 

A comparison of typical absorption bands of the pristine Keggin HPAs with their 

partially cesium−exchanged salts allows concluding that only the absorption bands as-

signed to the vibration of W(Mo)-Ob-W(Mo) bonds of cesium salts were shifted toward a 

lower wavenumber. This effect can be assigned to the weakening of W(Mo)-O chemical 

bonds triggered by the cesium cations. 

The impacts of the substitution level of cesium on the infrared spectra of phospho-

tungstate salts were also evaluated (Figure 2). An increase in cesium load has not triggered 

any noticeable change in the wavenumber of typical absorption bands of cesium salts in 

the range of 0.5 to 3.0 mol Cs+/mol heteropolyanion. 
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Figure 2. Impact of cesium load on the infrared spectra of cesium phosphotungstate salts (Adapted 

from refs. [35–37]. 

3.2. Powder XRD Patterns 

The powder X-Rays diffraction patterns of the cesium salts of silicotungstic, phos-

phomolybdic, and phosphotungstic acids were obtained by X–ray diffraction (XRD) in a 

Bruker D8 Discovery diffractometer, operating at 40 kV acceleration voltage, 40 mA cur-

rent, in the copper emission line (Cu-Kα, λ = 1.5406 Å), with a scanning rate of 1°/min for 

a 2θ angle of 5–80° [35–37]. The diffractograms of Keggin heteropolyacids and their ce-

sium salts are displayed in Figure 3. 

Figure 1. Infrared spectra of phosphotungstic, phosphomolybdic, and silicotungstic acids and their
partially-exchanged cesium salts (adapted from refs. [35–37]).

A comparison of typical absorption bands of the pristine Keggin HPAs with their
partially cesium-exchanged salts allows concluding that only the absorption bands assigned
to the vibration of W(Mo)-Ob-W(Mo) bonds of cesium salts were shifted toward a lower
wavenumber. This effect can be assigned to the weakening of W(Mo)-O chemical bonds
triggered by the cesium cations.

The impacts of the substitution level of cesium on the infrared spectra of phospho-
tungstate salts were also evaluated (Figure 2). An increase in cesium load has not triggered
any noticeable change in the wavenumber of typical absorption bands of cesium salts in
the range of 0.5 to 3.0 mol Cs+/mol heteropolyanion.
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Figure 1. Infrared spectra of phosphotungstic, phosphomolybdic, and silicotungstic acids and their 

partially−exchanged cesium salts (adapted from refs. [35–37]). 

A comparison of typical absorption bands of the pristine Keggin HPAs with their 

partially cesium−exchanged salts allows concluding that only the absorption bands as-

signed to the vibration of W(Mo)-Ob-W(Mo) bonds of cesium salts were shifted toward a 

lower wavenumber. This effect can be assigned to the weakening of W(Mo)-O chemical 

bonds triggered by the cesium cations. 

The impacts of the substitution level of cesium on the infrared spectra of phospho-

tungstate salts were also evaluated (Figure 2). An increase in cesium load has not triggered 

any noticeable change in the wavenumber of typical absorption bands of cesium salts in 

the range of 0.5 to 3.0 mol Cs+/mol heteropolyanion. 
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Figure 2. Impact of cesium load on the infrared spectra of cesium phosphotungstate salts (Adapted 

from refs. [35–37]. 

3.2. Powder XRD Patterns 

The powder X-Rays diffraction patterns of the cesium salts of silicotungstic, phos-

phomolybdic, and phosphotungstic acids were obtained by X–ray diffraction (XRD) in a 

Bruker D8 Discovery diffractometer, operating at 40 kV acceleration voltage, 40 mA cur-

rent, in the copper emission line (Cu-Kα, λ = 1.5406 Å), with a scanning rate of 1°/min for 

a 2θ angle of 5–80° [35–37]. The diffractograms of Keggin heteropolyacids and their ce-

sium salts are displayed in Figure 3. 

Figure 2. Impact of cesium load on the infrared spectra of cesium phosphotungstate salts (Adapted
from refs. [35–37].
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3.2. Powder XRD Patterns

The powder X-rays diffraction patterns of the cesium salts of silicotungstic, phospho-
molybdic, and phosphotungstic acids were obtained by X-ray diffraction (XRD) in a Bruker
D8 Discovery diffractometer, operating at 40 kV acceleration voltage, 40 mA current, in the
copper emission line (Cu-Kα, λ = 1.5406 Å), with a scanning rate of 1◦/min for a 2θ angle
of 5–80◦ [35–37]. The diffractograms of Keggin heteropolyacids and their cesium salts are
displayed in Figure 3.
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Figure 3. Powder XRD patterns of phosphotungstic (a), phosphomolybdic (b), silicotungstic acids 

(c), and their cesium−partially exchanged salts (adapted from refs. [35–37]). 

The diffractograms of phosphotungstic and phosphomolybdic acid cesium salts had 

diffraction peaks in a higher amount and were well−defined than pristine HPAs. Despite 

the similar profile, at a low angle 2θ angle (<10°) the Keggin HPAs diffractograms pre-

sented high-intensity peaks, which are characteristic of them; conversely, the XRD pat-

terns of cesium salts have not displayed these strong peaks at this region. 

From the Scherrer Equation (1), it is possible to calculate the crystallite size of a solid 

particle of Keggin HPAs and their cesium salts. In Equation (1), λ is the X−ray wavelength 

(nm), β is the peak width of the diffraction peak profile at half maximum height resulting 

from small crystallite size in radians, and 𝐾 is a constant related to crystallite shape, nor-

mally taken as 0.89. 
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 (1) 

In Figure 4, it is possible to see that the doping with cesium led to a lower crystal size, 

mainly when comparing the silicotungstic acid with the cesium silicotungstate. 
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Figure 4. The crystallite size of phosphotungstic, phosphomolybdic, and silicotungstic acids and 

their cesium−partially exchanged salts (adapted from refs. [35–37]). 

The greatest crystallite size of silicotungstic acid is confirmed by their diffractogram, 

which presented the most intense diffraction line close to 9.0° 2θ angle. Figure 5 shows 

the impact of the increase in cesium load on the crystallite size for the phosphotungstate 

catalysts. 

Figure 3. Powder XRD patterns of phosphotungstic (a), phosphomolybdic (b), silicotungstic acids (c),
and their cesium-partially exchanged salts (adapted from refs. [35–37]).

The diffractograms of phosphotungstic and phosphomolybdic acid cesium salts had
diffraction peaks in a higher amount and were well-defined than pristine HPAs. Despite the
similar profile, at a low angle 2θ angle (<10◦) the Keggin HPAs diffractograms presented
high-intensity peaks, which are characteristic of them; conversely, the XRD patterns of
cesium salts have not displayed these strong peaks at this region.

From the Scherrer Equation (1), it is possible to calculate the crystallite size of a
solid particle of Keggin HPAs and their cesium salts. In Equation (1), λ is the X-ray
wavelength (nm), β is the peak width of the diffraction peak profile at half maximum height
resulting from small crystallite size in radians, and K is a constant related to crystallite
shape, normally taken as 0.89.

L =
K.λ

β.cosθ
(1)

In Figure 4, it is possible to see that the doping with cesium led to a lower crystal size,
mainly when comparing the silicotungstic acid with the cesium silicotungstate.
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From the Scherrer Equation (1), it is possible to calculate the crystallite size of a solid 

particle of Keggin HPAs and their cesium salts. In Equation (1), λ is the X−ray wavelength 

(nm), β is the peak width of the diffraction peak profile at half maximum height resulting 

from small crystallite size in radians, and 𝐾 is a constant related to crystallite shape, nor-

mally taken as 0.89. 

𝐿 =
𝐾. 𝜆

𝛽. 𝑐𝑜𝑠𝜃
 (1) 

In Figure 4, it is possible to see that the doping with cesium led to a lower crystal size, 

mainly when comparing the silicotungstic acid with the cesium silicotungstate. 
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Figure 4. The crystallite size of phosphotungstic, phosphomolybdic, and silicotungstic acids and 

their cesium−partially exchanged salts (adapted from refs. [35–37]). 
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Figure 4. The crystallite size of phosphotungstic, phosphomolybdic, and silicotungstic acids and
their cesium-partially exchanged salts (adapted from refs. [35–37]).

The greatest crystallite size of silicotungstic acid is confirmed by their diffractogram,
which presented the most intense diffraction line close to 9.0◦ 2θ angle. Figure 5 shows the
impact of the increase in cesium load on the crystallite size for the phosphotungstate catalysts.
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Figure 5. Impact of cesium load on the crystallite size of cesium phosphotungstate salts.

An increase in cesium load until 1. 0 mol Cs+/mol heteropolyanion provokes a
diminishment in the crystallite size; after this proportion, no significant effect was verified
when more cesium was included in heteropoly salts.

3.3. Thermal Analyses

Thermogravimetric analysis (TG–DSC) allows us to investigate the thermic stability
of catalysts and determine the number of hydration water molecules. The data described
herein were acquired in a Perkin Elmer simultaneous thermal analyzer (STA) 6000, using
10 mg of sample in a standard alumina crucible. The sample was heated from 298 to 973 K
with a rate of 10 K min−1 under nitrogen flow. Figure 6 displays results obtained from
phosphotungstic, phosphomolybdic, and silicotungstic acids and their cesium-partially
exchanged salts.
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Figure 6. The number of waters mol per catalyst mol of the phosphotungstic, phosphomolybdic, and
silicotungstic acids and their cesium-partially exchanged salts was determined through TG analysis
(adapted from refs. [35–37]).

Regardless of the Keggin anion, the HPAs always presented a hydration level greater
than cesium salts. It is a consequence of the thermal treatment procedure undergone by the
cesium salts after the synthesis.

Figure 7 shows the effect of cesium load on the number of hydration water molecules.
An increase in cesium load resulted in a lower number of water molecules per mol of
heteropolyanion. It can be a consequence of the great ionic radium of cesium; the higher the
cesium content, the more difficult was for the water molecules to interact with the Keggin
anion, and, consequently, lower the hydration level.
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Figure 7. The number of water mol per catalyst mol of cesium phosphotungstate salts (adapted from
refs. [35–37]).

3.4. Surface Area: Brunauer–Emmett–Teller (BET) Method

To be an effective heterogeneous catalyst, the solid should have a high surface area and
adequate porosity, allowing the reactant molecules to interact, with the help of active sites,
leading to the formation of a goal product with high conversion and selectivity. Herein, the
surface area of Keggin HPAs and their cesium salts were analyzed by the Brunauer–Emmett–
Teller (BET) method, and the diameters and distribution of pore volumes were calculated
according to the Functional Density Theory (DFT). These analyses were carried out on
NOVA 1200 Quantachrome, through the isotherms of physical adsorption/desorption of
N2, at 77 K [35–37]. Figure 8 shows the BET surface area of phosphomolybdic acid and
their cesium salts.
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Figure 8. Surface area (BET) of phosphotungstic, phosphomolybdic, and silicotungstic acids and
their cesium-partially exchanged salts (adapted from refs. [35–37]).

Remarkably, the surface area of cesium salts was much greater than pristine Keggin
HPAs [35–37,40]. It is in accordance with the literature [39,41]. This effect was more
noticeable in the tungsten catalysts.

The impacts of cesium load on the surface area of cesium phosphotungstate salts
catalysts were assessed the main results are displayed in Figure 9. In general, an increase in
cesium load had a positive effect on the surface of tungsten heteropoly salts.

However, for lower cesium content the increase in surface area was less impacted.
Conversely, when 2.0 or more Cs mol were present in the heteropolyanion, the surface was
remarkably enhanced (Figure 10).
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Figure 10. Impact of cesium load on the surface area (BET) of cesium phosphotungstate.

The nitrogen adsorption/desorption isotherms provide valuable information about
the surface area and porosity of cesium heteropoly salts. However, Hyhoshi and Kamy-
hia observed the microstructure from micropores using aberration-corrected scanning
transmission electron microscopy [47]. Those authors verified that although silicotungstic
and phosphotungstic acids are solids with a low surface area when their protons are
exchanged with cesium, rubidium, or ammonium, their surface area and porosity proper-
ties are strongly improved. They conclude the cesium content controls the pore size and
pore-size distributions, using high-resolution imaging through transmission electron mi-
croscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques
provide direct evidence for the structures of defects and interfaces. Moreover, they used
aberration-corrected TEM and STEM for atomic-scale observations. Different microstruc-
tures that form micropores of Cs2.5H1.5SiW12O40 and Cs4.0SiW12O40 were visualized by
using aberration-corrected STEM. Those authors demonstrated the presence of microstruc-
tures that form the microporosity of Cs2.5H1.5SiW12O40 salt and anion vacancies in both
salts (i.e., Cs2.5H1.5SiW12O40, Cs4.0SiW12O40).

3.5. Measurements of Acidity Strength of Cesium Heteropoly Salts

The number and strength of the acid sites of the Cs+ exchanged phosphotungstic acid
salts were determined by n-butylamine potentiometric titration using a BEL potentiometer,
model W3B, with a glass electrode [35–37]. For comparison, the acidity of the pristine
heteropolyacid was also evaluated. To do it, a solid salt (ca. 50 mg) was suspended in
CH3CN (30 mL) and magnetically stirred for 3 h. Posteriorly, the suspension was slowly
titrated with n-butylamine solution (portions of ca. 100 µL, 0.025 mol L−1), until the
electrode potential kept stable after the addition of the titrant.

Figure 11 show the initial electrode potential values obtained from the solution or
suspension of phosphotungstic catalysts. As expected, the solution of H3PW12O40 and the
suspension of Cs3PW12O40 salt presented the highest and the lowest acidity, as showed the
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Ei values measured. Nonetheless, the strength of acidity of other cesium salts randomly
varied, with values between 562 to 638 mV.
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Figure 12. Effect of cesium load on the acid sites number of the cesium phosphotungstate salts and 
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Figure 12. Effect of cesium load on the acid sites number of the cesium phosphotungstate salts and
phosphotungstic acid.

The partial replacement of protons in Keggin-type HPAs with larger cations can make
them insoluble in water. Although the amount of Brønsted acid sites in CsxH3−xPW12O40 be-
came lower as compared to H3PW12O40, the strength of Brønsted acidity for CsxH3−xPW12O40
was still preserved [48]. When Keggin HPAs are compared to the typical inorganic acids,
their greater acidity is ascribed to the size and charge of the anion [49]. However, even
cesium is included in the secondary structure of HPAs, these cations ca be hydrolyzed gen-
erating H+ ions that contributes to the acidity of salts [50] and, thus, weaken the attraction
of the proton to the anion.

4. Keggin HPA Cesium Salts-Catalyzed Reactions

Keggin HPA cesium salts are versatile catalysts active in different reactions such as
those acid-catalyzed (i.e., esterification, etherification, acetalization, ketalization, hydrolysis)
or oxidative transformations (i.e., desulfurization, oxidation of alcohols, aldehydes, and
olefines). In this review, we will try to separately address these two types of reactions.

4.1. Keggin HPA Cesium Salts: Acid-Catalyzed Reactions

Nowadays, glycerol esters and ethers have been considered potential bioadditives
to be blended with fossil fuels, consequently, a growing interest in the development of
synthesis processes of these oxygenated compounds from glycerol generated in surplus by
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the biodiesel industry has been observed [51]. The blending of these glycerol-derived with
diesel improves internal combustion efficiency, decreases greenhouse gas emissions, and
increases fuel properties such as cetane number and cloud points [52,53].

In this sense, Veluturia et al. studied the glycerol esterification over cesium partially
exchanged phosphotungstic acid salts [54]. Scheme 14 shows the main reaction prod-
ucts of glycerol esterification; the terminal hydroxy groups are preferentially esterified.
Consequently, monoacetyl glycerol, 1,3-diacetyl glycerol, and triacetyl glycerol are the
main products (i.e., MAG, DAG, and TAG, respectively). The reactions were carried out
over a partially exchanged-cesium phosphotungstate (Cs2.5H0.5PW12O40). Those authors
determined through kinetic study that this reactivity sequence is a consequence of trends
observed in the activation energy of these reactions (Scheme 15).
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Scheme 15. Main products of Keggin HPAs-catalyzed reactions of β−pinene with methyl alcohol
over Cs2.5H0.5PW12O40 [36].

Terpenes are renewable, abundant, and inexpensive raw materials, which can be val-
orized by modifying their chemical structure and consequent conversion to compounds that
have industrial applications such as polymers, solvents, pharmacies, and fragrances [47].
In this sense, the development of processes to convert monoterpenes into fine chemicals
with a higher value-added has been a goal of several research groups.
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In particular, terpene ethers are compounds used as traction fluid, or in the field
of fragrance and solvents. In addition, terpene ethers are bioactive compounds with
antimicrobial and food preservative properties that are considered as a real potential
application in the food industry [55].

In this regard, partially exchanged cesium salts were also effective catalysts in monoter-
penes etherification reactions with alkyl alcohols [36]. Da Silva et al. carried out the β−pinene
etherification with methyl alcohol and verified that at those conditions, the monoterpene
substrate undergoes skeletal rearrangement reactions giving mainly α−terpinyl methyl ether
(1A) as the main product (Scheme 15). This is a product of the nucleophilic addition of methyl
alcohol to the tertiary carbocation resulting from the opening of the four-membered ring of
β−pinene.

Typically, the catalytic tests were performed in a glass reactor (25 mL) fitted with a
sampling septum and under magnetic stirring, containing β−pinene (3.74 mmol), solved
in alkyl alcohol (10 mL), heated to 333 K temperature.

Although a high selectivity toward α−terpinyl methyl ether (1A) has been achieved
(60%), other two types of products were also formed: fenchyl (1F) and bornyl (1E) methyl
ethers, which were also resulting from the rearrangement of carbon skeletal followed by
nucleophilic addition of methyl alcohol, and, secondly, isomerization products, such as
camphene (1D), limonene (1B), α−terpinolene (1C). Figure 13 displays the conversion and
selectivity reached in the reactions in the presence of Keggin HPAs or their cesium salts.
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Figure 13. Conversion and selectivity of Keggin HPAs or their cesium salts-catalyzed reactions
β−pinene reaction with methyl alcohol (adapted from ref. [36]).

The reaction in the presence of Cs2.5H0.5PW12O40 salt achieved the highest conver-
sion and selectivity toward α−terpinyl methyl ether (1A). This result was superior to
that achieved in the presence of phosphotungstic acid, which takes place in a homoge-
neous phase.

Figure 14 unequivocally shows that there is an optimum proportion between Cs+: H+

cations. This means that an excess of protons is prejudicial for the reaction; conversely, in
the absence of protons (i.e., Cs3PW12O40), only a poor conversion was attained.

Figure 14a shows that if a high acid sites number is present (i.e., H3PW12O40), a high
conversion is achieved. However, in this case, the catalyst is soluble. Moreover, it is possible
to note that the presence of a minimum amount of H+ ions is required for the success of the
catalyst (Figure 14b). It is noteworthy that the leaching of the catalyst is impacted by the
cesium load. If a low cesium content is present, the catalyst is more soluble.
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Figure 14. Effect of cesium load on the phosphotungstate salts on the conversion of β−pinene
reaction with methyl alcohol (adapted from ref. [36]).

The impacts of cesium load on the conversion and selectivity of β−pinene reactions
with methyl alcohol were also evaluated (Figure 15). This effect was evaluated for phospho-
tungstate catalysts. An increase in Cs load (i.e., 0.5 to 2.5 mol of Cs/mol catalyst) increased
the reaction conversions. Nonetheless, the Cs3PW12O40-catalyzed reaction reached the low-
est conversion. There is no direct relation between the cesium load and reaction selectivity,
however, it is possible to conclude that the 2.5:0.5 proportion of Cs: H is that that provided
the highest selectivity to goal product (α−terpinyl methyl ether (1A)).
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Figure 15. Effect of cesium load present in the phosphotungstate salts on the conversion and
selectivity of β−pinene reactions with methyl alcohol (adapted from ref. [36]).

The Cs2.5H0.5PW12O40-catalyzed etherification reactions of β−pinene were carried
with different alcohols (Scheme 16). High conversions, greater than 90%, were achieved
regardless of the alcohol used. The reaction selectivity to terpinyl alkyl ether had a linear
behaviour concerning the size of the carbon chain of alcohol: C1, C2, C3, and C4 alcohols
give 58%, 30%, 26% and 18% of selectivity. Although less reactive than primary alcohols,
secondary ones also provided terpinyl alkyl ether. Only the reaction with tert−butyl alcohol
did not give terpinyl ether.

The reusability of Cs2.5H0.5PW12O40 was also evaluated (Figure 16). This catalyst was
successfully recovered and reused three times in β−pinene reactions with methyl alcohol
without loss of activity or selectivity.
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Scheme 16. Impacts of alcohol on the conversion and selectivity of Cs2.5H0.5PW12O40-catalyzed
β−pinene reactions (adapted from ref. [36]).
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Figure 16. Conversions and selectivity toward α−terpinyl methyl ether achieved in successive cycles
of recovery and reuse of Cs2.5H0.5PW12O40 catalyst in β−pinene reactions with methyl alcohol
(adapted from ref. [36]).

Furfural is a valuable platform molecule readily accessible from biomass. It is the main
unsaturated chemical obtained in large-volume from biomass resources. Their derived are
essential to produce potential candidates to replace the fossil origin chemicals, with an
annual production of about 300,000 t/year [56,57].

The furfural chemistry is well established, and various derived have been widely
used in the industry, such as furfuryl alcohol, 5-hydroxymethyl furfural, decarbonylation
products such as furan and tetrahydrofuran, and condensation products of furfural with
alcohols [58,59].

This set of cesium catalysts was evaluated in furfural acetalization reactions with alkyl
alcohols [35]. Furfuryl acetals are valuable ingredients of synthesis and can be used as solvents
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or bioadditives. Figure 17 shows the conversion achieved in furfural acetalization reactions
with methyl alcohol carried out over Keggin HPAs or their cesium-exchanged salts.
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Figure 18. Effect of cesium load present in the phosphotungstate salts on the conversion and selec-

tivity of furfural condensation reactions with methyl alcohol (adapted from ref. [35]). 

Figure 17. Furfural acetalization reactions with methyl alcohol in the presence of Keggin HPAs or
their cesium-exchanged salts (adapted from ref. [35]).

Typically, the catalytic tests were carried out in a glass reactor (25 mL) fitted with a
sampling septum, under a magnetic stirrer, containing furfural and adequate alcohol. The
reactor temperature was adjusted to 298 K. Then, the reaction was started by adding of
solid catalyst [35].

Different from reactions with β−pinene, where various products were formed, herein
regardless of Keggin HPA or cesium salt only dimethyl furfuryl acetal was selectively obtained.

The reactions in the presence of the phosphotungstic catalysts (i.e., acid and cesium
salt) reached the highest conversion, besides the silicotungstic acid-catalyzed reaction. How-
ever, only the Cs2.5H0.5PW12O40 act as a heterogeneous catalyst, while the heteropolyacids
are soluble. For this reason, it was selected to evaluate other reaction parameters.

The effect of cesium load was assessed, and the main results are presented in Figure 18.
It is possible to see that the reaction conversions were not significantly affected by the
cesium load present in the catalyst.
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Figure 18. Effect of cesium load present in the phosphotungstate salts on the conversion and selec-

tivity of furfural condensation reactions with methyl alcohol (adapted from ref. [35]). 
Figure 18. Effect of cesium load present in the phosphotungstate salts on the conversion and
selectivity of furfural condensation reactions with methyl alcohol (adapted from ref. [35]).

Different from those observed in etherification reactions of β−pinene with methyl
alcohol, the Cs3PW12O40 salt was also an efficient catalyst in the condensation reaction of
furfural with this alcohol [35,36].

To evaluate the dependence of reaction concerning the catalyst load, a series of runs
were performed, and the results are displayed in Figure 19. It is possible to see that even in
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the absence of catalyst, the conversion achieves 20%. It can be explained due to the alcohol
excess, which shift the equilibrium toward products even without catalyst.
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Figure 19. Effect of catalyst load (mol % H+) on the conversion of Cs32.5H0.5PW12O40-catalyzed
furfural condensation reactions with methyl alcohol (adapted from ref. [35]).

An increase in catalyst load had a beneficial impact on the conversion; the trends
observed suggest a first-order dependence concerning H+ load (Figure 19).

The Cs2.5H0.5PW12O40-catalyzed furfural condensation reactions were also performed
with other alkyl alcohols (Scheme 17).
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Scheme 17. Impacts of alcohol on the conversion and selectivity of Cs2.5H0.5PW12O40-catalyzed
furfural condensation reactions (adapted from ref. [35]).

Different from verified in the β−pinene reactions with different alcohols, the con-
versions were affected by the alcohol nature. An increase in the size of the carbon chain
harmed the reaction conversions; the reactions with C1, C2, C3, and C4 alcohols, achieved
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92%, 74%, 69%, and 63% conversions, with furfuryl alkyl acetal yields of 94%, 90%, 90%,
and 89% (Scheme 18). Due to the high steric hindrance, the secondary alcohols were less
reactive, and the conversions achieved with sec-propyl and sec-butyl alcohols were 18%
and 16%, respectively. In addition, different from primary alcohols, the reaction was not
complete; it was stopped when the hemiacetal was obtained. It is also a consequence of
steric hindrance on the hydroxyl group of alcohol.

Chemistry 2023, 5, FOR PEER REVIEW 22 
 

 

conditions. Therefore, the Cs2.5H0.5PW12O40 catalyst was selected to study the effect of re-

action variables [37]. 

H+

Cs+

 

Scheme 18. Esterification reactions of levulinic acid with ethyl alcohol in the presence of Keggin 

HPAs or their partially−exchanged cesium salts (adapted from ref. [37]). 

In the presence of an acidic catalyst, the levulinic acid can be converted to ethyl le-

vulinate following the reaction pathway shown in Scheme 19 as reported in the literature 

[52]. 

C
s
+

Cs+

Cs+

C
s
+

C
s
+

 

Scheme 19. Probable reaction pathways of conversion of levulinic acid to ethyl levulinate (adapted 

from ref. [37]). 

Although the esterification type Fisher seems to be the most probable route, it is pos-

sible that depending on the strength of acidity of the catalyst, the levulinic acid suffers a 

lactonization process generating the angelic lactone or pseudo−ethyl levulinate, being 

then converted to ester. 

The impact of cesium load on the conversion and selectivity of levulinic acid esterifi-

cation reactions with ethyl alcohol was investigated, the main results are shown in Table 
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Levulinic acid (LA) is a chemical obtained from biomass classified as one of the
most promising building blocks of biorefinery, selected as one of the “Top 10” platform
chemicals [60]. LA is obtained through dehydration in acidic media of hexoses (i.e., acid
treatment of agricultural wastes and wastes of wood containing cellulose or hemicellulose),
which gives HMF that is subsequently hydrated. It is useful as a solvent, antifreeze,
resin, food flavouring agent, plasticizer, and starting material for the preparation of a
variety of industrial and pharmaceutical compounds [52]. Angelica lactone, succinic acid,
1,4-pentanediol, and methyl THF are only some examples of their valuable LA derived.

Beyond these products, esters of LA are also key compounds used in the production of
flavours, solvents, and plasticizers [61]. Moreover, the resulting ketoesters of the cyclization
of LA are substrates for a diversity of condensation and addition reactions [62]. LA esters
have properties that make them potential oxygenate additives to fossil fuels, improving
their octane and cetane numbers [63,64].

The typical catalysts used for LA esterification are mineral liquid acids such as sulfuric
and hydrochloric acids, however, serious drawbacks of these inexpensive catalysts are the
tedious work-up procedure, the steps of neutralization and purification that result in large
effluents generation, besides the difficult catalyst regeneration [65]. For these reasons, solid
catalysts are preferable due to their easy separation, recycling, and lower corrosiveness [66].

Most of the time solid-supported catalysts are the option, nonetheless, the water
generated as a co-product of the esterification reaction and the high polarity of the medium
led to the leaching of the active phase of solid-supported catalysts and are challenging to
overcome [67].

In this sense, Keggin HPAs Cs salts rise as an attractive option. Therefore, the activity of
Keggin HPAs and their exchanged-partially cesium salts was evaluated in the esterification
reactions of levulinic acid with alkyl alcohols. Levulinic esters are potential candidates for
bioadditive of fuel or even as biofuel [37]. Previously, we have found that the homogenous
acid H4SiW12O40 was an effective catalyst in levulinic acid esterification reactions at room
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temperature [68]. However, herein as the catalyst remained solid in solution, a high reaction
temperature was required.

Typically, catalytic runs were carried out in a sealed glass tube (25 mL), containing
levulinic acid (2.0 mmol) dissolved in an alkyl alcohol solution (8 mL) under magnetic
stirring, which was heated to 393 K in an oil bath. The addition of the acid catalyst
(1.2 mol %) started the reaction [37].

Scheme 18 summarizes the main results achieved in the esterification reactions of lev-
ulinic acid with ethyl alcohol, in the presence of Keggin HPAs or their partially exchanged
cesium salts. The selectivity toward ethyl levulinate, an ester with a carbon chain in the
range of automotive liquid fuel is also highlighted.

The conversions and selectivity reached were higher for the reactions in the presence of
tungsten catalysts (silico- or phosphotungstic). Although the highest conversion (i.e., 97%)
has been attained on the H3PW12O40-catalyzed reaction, it occurred in homogenous condi-
tions. Therefore, the Cs2.5H0.5PW12O40 catalyst was selected to study the effect of reaction
variables [37].

In the presence of an acidic catalyst, the levulinic acid can be converted to ethyl levuli-
nate following the reaction pathway shown in Scheme 19 as reported in the literature [52].
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Scheme 19. Probable reaction pathways of conversion of levulinic acid to ethyl levulinate (adapted
from ref. [37]).

Although the esterification type Fisher seems to be the most probable route, it is
possible that depending on the strength of acidity of the catalyst, the levulinic acid suffers a
lactonization process generating the angelic lactone or pseudo-ethyl levulinate, being then
converted to ester.

The impact of cesium load on the conversion and selectivity of levulinic acid esterifica-
tion reactions with ethyl alcohol was investigated, the main results are shown in Table 1.
The cesium load had a minimum impact on the conversion of Levulinic acid or ethyl
levulinate selectivity. All of the cesium catalysts achieved conversions and selectivity equal
to or greater than 90% (Table 1).
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Table 1. Effects of cesium load on the conversion and selectivity of levulinic acid esterification
reactions with ethyl alcohol in the presence of phosphotungstic acid or their exchanged-partially
cesium salts (adapted from ref. [37]) a.

Catalyst Conversion of Levulinic Acid Ethyl Levulinate Selectivity

H3PW12O40 97 97
Cs0.5H2.5PW12O40 96 96

CsH2PW12O40 96 95
Cs1.5H1.5PW12O40 95 94

Cs2HPW12O40 94 95
Cs2.5H0.5PW12O40 94 97

Cs3PW12O40 85 87
a Reaction conditions: levulinic acid (2 mmol), ethyl alcohol (8 mL), dodecane (internal standard), catalyst
(1.2 mol%), temperature (393 K), time (6 h).

The Cs2.5H0.5PW12O40-catalyzed levulinic acid esterification reactions were also car-
ried out with other alkyl alcohols (Scheme 20).
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An increase in the size of the alcohol carbon chain had a minimum impact on the
conversion of levulinic acid esterification reactions. On the other hand, the conversions
achieved in the reactions with secondary alcohols were significantly lower than primary
ones. Conversely, regardless of the alcohol used, the selectivity toward alkyl levulinate was
always equal to higher than 90% (Scheme 20) [37].

4.2. Keggin HPA Cesium Salts as Catalysts in Oxidation Reactions

Patel and Patan reported the synthesis and detailed characterization of a Keggin-type ce-
sium salt of transition metal-substituted phosphomolybdates, Cs5[PCo(H2O)-Mo11O39]·6H2O
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and Cs5[PMn(H2O)Mo11O39]·6H2O [69]. Those authors evaluated the catalytic activity of
cesium salts in oxidation reactions in the liquid phase of styrene using hydrogen peroxide
as the oxidant. Cesium salts doped with Ni, Mn or Co were the catalysts assessed. Those
authors assessed the catalytic activity of these salts, and the main results are in Scheme 21.
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Scheme 21. Styrene oxidation with hydrogen peroxide over undoped and metal-doped cesium salts
(adapted from ref. [69]).

The high TON, conversion and selectivity achieved in the reactions over these salts
demonstrate that they are highly efficient heterogeneous catalysts. All of these salts were
stable under reaction conditions and reused without loss of catalytic activity. Kinetic studies
found the values of activation energy equal to 62, 76 and 67 kJ/mol for the reactions over
Cs5PMo11CoO39, Cs5PMo11MnO39 and Cs5PMo11NiO39, respectively [52]. The same au-
thors used manganese-doped cesium phosphotungstate salt catalysts in oxidation reactions
of styrene as different oxidants [70,71].

The kinetic curve in Figure 20 shows that this catalytic combination was less efficient than
that using manganese-doped cesium phosphomolybdate salt and hydrogen peroxide [71].
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Figure 20. Cs5PW11MnO39-catalyzed styrene oxidation (adapted from ref. [71]). Reaction condi-
tions: Styrene (100 mmol), catalyst amount (25 mg), oxidant (O2), Co-oxidant-(TBHP; 2 mmol),
temperature (353 K).
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Another example of the use of cesium salts as catalysts in oxidative transformations
was reported by Li and Zhang, which asses the oxidative dehydration of glycerol to acrylic
acid over vanadium-substituted cesium salts of Keggin HPAs [72]. Scheme 22 simply
describes this reaction.
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Scheme 22. Oxidative dehydration of glycerol to acrylic acid.

Figure 21 shows the results achieved in reactions carried out over vanadium-doped
cesium phosphotungstate or phosphomolybdate. All the reactions were carried out using
catalyst (0.2 g), temperature (613 K), carrier gas, 5% O2/He (20 mL min−1), feed (20 wt. %
glycerol in H2O (0.5 mL h−1; WHSV: 0.5 h−1). 1 h time.
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metal−doped cesium phosphomolybdate salts (adapted from ref. [73]. 
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Figure 21. Oxidative dehydration of glycerol to acrylic acid over vanadium-doped cesium phospho-
tungstate or phosphomolybdate (adapted from ref. [72]).

The vanadium-doped cesium phosphomolybdate salts were more efficient catalysts
than phosphotungstate, reaching higher conversions and selectivity to acrylic acid. Sim-
ilarly, an increase in VO load had also a positive effect. It suggests that the strength of
acidity of the catalyst plays a key role in these reactions.

Patan and Patel assessed the oxidation of alcohols in the presence of (Co, Mn, Ni)-
substituted Keggin-phosphomolybdates catalysts using hydrogen peroxide [73]. Figure 22
shows that although the reactions in the presence of Cs5PMo11CoO39 or Cs5PMo11NiO39
salts have achieved the same conversions and TON, the Co-doped salt was less efficient to
promote the oxidation of benzaldehyde to benzoic acid.

Table 2 summarizes the main reactions catalyzed by cesium heteropolyacid salts (i.e., acid-
catalyzed, one-pot, hydrogenation, hydrolysis, esterification, acetylation, oxidation).
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Table 2. Application of Cs-salts HPAs in different catalytic processes.

Acidic Catalysis

Reaction Catalysts Reference

Furfural condensation reactions with alkyl alcohols Cs2.5H0.5PW12O40 [35]
β−pinene etherification with alkyl alcohols Cs2.5H0.5PW12O40 [36]
Levulinic acid esterification with alkyl alcohols Cs2.5H0.5PW12O40 [37]
Alkylation of toluene with benzyl alcohol Cs3PMo12O40 [43]
Hydrolysis of cellulose Cs2.5H0.5PW12O40 [48]

Glycerol esterification with acetic acid CsnH3−nPX12O40 (n = 1.0–2.5) and CsnH4−nSiY12O40,
where X = W6+, Mo6+ and Y = W6+ [54]

Glycerol acetylation and esterification reactions with
acetic anhydride and acetic acid Cs2.5H0.5PW12O40 [74]

Transesterification of glycerol tributyrate with methanol Bimodal cesium hydrogen salts of 12-tungstosilicic
acid CsxH4−xSiW12O40

[75]

Solvent-free self-condensation of levulinic acid CsxH4−xSiW12O40 [76]

Hydrolysis of cellulose Cs4−xHxSiW12O40 (x = 3 and 3.5), Cs3−xHxPMo12O40
and Cs3−xHxPW12O40 (x = 2 and 2.5) [77]

Alkylation of toluene with benzyl alcohol Nano Cs2.5H0.5PW12O40 [78]
Prins cyclization of isoprenol and isovaleraldehyde
to Florol®. Cs2.5H0.5PW12O40/SiO2, Cs2.5H0.5PW12O40 [79]

Oxidative reactions

Styrene oxidation Mn-doped cesium phosphomolybdate salts [71]
Alcohols oxidation with hydrogen peroxide (Co, Mn, Ni)-substituted Keggin-phosphomolybdates [73]

Hydrogenation reactions

Styrene hydrogenation Cesium salt of iron substituted phosphomolybdate [46]

One-pot reactions

Oxidative dehydration of glycerol to acrylic acid vanadium-doped cesium phosphotungstate or
phosphomolybdate [72]

Synthesis of one-pot two-component 1,3,4-oxadiazole
derivatives Cs3PW12O40 [80]

One-pot synthesis of formic acid via
hydrolysis–oxidation of potato starch

Cs3.5H0.5PW11VO40, Cs4.5H0.5SiW11VO40,
Cs3.5H0.5PMo11VO40, Cs2.5H0.5PMo12O40

[81]
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5. Conclusions

The main methods of synthesis, characterization and catalytic applications of Keggin-
type heteropolyacid cesium salts were discussed. A detailed description of the main routes
to synthesize the various types of cesium heteropoly salts was performed, including sat-
urated, lacunar, and metal-doped salts. Afterwards, the characterization of salts total
or partially cesium exchanged was addressed, with emphasis on infrared spectroscopy,
powder X-rays diffraction patterns, thermal analyses, surface area, volume and pores dis-
tribution, and measurements of strength and number of acid sites through potentiometric
titration curves. Phosphotungstic, phosphomolybdic, and silicotungstic acids and their
cesium salts were the goal catalysts. The use of these salts as heterogeneous catalysts in
acid-catalyzed reactions (i.e., esterification, etherification, acetalization, dehydration) or
oxidative transformations (oxidative esterification, oxidation) was addressed herein. This
review discussed the most pertinent heterogeneous catalytic systems based on Keggin
HPA Cs salts. The focus was to correlate the physicochemical properties of these salts with
their catalytic activity. Cesium heteropoly salts are an alternative to the traditional soluble
mineral acids as well as to solid-supported catalysts.
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