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Abstract: Crystals of two new inorganic uranyl silicates, Cs[(UO6)2(UO2)9(Si2O7)F] (1) and
Rb2[(PtO4)(UO2)5(Si2O7)] (2), were produced from melts in evacuated silica tubes. Their structures have
been solved by direct methods: 1 is trigonal, P-31c, a = 10.2040(3), c = 17.1278(5) Å, V = 1544.45(10) Å3,
R1 = 0.042; 2 is tetragonal, P4/mbm, a = 16.0400(24), c = 3.9231(6) Å, V = 1009.34(10) Å3, R1 = 0.045.
1 is the first example of cation–cation interactions between the uranyl polyhedra in uranyl silicates.
Therein, UVI adopts three coordination modes, UO6 octahedra, UO6F, and UO7 pentagonal bipyra-
mids, with the latter sharing common edges to form U2O12 dimers. Three dimers associate into
six-membered rings via cation–cation interactions. The structure of 1 can be described as a complex
uranyl fluoride silicate framework with channels filled by the U1 atoms and disordered Cs+ cations.
2 represents a new type of topology never observed before among the structures of uranyl compounds;
it is also a first complex uranium platinum oxide. Therein, the UO6 tetragonal bipyramids share
edges to form chains. Five such chains are stitched into a complex ribbon via the silicon polyhedra.
The ribbons are connected into a framework by the PtO4 squares; rubidium atoms are located in the
channels of the framework.

Keywords: uranium; silicates; platinates; cation–cation interactions; framework structures

1. Introduction

Silicates of hexavalent uranium are commonly observed in the oxidation zones of
uranium deposits [1]; they are assumed to contribute to the migration of uranium in
geological media [2]. To date, there are as many as 21 mineral species containing tetra-
and/or hexavalent uranium cations and silicate anions [3]. Strong metamictization of
mineral samples essentially hinders their studies by diffraction methods [4]. During
model experiments on uraninite oxidation, the KNa3[(UO2)2(Si4O10)2](H2O)4 compound
was found [5]. Thus, it was demonstrated that uranium silicates can form upon the
interaction of uranium-containing wastes with the walls of geological repository. An
important property of uranium silicates is the possibility of cation exchange, demonstrated
on the samples of boltwoodite [6,7] and cuprosklodowskite [8]. It can play an important role
in immobilization or, reversely, the release and subsequent migration of fission products,
e.g., 137Cs.

In contrast to minerals, synthetic uranium silicates exhibit more diverse structural
chemistry due to the larger ranges of experimental conditions and compositions studied;
last but not the least, note the ability of the SiO4 tetrahedra to polymerize into disilicate
groups, chains, layers, and frameworks [8–15]. Microporous uranyl silicates are of particular
interest as potential absorbents and ion exchangers, as well as molecular sieves [13]. Many
of these intriguing compounds have been produced using flux techniques [16,17].
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The topological diversity of uranium compounds is underpinned by the relatively non-
rigid coordination of hexavalent uranium, as well as varied modes of polyhedra linkage.
In the majority of its inorganic compounds, hexavalent uranium forms a uranyl cation
coordinated, in its equatorial plane, by four to six ligands [18]. However, cases are known
when the coordination of UVI is closer to regular octahedral [19] or a so called “tetraoxide
core” is formed [20]. Most commonly, the uranium polyhedra share their equatorial vertices
or edges to each other. The cases interactions via the axial oxygen atoms of uranyl cations
are very rare [19,21,22].

Among the uranyl compounds with tetrahedral TO4 cations, silicates form a rela-
tively small but structurally diverse group. Silicates are often isostructural with reported
germanates [17], yet the structural chemistry of the former is richer due to the size dif-
ference between the GeO4 and SiO4 species, the larger condensation degree of silicate
tetrahedra, and better size agreement between the Si2O7 group and the equatorial edge of
the uranium polyhedron [11].

In the current paper, we report two new complex uranyl silicates:
Cs[(UO6)2(UO2)9(Si2O7)F] (1) and Rb2[(PtO4)(UO2)5(Si2O7)] (2).

2. Materials and Methods
2.1. Synthesis

Red crystals of 1 were obtained during a high-temperature synthesis starting from
120 mg U3O8 (Vecton, 99.7%), 24 mg of CsCl (Vecton, 99.7%), 24 mg of RbCl (Vecton,
99.7%), 14 mg of SiO2 (Vecton, 99.7%), and 60 mg of PbO (Vecton, 99.7%). This mixture
was transferred to a silica tube; then, 10 µL of HF was added, after which the tube was
evacuated and sealed. The tube was heated to 900 ◦C at a rate of 100 ◦C/h, soaked for 50 h,
and cooled to room temperature at a rate of 10 ◦C/h.

Red needle crystals of 2 were obtained during a high-temperature synthesis starting
from 100 mg U3O8 (Vecton, 99.7%), 15 mg of RbCl (Vecton, 99.7%), 14 mg of SiO2 (Vecton,
99.7%), and 30 mg of PbO (Vecton, 99.7%). This mixture was first placed in a platinum
crucible and then transferred to a silica tube, evacuated, and sealed. The tube was heated
to 950 ◦C at a rate of 100 ◦C/h, soaked for 100 h, and cooled to room temperature at the
rate of 5 ◦C/h.

2.2. Single-Crystal X-Ray Experiments

Single-crystal X-ray data were collected using a Rigaku XtaLAB Synergy-S diffrac-
tometer equipped with a PhotonJet-S detector operating with MoKα radiation at 50 kV
and 1 mA. A single crystal of each phase was chosen, more than a hemisphere of data was
collected with a frame width of 0.5◦ inω, and 10 s were spent counting for each frame. The
data were integrated and corrected for absorption by applying a multi-scan type model
using the Rigaku Oxford Diffraction programs CrysAlis Pro. Tiny needle crystals of 2 are
unstable under an X-ray beam.

The structures of 1 and 2 were solved and successfully refined with the use of the
SHELX software package [23]. The atom coordinates and thermal displacement parameters
for each atom were collected in the corresponding cif files; experimental parameters are
provided in Table 1. Unit cell parameters are presented for a temperature of 300 K.

2.3. Elemental Analysis

Semi-quantitative elemental analyses were measured using a field emission scanning
electron microprobe (LEO EVO 50) equipped with an Oxford INCA Energy Dispersive
X-ray Spectrometer (EDX). EDX data were collected from several crystals of each compound
and demonstrate that Pb and Cl were not incorporated, while the presence of all the
elements reported has been confirmed.
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Table 1. Crystallographic parameters and structure refinement details for Cs[(UO6)2(UO2)9(Si2O7)F] (1)
and Rb2[(PtO4)(UO2)5(Si2O7)] (2).

Compound 1 2

Crystal system trigonal tetragonal
Space group P-31c P4/mbm

a, Å 10.2040(3) 16.040(2)
c, Å 17.1278(5) 3.9231(6)

V, Å3 1544.45(10) 1009.3(3)
F(000) 2800 1936

Density 7.351 7.815
Radiation, wavelength, Å MoKα, 0.71073

Ranges of h, k, l
–13 ≤ h ≤ 12,
–13 ≤ k ≤ 12,
–22 ≤ l ≤ 21

−18 ≤ h ≤ 18,
−18 ≤ k ≤ 18,
−4 ≤ l ≤ 4

Number of reflections 8347 15,047
Number of unique reflections 1093 525

2θmin–2θmax 3.313–27.987 1.79–24.63
Rint/Rsigma 0.029/0.043 0.029/0.094

R1 [F > 4σ(F)]/wR1 0.029/0.053 0.045/0.12
R2/wR2 0.039/0.091 0.064/0.13

GOF 1.162 1.151
CCDC 2,214,650 2,214,660

3. Results

Cs[(UO6)2(UO2)9(Si2O7)F] (1). There are three different types of uranyl polyhedra in
the structure of 1: U1O6, U2O6F and U3O7. The U1 atoms (Figure 1a) are coordinated by
six oxygen atoms (2.066(7) Å × 3 and 2.108(7) Å × 3), thus centering slightly distorted octa-
hedra. Hence, U1 does not form the uranyl cation but rather contributes to the anionic part
of the structure forming the [UO6]6− species. The U2 (Figure 1b) and U3 (Figure 1c) form
typical uranyl (Ur) cations (<U-Oap> = 1.769(7) and 1.799(7) Å, respectively). Ur(2) in the
equatorial plane is coordinated by four oxygen (<U-Oeq> = 2.433 Å) and one fluorine atom
to form Ur(2)O4F polyhedra. Ur(3) is coordinated by five oxygens (<U-Oeq> = 2.359 Å).

One symmetrically independent silicon atom is tetrahedrally coordinated (Figure 1d)
with <Si-O> = 1.642 Å. Two SiO4 tetrahedra share a common O6 oxygen atom to form the
Si2O7 disilicate group.

The cesium cations are disordered over two partially occupied sites. The bond valence
sums (5.70, 5.76, 5.97, 1.17, and 3.70 v.u. for U1, U2, U3, Cs1, and Si1 atoms, respectively),
calculated using the parameters from [24], correlate well with the formal valences of
the atoms.

Two Ur(3)O5 bipyramids share common O2-O2 edges (Figure 1e,f) to form a Ur(3)2O8
dimer. Three such species are linked via O3 vertices to form six-membered rings (Figure 1f)
with U1 atom in the center. The O3 vertex comprises, on the one hand, the apical (uranyl)
vertex of one Ur(3)O5 and, on the other hand, an equatorial vertex of another Ur(3)O5
polyhedra. In other words, the dimers are linked via the cation–cation interactions.
Three Ur(2)O4F species are linked via a common fluoride vertex into a Ur(2)3O12F trimer
(Figure 1g). Si2O7 disilicate groups are attached to Ur(2)3O12F moieties along the c axis
(Figure 1h).

The structure of 1 can be described as a complex uranyl fluoride silicate framework
(Figure 2a,b) with channels filled by the U1 atoms and disordered Cs+ cations. The frame-
work can be split into two blocks (Figure 2c). The Ur(3)O5 species, which are linked via
the cation–cation interaction and Si2O7 groups, form the blocks designated here as A in
Figure 2d, wherein the voids are filled by U1 atoms. The Ur(2)3O12F groups are arranged
in block B with large voids occupied by Cs+ cations (Figure 2e).
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Rb2[(PtO4)(UO2)5(Si2O7)] (2). The structure of 2 contains two symmetrically indepen-
dent U6+ cations, which form linear (UO2)2+ uranyl ions with the U6+-O bond lengths of
ca. 1.76 Å (Figure 3a,b). The Ur ions are coordinated by four oxygen atoms each, arranged
in the equatorial planes of the tetragonal bipyramids. The coordination environments
of the Si sites are strongly distorted due to the disorder. According to the results of the
stable structure solution, the Si ions are coordinated by three oxygen atoms (Figure 3c) at
equatorial plane (<Si-O> = 1.548 Å) and by two half occupied oxygen atoms at vertical
plane (Si-O = 1.962(1) Å). The former distances are somewhat shorter, while the latter are
longer that those expected for the true “[SiO5]6−” species (1.60 Å [25]). Most likely, the true
structure contains two equiprobable “up” and “down” orientations of the SiO4 tetrahedra,
forming disordered disilicate groups (note the one-half occupancy of the O7 site); however,
all attempts to split the silicon position into two tetrahedral sites did not provide a stable
refinement. Compared to germanium, silicon contributes less to the overall scattering
dominated by the uranium, platinum, and cesium cations, so its positioning, particularly
in partially occupied sites, faces more difficulties and is less precise.
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Figure 1. Cation coordination (a–d) in the structure of Cs[(UO6)2(UO2)9(Si2O7)F]. Linkage of the
Ur(3)O5 and U1O6 in the ball-and-stick (e) and polyhedral representation (f) (the uranyl bonds are
shown in blue). Linkage of the Ur(2)O4F polyhedra sharing common F atom in the center thus
forming Ur(2)3O12F trimers (g). An arrangement of the Si2O7 and Ur(2)3O12F groups along the
c axis (h).
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Figure 3. Cation coordination (a–d) in the structure of Rb2[(PtO4)(UO2)5(Si2O7)]. The occupancy of
the O7 site is 50%. The [(UO2)5(Si2O7)]4+ chains (e). Linkage of the UrO2 chains via the vertices of
the silicate tetrahedra (f,g).
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The platinum site (Figure 3d) is coordinated by four oxygen atoms (<Pt-O> = 2.046 Å)
strongly preferred by Pt2+. The bond valence sums (2.24, 6.06, 5.77, 0.97, and 3.78 for Pt1,
U1, U2, Rb1, and Si1, respectively), calculated using the parameters from [24], correlated
well with the formal valences of the atoms.

The uranium and silicon polyhedra share vertices to form [(UO2)5(Si2O7)]4+ ribbons
(Figure 3e). The Ur(1)O4 species share common edges to form the Ur(1)O2 chains, which
link to the silicate tetrahedra via the O4 vertex. Similarly, the Ur(2)O4 species share edges
to form four Ur(2)O2 chains additionally linked via O5 and O6 oxygens of the silicate
units (Figure 3f). Each O5 and O6 vertex therefore belongs to two uranium and one silicon
polyhedra. The O7 position is unlikely to be coordinated to the uranium cations. Therefore,
each silicon polyhedron is linked to six uranium cations whose coordination mode has not
been observed before; the topology of the uranyl-silicate ribbons is also new and unique.
These [(UO2)5(Si2O7)]4+ ribbons in 2 are aligned alternatingly (Figure 4) and linked to the
framework by the PtO4 squares. The remaining channels host the rubidium cations.
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4. Discussion

The framework in 1 is structurally close to those in the structures of known uranyl ger-
manates [19]: NH4(UO6)2[(UO2)9(GeO4)(GeO3(OH))], K(UO6)2[(UO2)9(GeO4)(GeO3(OH))],
Li3O(UO6)2[(UO2)9(GeO4)(GeO3(OH))], and Ba(UO6)2 [(UO2)9(GeO4)2]. All of these com-
pounds, including 1, adopt the same space group, and the differences in the cell edges do
not exceed 0.2 Å; given these small differences, the metrics of 1 are most close to the Ba
uranyl germanate. This is not surprising given that positive differences in the radii of Rb+

and Ba2+ are compensated for by the negative differences in the radii of Si4+ and Ge4+. The
differences mainly concern the coordination of the tetrahedral cation (Figure 5). In the NH4,
K, and Li compounds, the coordination of germanium is described as trigonal pyramidal
so that the chains of such pyramids are stretched along [001]; in addition, one vertex is
protonated. Therein, the Ge sites are disordered (Figure 5a), the mean equatorial bond
length is 1.695–1.777 Å, and the axial distances range from 1.767 to 2.615 Å.
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Figure 5. Assemblage of the TO4 (T = Si, Ge) tetrahedra in the structures of
NH4(UO6)2[(UO2)9(GeO4)(GeO3(OH))]; K(UO6)2[(UO2)9(GeO4)(GeO3(OH))]; and
Li3O(UO6)2[(UO2)9(GeO4)(GeO3(OH))] (a), Ba(UO6)2[(UO2)9(GeO4)2] (b), 1 (c), and 2 (d).

In the structure of Ba(UO6)2[(UO2)9(GeO4)2] (Figure 5b), the germanium sites are
ordered so that [Ge2O7]6− is clearly visible, and the Ge-O bond lengths range from
1.741–1.752 Å for the terminal oxygens to 2.548 Å for the bridging atoms. A similar pat-
tern is observed for disilicate anion in 1: the coordination of silicon atoms is a nearly
regular tetrahedral with a mean bond length of 1.640(7) Å and O-Si-O angles of 110.6(3)
and 108.3(3)◦. The F1 sites reside between the disilicate groups; the Si1-F1 separation of
2.640(7) Å (Figure 5c) can be considered nonbonding. In 2 (Figure 5d), the environment of
silicon is similar to those of germanium in the structures of uranyl germanates of monova-
lent cations. As expected, all distances decrease when proceeding from the germanates to
the silicate.

Our results illustrate once more that the use of non-ambient conditions is a powerful
tool for the preparation of unusual (sometimes even unexpected) compounds. While
the preparation of a silicate analog of complex germanates, 1, does not seem very much
surprising, the synthesis of 2 starts a new page in the book of uranium oxide compounds.

By now, there are two compounds containing uranyl cations and platinum, yet the lat-
ter is in the state of complex anion, the most common finding in the chemistry of platinum:
K3((UO2)2(OH)(Pt(CN)4)2)2(NO3)(H2O)1.5 [26] and ((U2(H2O)10O)(Pt(CN)4)3)(H2O)4 [27].
All of the other compounds of U and Pt are oxygen-free intermetallics. We therefore suggest
that under conditions close to extreme (high temperatures and pressures, like those in
synthesis of 2), even the platinum metal becomes sufficiently reactive. It is as likely that the
simultaneous presence of lead and halide also enhances the reactivity of platinum, maybe
via the intermediate formation of its halides: our recent study of the thermal behavior of
a Pb7O6Br2 oxybromide resulted in the formation of PbPt2O4 traces above 800 ◦C [28]. The
formation of 2 demonstrates the possibility of preparing other, even less usual, compounds
of platinum under severe conditions. On the other hand, structural analogs of 2, besides
the evident replacement of Si by Ge and Rb by Cs or K, may be also obtained using other
cations with strongly preferred square planar oxygen coordination, with Pd2+ being the
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most likely candidate. Square planar coordination is also common for Cu2+, but its ge-
ometry is essentially more flexible due to the low crystal field stabilization energy (3d9

configuration). The structure of 2 is also a very rare, if not unique, example of incorporating
square planar species into structures of uranyl derivatives with tetrahedral anions. By
using appropriate heterovalent substitutions, it is also likely that related architectures can
be pursued using other cations with preferred square planar oxide coordination such as
Cu3+ or Ag3+ in oxidizing media or even Ni+ in reducing medium. On the other hand, the
production of such unusual species can be further enhanced by using noble metal oxides
as precursors and strongly oxidizing and basic conditions, as suggested by the successful
synthesis of tetravalent platinum borate [29].

5. Conclusions

The new compound 1 is the first example of uranium silicate wherein the uranium
polyhedra are linked via cation–cation interactions; it is isostructural to that series of
germanium compounds prepared hydrothermally at 220 ◦C. In contrast, the synthesis of 1
was performed at a higher temperature (900 ◦C) in evacuated silica tubes, most likely from
the melt. As a result, the silicon positions in 1 are fully ordered, and the hydroxide group is
replaced by fluorine. Upon the synthesis of 2, fluoride was not introduced, which resulted,
under similar conditions, in the formation of a compound with a poorer order of the silicate
sublattice; the most exciting is the incorporation of platinum in positive oxidation state.
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