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Abstract: Considering the wide interest in (benz)imidazolium-based drugs, we here report our
study on a benzimidazolium-based organic cage as potential antimicrobial and antifungal agent.
Cytotoxicity studies on a human derived cell line, SH-SY5Y, showed that the cage is not cytotoxic at
all at the investigated concentrations. Anion binding studies demonstrated that the cage can bind
anions (chloride and nitrate, in particular) both in organic solvent and 20%v D2O/CD3CN mixture.
The cage was also tested as anionophore, showing a weak but measurable transport of chloride
and nitrate across LUVs vesicles. Nonetheless, the compounds have antimicrobial activity towards
Staphylococcus aureus (Gram-positive bacteria). This is probably the first organic cage studied as
anionophore and antimicrobial agent.

Keywords: organic cage; anion binding; anion transport; imidazolium-based receptor; antimicro-
bial activity

1. Introduction

Over the last decades, anion receptors have raised great interest for applications in
e.g., molecular recognition and sensing, [1–4] extraction and separation processes, [5–7]
transport across membranes [8–10]. This latter application is particularly relevant in
the biomedical field, considering the number of pathologies connected to disfunctions
of natural anion channels or related to anomalies in transmembrane anion transport pro-
cesses [11–13]. Among molecular receptors, cage-like hosts are of particular interest because
their cavity can be designed for the selective encapsulation of target guests, [14] such as
relevant biological anions. Once encapsulated in the cage’s cavity, the anion can be trans-
ported through biological membranes, being protected by the cage skeleton from the attacks
from enzymes or other reactive species [15–17]. This feature makes cage-like compounds
suitable candidates for future applications, including the development of drugs [16]. In
this work, we evaluated the potential application of a benzimidazolium organic cage as
anion transporter and antimicrobial agent.

The possibility to exploit anion transporters to generate imbalances of anion concen-
tration across the cell membranes is considered promising for the development of new
antimicrobial drugs. Within this context, imidazolium and benzimidazolium salts have
shown promising results as ionophores, being capable of generating anion imbalances in
living microorganisms [18]. Tests on model membrane liposomes, as well as membrane
depolarization studies and scanning electron microscopy on living bacteria, showed that
the action of (benz)imidazolium-based antimicrobials is connected to the destabilization
of bacterial membrane [19,20]. The high antimicrobial effect observed with Gram-positive
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bacteria, as compared to Gram-negative ones, was attributed to the different composi-
tion of the bacterial membrane. In particular, the double layer of phospholipids, which
constitutes the membrane of Gram-negative bacteria, can offer a better resistance to this
type of anionophore [8,17,20,21]. Most of the proposed benzimidazolium-based antimi-
crobials showed minimal inhibitory concentrations and low cytotoxicity towards human
cells. However, the toxicity of some imidazolium salts was considered useful for different
applications, such as the development of antitumoral drugs [11,22] or antifungal agents.

Among molecular hosts, imidazolium-based systems have attracted considerable at-
tention as anion receptors, due to the strong H-donor tendencies of the (C–H)+ bond [23–30].
The arrangement of multiple C–H donors, such as imidazolium groups, around the cavity
of bowl-shaped receptors, macrocycles, or cages, can generate a synergistic effect that
increases the receptor’s affinity towards target anionic guests. This strategy can lead to the
selective binding of anions in competing media, including organic-water mixtures (e.g.,
acetonitrile/water 4/1, v/v) [24].

A few years ago, our group investigated the hexafluorophosphate salt of a tris
(imidazolium)-based organic cage, as a receptor for halides in both pure acetonitrile and
acetonitrile/water (98/2, v/v) mixture [31]. These studies showed that the cage had a
strong affinity for chloride, and that the binding of this anion was accompanied by a
significant rearrangement of the cage conformation. A similar chloride-induced conforma-
tional change was hypothesized for the tris (benzimidazolium)-based analogue, i.e., 13+

(Scheme 1).
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In this work, we focused on the 13+ receptor, that was isolated as both hexafluorophos-
phate and nitrate salts, i.e., 1(PF6)3 and 1(NO3)3. Synchrotron X-ray diffraction studies
on single crystals of 1(PF6)3 allowed us to determine the cage structure. The affinity of
13+ for the nitrate anion was then investigated on 1(PF6)3 by titration in pure acetonitrile.
The binding of chloride was instead investigated in a more competing medium (i.e., 20%v
D2O/CD3CN) using 1(NO3)3 for the titration with the anion. Considering the wide interest
in (benz)imidazolium-based drugs, we performed a series of experiments on 1(PF6)3 and
1(NO3)3 to test the cytotoxicity of these compounds, and their potential application as anti-
fungal and antibacterial agents. Preliminary investigations on 1(NO3)3 as anion transporter
across membranes were also performed.

2. Materials and Methods

The 1(PF6)3 compound was prepared using a procedure already described by our
group [31]. 1(PF6)3 has a good solubility in acetonitrile (5 mM), but a low solubility in water
(<0.1 mM). The solubility in aqueous solution was increased (up to 0.01 M) using nitrate as
counterion. The 1(NO3)3 compound was prepared from the corresponding bromide salt
by anion exchange. Details on preparation and characterization of 1(NO3)3 are reported
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in the S.I. Experimental details on single crystals X-ray diffraction analysis, UV-vis. and
NMR titrations and characterization, cytotoxicity, antifungal and antimicrobial tests, anion
transport studies are available in the Supplementary Information.

3. Results and Discussion
3.1. Crystals of 1(PF6)3

Single crystals of 1(PF6)3 were obtained by slow diffusion of diethyl ether into an ace-
tonitrile solution of the compound. The structural investigation through Synchrotron X-ray
diffraction (SCXRD) revealed that the cage molecule assumes a flattened conformation like
that observed in the trisimidazolium analogue [31]. The tertiary amines point their lone pair
outside the cage, and the separation between the Ntert atoms measures 6.06 Å. In this confor-
mation, the positively charged arms extend apart, minimizing electrostatic repulsions. With
respect to the imidazolium-based system, the tribenzylamines are not eclipsed, and there is
no symmetry plane dividing the molecule. On the contrary, the tribenzylamine-based plat-
forms are almost staggered (dihedral angles between 60◦ and 67◦), and twisted in opposite
directions (i.e., clockwise/counter-clockwise). In the crystal structure of 1(PF6)3, the cage
cavity seems empty. Hence, the counter-anions are located outside the cage, interacting
with Caryl–H and (C–H)+ H-donors of the benzimidazolium-containing arms.

Indeed, the cage assumes an almost flattened conformation. However, looking more
in depth at its crystal structure, it is evident how the conformation of the cage allows
cooperative host-guest interactions of the type C–H···F with C···F distances ranging from
3.12 to 3.69 Å. Figure 1 shows PF6

− anions anchored on the narrow window of the cage.
Likely, the short separation between the Ntert atoms (of 6.06 Å) and the consequent small
virtual diameter is not enough to allow the inclusion of PF6

− anions, hosted and stabilized
by weak interactions in the most accessible pocket (Figure S5).
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3.2. Spectroscopic Studies on 13+ with Anions

The NMR characterization of 1(PF6)3 in pure CD3CN and, in particular, the chemical
shifts of Caryl–H and (C–H)+ protons in the 1H-NMR spectrum (i.e., H1 and Ha, respectively,
in Figure S3) suggest that the hexafluorophosphate anion stays outside the cavity. We can
hypothesize that the cage assumes a flattened conformation like that in the crystalline
state (as also found for the imidazolium-based system), with the benzimidazolium groups
oriented far from each other, to minimize electrostatic repulsions.

On the other hand, the 1H-NMR spectrum of 1(NO3)3 in pure CD3CN indicates the
presence of H-bonding interactions between the 13+ cage and nitrate (see Figure S6). In fact,
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the peaks of Caryl–H and (C–H)+ protons are significantly downfield shifted compared to
the spectrum of 1(PF6)3. In addition, 1H-NMR and NOESY spectra resemble those recorded
on the 1:1 complex of the imidazolium-based analogue cage with chloride [31]. These
observations are consistent with the hypothesis that at least one of the nitrate anions [of
the 1(NO3)3 salt] is strongly bound by the receptor, involving Caryl–H and (C–H)+ in the
binding. As expected, if D2O is added into the NMR tube, the peaks of Caryl–H and (C–H)+

protons shift towards the positions observed in 1(PF6)3, suggesting that in CD3CN/D2O
mixture the interaction of nitrate with the cavity is weakened. However, the overall results
indicate that nitrate can compete with chloride in the binding of the cage.

The formation of a stable 1:1 complex between 13+ and nitrate, in pure acetonitrile,
was confirmed by the UV-vis titration of 1(PF6)3 with tetrabutylammonium nitrate, i.e.,
[TBA]NO3. As shown in Figure 2, the anion binding promotes small but significant shifts
of the UV-vis. bands of the receptor. These shifts, which are attributable to an effect of
the binding on the electronic transitions of benzimidazolium units, are in line with those
observed in our previous study [31] under UV-vis. titrations of 13+ with bromide and
chloride (logK11 = 5.8(1) and logK11 > 6, respectively). The titration data were processed
with the Hyperquad package [32] to determine the equilibrium constants. The bestfit was
obtained considering a 1:1 host:guest binding stoichiometry with an association constant of
5.3(1) log units.
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Figure 2. UV-vis. titration of a solution of 1(PF6)3 (0.174 mM) in acetonitrile with a 100-fold more
concentrated solution of [TBA]NO3. On the left: family of spectra taken during titration (red line
and black solid lines: initial and final spectra, respectively). On the right: distribution diagram
of the species, calculated for an association constant of 5.3 log units (solid line: % of the free 13+

cage; dashed line: % of 1:1 complex with nitrate, [1(NO3)]2+, with the superimposed experimental
data (triangles) of the Molar Absorptivity at 283 nm (right-hand y-axis) vs. eqv. of [TBA]NO3. The
distribution diagram was obtained using the Hyss software (Hyperquad package) [32].

We also investigated the capability of the 13+ cage to bind the chloride anion in
CD3CN/D2O, 4/1 v/v, mixture. Due to the low solubility of 1(PF6)3 in this medium, the
1(NO3)3 salt was employed for the study (Figures S7 and S8). Notably, the addition of
standard [TBA]Cl to the receptor’s solution was accompanied by a significant downfield
shift of the Caryl–H peaks. This result is consistent with the involvement of the aryl
protons in the binding of chloride within the cavity. Titration data were processed with
the Hyperquad package [32]; also in this case the best-fit was obtained considering a 1:1
binding stoichiometry. The binding constant measures 1.53(2) log units. This low value
is not surprising, considering the high percentage of D2O in the mixture (20%v), and the
presence of competing anions (i.e., 3 eqv. of nitrate) in solution. The NOESY spectrum,
recorded under addition of excess [TBA]Cl (i.e., 30:1 Cl−:13+, 10:1 Cl−:NO3

− molar ratios),
suggested that chloride binding promotes the conformational rearrangement of the cage.
Notably, the correlation between H1 and Ha protons (see Figures S9 and S11), observable
in the NOESY spectrum of 1(NO3)3, almost disappeared under excess chloride. This
indicates that the anion stabilizes a conformation of the cage, in which the separation of
H1 and Ha protons has increased. Comparable results were observed for the complex of
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the imidazolium-based system: chloride binding within the cage’s cavity promoted an
elongation of the cage, accompanied by the pyramidal inversion of the tertiary amines [31].
This conformational rearrangement allowed the (C–H)+ groups to point towards the centre
of the cavity and cooperate in the binding of the anionic guest [24,25,31,33–35]. We can
hypothesize a similar rearrangement in our case.

Considering the binding ability of the cage towards anions, we wanted to check
whether the receptor could be also employed as an anion transporter across membranes.
These studies can be relevant for the potential biological application of the tris-
benzimidazolium cage.

3.3. Anion Transport Studies

The antimicrobial activity of imidazolium and benzimidazolium salts is generally
related to the tendency of these compounds to act as anionophores, capable of generating
imbalances of anion concentration across the cell membranes of living microorganisms.
The ability of 13+ to act as an anionophore, promoting anion transport across bilayer mem-
branes, was studied in large unilamellar vesicles (LUVs) employing the methodology
previously reported by the Bristol group [21,36,37]. LUVs are prepared from a 7:3 mixture
of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol by extrusion
through a polycarbonate membrane (200 nm), with sodium nitrate and the halide–sensitive
fluorescent dye lucigenin in the aqueous phase. The potential anionophore may be added to
the vesicle lipids prior to extrusion (preincorporation method) or added later (external ad-
dition). Sodium chloride is added to the exterior solution to start the transport experiment,
and chloride influx is followed by monitoring the decrease in lucigenin emission caused
by quenching. Assuming no cation transport, the chloride influx must be accompanied by
nitrate efflux to maintain electroneutrality (see Scheme 2).
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Scheme 2. Anion transport experiment with the 13+ cage.

Experiments involving external addition of 1(NO3)3, dissolved in a small amount
of methanol, yielded negative results. However, when 1(NO3)3 was preincorporated in
the LUVs at a mole ratio of transporter:lipid:1:2500, anion transport was detected. The
rates were very low in the context of previously published work, but measurable and
reproducible. Traces from both types of experiment are reproduced in Figure S11. It
thus seems that 1(NO3)3 is able to transport both chloride and nitrate across the vesicle
membranes, albeit slowly, but is not capable of finding and/or inserting into the membranes
if added externally under the conditions of these experiments.

The poor performance of 13+ as anionophore, compared to other (benz)imidazolium-
based systems, can be due to the presence of three positive charges, that increase the
hydrophilicity (at the expense of lipophilicity) impairing the ability of the cage to enter
the membrane. In fact, the best results described in the literature were obtained with
molecules presenting a better hydrophilicity/hydrophobicity balance [20,38]. Nonetheless,
considering the wide interest in imidazolium salts as drugs, we decided to proceed with the
study on the antimicrobial and antifungal properties of 1(PF6)3 and 1(NO3)3 compounds.
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3.4. Antimicrobial and Antifungal Investigations on 1(PF6)3 and 1(NO3)

Before studying the potential application of 13+ as antibacterial and/or antifungal
agent, we verified the potential cytotoxicity of 1(PF6)3 and 1(NO3)3 on SH-SY5Y, a human
derived cell line. SH-SY5Y cells are commonly employed as a human model of eukaryotic
cells, besides they are also widely used as a neuronal-like cellular model [39,40].

The effect of 1(PF6)3 and 1(NO3)3 was tested on the mitochondrial activity of SH-SY5Y
cells, using different concentrations of imidazolium salt (100 nM, 1 µM, 10 µM, 100 µM) for
24 h and 48 h. Notably, under the adopted experimental conditions, both salts were found
to be safe at all the assayed concentrations and times of exposure (Figure 3). Although
minimal variations were observed in comparison to the control group (100%), all the values
were above the “biocompatibility” threshold, which is set at 70% [41].
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The cage compounds 1(NO3)3 and 1(PF6)3 were then evaluated against different
microbial strains: Staphylococcus aureus (Gram-positive bacteria), Escherichia coli (Gram-
negative bacteria) and Candida albicans (yeast).

Table 1 shows antimicrobial concentrations (MIC/MBC/MFC, µg/mL), determined
by means of the standard serial dilution method, according to NCCLS (see the S.I. for
details) [42,43]. Two available antimicrobial drugs, ampicillin and amphotericin B, were
used as positive controls. The assayed microbial strains show a different sensitivity in
the antimicrobial tests. Both salts show greater activity on S. aureus than against the
other microorganisms [44,45]. In particular, 1(NO3)3 is the most effective compound
against the three microorganisms and among bacteria has the lowest MIC and MBC values
on S. aureus:15.82 µg/mL (13.29 µM) and 190.00 µg/mL (160 µM), respectively. The
corresponding MIC and MBC values on S. aureus obtained for 1(PF6)3 were 31.45 µg/mL
(corresponding to 21.85 µM concentration) and 255 µg/mL (177 µM). The effect on C.
albicans is the least intense for 1(NO3)3 with the MIC equal to 210.00 µg/mL (176 µM). The
greater susceptibility of S. aureus derives from the different structure and composition of
the cell wall compared to other microorganisms. In particular, as the Gram-positive cell has
a thicker wall, made up of 90% peptidoglycan; [44] on the other hand, the Gram-negative
bacterium E. coli has a thinner wall, equipped with a consistent lipid, liposaccharide and
protein component in the external part of the cell wall, called outer membrane [46]. The
E.coli cell wall is thus more lipophilic than the wall of S. aureus [47]: the highly charged
cage is expected to interact more easily with the less hydrophobic wall of the latter, and
this can explain the higher microbicidal action of the cage towards the Gram-positive
strain. Fungi such as Candida albicans have a different wall than those observed in bacteria,
containing polysaccharides, lipids, and proteins, which in general make it less sensitive to
the action of biocides [48–50]. Therefore, the structure of the microbial cell envelope can
affect the spread of harmful compounds [38]. In fact, the presence of an external membrane



Chemistry 2022, 4 861

in Gram-negative bacteria and the other differences described in the composition of fungi
cell wall, make these microorganisms less permeable to the salts tested, confirming the
greater effectiveness of these compounds on Gram-positive bacteria [18].

Table 1. MIC (minimum inhibitory concentration) and MBC/MFC (minimum bactericidal/fungicidal
concentration) values 1 of cage compounds against Staphylococcus aureus, Escherichia coli and
Candida albicans.

Microorganisms
1(NO3)3 1(PF6)3 Amp-Amph 2

MIC MBC/MFC MIC MBC/MFC MIC MBC/MFC
µg/mL µg/mL µg/mL

Staphylococcus aureus
ATCC 6538 15.82 190.00 31.45 255.00 0.50 1.00

Escherichia coli
ATCC 10646 127.50 250.00 250.00 >255.00 5.00 10.00

Candida albicans
ATCC 10231 210.00 >255.00 255.00 >255.00 0.50 2.00

1 Values are obtained as the average of three measurements. 2 Amp-Amph: ampicillin, amphotericin B,
antibiotic control.

4. Conclusions

In this paper, we extended a previous investigation on the 13+ cage, reporting the
crystal structure of the free cage (as hexafluorophosphate salt), and the anion binding
ability towards nitrate and chloride. The cage was also tested as anionophore, showing a
weak but measurable transport of chloride and nitrate across LUVs vesicles. The presence
of three positively charges probably increases the hydrophilicity of the cage, thus nega-
tively affecting the ability to enter the membrane. Nonetheless, our compounds showed
antimicrobial activity towards Staphylococcus aureus (Gram-positive bacterium). The effect
on Gram-positive bacteria, compared to Gram-negative bacteria and fungi, is due to the dif-
ferent structure of the cell membrane and wall. 1(NO3)3 was found to be the most effective
compound showing the lowest MIC and MBC values on S. aureus. Further investigations
will be performed to (i) elucidate the mechanism of the antimicrobial activity, (ii) evalu-
ate the effect of other counterions on the activities the corresponding salts, (iii) improve
the hydrophilicity/hydrophobicity balance of the cage structure, in order to enhance its
ability to enter the membrane. As far as we know, this is the first organic cage studied as
anionophore and antimicrobial agent.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemistry4030061/s1. Details on Materials and Methods; Syn-
thesis and characterization of 1(NO3)3 (ESI-MS and NMR spectra); supplementary information
on SCXRD analysis, 1H-NMR titrations with chloride, NOESY spectra, anion transport studies.
References [50–59] are cited in supplementary materials.
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