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Abstract: Therapeutic nanomaterials serve as an important platform for drug delivery under image
guidance. Despite significant growth and broad applications, their design specifics remain a subject
of continued interest primarily due to multifunctional factors involved, ranging from nanomaterial
properties, imaging modalities, and therapeutic agents to activation strategies. This review article
summarizes key findings on their design characteristics with a particular interest in strategies
developed for therapeutic activation (release). First, their activation can be controlled using either an
endogenous factor including low pH and glutathione or an external stimulation by light, ultrasound,
or electromagnetic field. The former is passively controlled from a spatiotemporal aspect compared
to the latter, which is otherwise actively controlled through drug linker photolysis, nanomaterial
disassembly, or gate opening. Second, light stimulation serves a most notable strategy due to its
essential role in controlled drug release, photothermal activation (hyperthermia), and photodynamic
production of reactive oxygen species (ROS). Third, some of those activation strategies that rely on
ultrasound, photothermal, photoacoustic, magnetic field, or X-ray radiation are dually functional
due to their role in imaging modalities. In summary, this review article presents recent advances
and new insights that pertain to nanotherapeutic delivery systems. It also addresses their technical
limitations associated with tissue penetration (light), spatial resolution (ultrasound, hyperthermia),
and occurrence of cellular resistance (ROS).
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1. Introduction

Over recent decades, we have seen a rapid growth in and significant contribution by nanoscale
therapeutic systems in image-guided delivery [1]. These systems utilize an integrative approach that
combines both imaging and delivery functions in a single nanoscale entity. Their design is composed
of three complementary modules that include an imaging probe, a therapeutic component, and a
nanomaterial platform. Their imaging function plays a fundamental role in detecting and tracking the
nanotherapeutic system following its administration (Figure 1). This helps to identify whether it is well
distributed at its targeted site from a pharmacokinetic perspective and thus to determine an optimal
timing for its therapeutic activation. Its therapeutic module is achieved with many strategies collectively
by drug release [2–5], photothermal activation [6], photodynamic activation [7,8], or the combination
of these. Nanomaterial platforms are more variable in the range of their structure and function as
illustrated in dendrimer polymers [9–11], upconversion nanocrystals (UCN) [12–14], metal-organic
frameworks [15], magnetic nanoparticles [16], and hollow nanostructures [17]. This modular approach
employed in nanotherapeutic design offers a combinatorial convenience and broad applicability in
various therapeutic areas and personalized medicine [1].
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Figure 1. A schematic for image-guided nanotherapeutic delivery in tumors. A therapeutic 
nanomaterial is taken up in a diseased tissue via passive infiltration through leaky blood vessels or 
active biomarker targeting, imaged and therapeutically activated by endogenous factors or external 
stimulation. 

In this article, therapeutic strategies are presented with regard to their activation mechanisms. 
Activation strategies which are covered here involve stimulations by either endogenous factors (pH, 
glutathione) [18,19] or external stimuli including light [2–5], ultrasound (US) [20–22], alternating 
magnetic field [4,16], or electric field [23]. These stimuli provide various mechanisms applicable for 
therapeutic activation including drug release that occurs through linker cleavage, nanomaterial 
disassembly, or gate opening. These strategies are described along with design factors involved in 
the selection and integration of imaging probes, payloads, and linkers to nanomaterials. Of 
particular focus is their individual role in therapeutic activation that occurs via stimulus-controlled 
linker cleavage, nanomaterial degradation, or induction of porosity. 

Another important aspect described here relates to how therapeutic strategies are integrated 
with imaging modalities. For this purpose, delivery systems are to be introduced briefly for their 
imaging capability, which is achieved with ultrasound (US), magnetic resonance imaging (MRI), 
magnetic particle imaging (MPI), thermal imaging, photoacoustic imaging (PAI), X-ray computed 
tomography (CT), γ-ray positron emission tomography (PET), or single photon-emission 
computerized tomography (SPECT). It should be noted that these imaging methods have already 
been reviewed individually and comprehensively in several excellent articles [24–33], including 
those focused on optical [34], magnetic resonance [35], magnetic particle [32,33], photothermal [36], 
photoacoustic [37], and ultrasound [38]. 

Briefly, nanoscale systems are engineered for image-guided delivery through modular 
assembly. They are variable in modular principles, design characteristics, and activation strategies. 
Identifying a strategy for most optimal therapeutic efficacy remains an objective of significant 
interest [39]. This article offers new insights learned from recent advances in image-guided systems. 

2. Therapeutic Activation by Endogenous Factors 

2.1. Low pH 

Cells provide several stimulating conditions applicable for controlled drug release. Some of 
these relate to low pH conditions in subcellular endosomes (pH 5.0–6.0) [40] and lysosomes [41,42] 
where nanomaterials initially reside after intracellular uptake through receptor-mediated 
endocytosis [43,44]. Similarly, acid-mediated release is reported to occur at extracellular matrices in 
tumors because they are more acidic than normal tissues [18]. This release strategy controlled by 
lowered pH has been used frequently in delivery systems. Some of its mechanistic basis is attributed 

Figure 1. A schematic for image-guided nanotherapeutic delivery in tumors. A therapeutic nanomaterial
is taken up in a diseased tissue via passive infiltration through leaky blood vessels or active biomarker
targeting, imaged and therapeutically activated by endogenous factors or external stimulation.

In this article, therapeutic strategies are presented with regard to their activation mechanisms.
Activation strategies which are covered here involve stimulations by either endogenous factors
(pH, glutathione) [18,19] or external stimuli including light [2–5], ultrasound (US) [20–22], alternating
magnetic field [4,16], or electric field [23]. These stimuli provide various mechanisms applicable
for therapeutic activation including drug release that occurs through linker cleavage, nanomaterial
disassembly, or gate opening. These strategies are described along with design factors involved in the
selection and integration of imaging probes, payloads, and linkers to nanomaterials. Of particular focus
is their individual role in therapeutic activation that occurs via stimulus-controlled linker cleavage,
nanomaterial degradation, or induction of porosity.

Another important aspect described here relates to how therapeutic strategies are integrated with
imaging modalities. For this purpose, delivery systems are to be introduced briefly for their imaging
capability, which is achieved with ultrasound (US), magnetic resonance imaging (MRI), magnetic
particle imaging (MPI), thermal imaging, photoacoustic imaging (PAI), X-ray computed tomography
(CT), γ-ray positron emission tomography (PET), or single photon-emission computerized tomography
(SPECT). It should be noted that these imaging methods have already been reviewed individually and
comprehensively in several excellent articles [24–33], including those focused on optical [34], magnetic
resonance [35], magnetic particle [32,33], photothermal [36], photoacoustic [37], and ultrasound [38].

Briefly, nanoscale systems are engineered for image-guided delivery through modular assembly.
They are variable in modular principles, design characteristics, and activation strategies. Identifying
a strategy for most optimal therapeutic efficacy remains an objective of significant interest [39].
This article offers new insights learned from recent advances in image-guided systems.

2. Therapeutic Activation by Endogenous Factors

2.1. Low pH

Cells provide several stimulating conditions applicable for controlled drug release. Some of these
relate to low pH conditions in subcellular endosomes (pH 5.0–6.0) [40] and lysosomes [41,42] where
nanomaterials initially reside after intracellular uptake through receptor-mediated endocytosis [43,44].
Similarly, acid-mediated release is reported to occur at extracellular matrices in tumors because they
are more acidic than normal tissues [18]. This release strategy controlled by lowered pH has been
used frequently in delivery systems. Some of its mechanistic basis is attributed to acid-catalyzed
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linker hydrolysis [3] or degradation of acid-susceptible nanomaterials that include metal-organic
frameworks [45], nanogels [35], and mesoporous silica oxide (mSiO2) [46].

Figure 2 shows representative delivery systems based on pH-mediated therapeutic release.
These include single-walled carbon nanotubes (SWNT) [43] designed for endosomal release of its
cisplatin (IV) prodrug [3] (Figure 2A) and bortezomib-loaded polydopamine nanoparticulates [47] in
which bortezomib linked through a boronic acid–catechol bonding is demonstrated for faster release
at pH 5.4 than 7.4 (Figure 2B). The schematic in Figure 2D illustrates polymer micelles designed for
extracellular activation catalyzed by acidic pH or proteinases [18]. This endogenous control is likewise
applied in the release of doxorubicin loaded in acid-labile nanogels [35] or on the surface of iron
oxide nanoparticles (IONP; Fe3O4) [48]. Delivery systems based on such magnetic nanomaterials
as IONP allow MRI-guided drug delivery [35,48]. Another system controlled by low pH is porous
mSiO2 applied in the delivery of camptothecin, an anticancer drug that inhibits topoisomerase I in the
nucleus [46]. Here, the drug molecule loaded in the porous shell layer of mSiO2 is released when the
silica layer is degraded in acidic subcellular compartments.
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Figure 2. Representative strategies of therapeutic release by endogenous factors. (A) Single-walled 
carbon nanotube (SWNT) carrying a cisplatin (IV) prodrug, and its activation at endosomes where 
lowered pH facilitates reductive release of platinum (II) complex [43]. Reproduced with permission, 
Copyright 2007, American Chemical Society. (B) Bortezomib (Btz)-loaded polydopamine 
nanoparticle designed for pH-mediated drug release in combination with photodynamic therapy 
[47]. Reproduced with permission, Copyright 2019, Royal Society of Chemistry. (C) 
Docetaxel-loaded nanomicelle for fluorescence-guided tumor imaging and glutathione 
(GSH)-mediated drug release [49]. Reproduced with permission, Copyright 2016, American 
Chemical Society. (D) pH-responsive polymer micelles designed for extracellular activation 
triggered by acidic pH or proteinases in a tumor microenvironment [18]. Reproduced with 
permission, Copyright 2009, American Chemical Society. 

2.2. Glutathione (GSH) 

Cellular cytosols contain glutathione (GSH) at higher levels (2–10 mM) than the extracellular 
side [19]. This differential GSH expression serves as a trigger for facilitated intracellular release 
which occurs through a thiol (GSH)-disulfide exchange [50]. Release systems controlled by GSH are 
composed of disulfide drug linkers [50], reducible prodrugs or nanomaterials [49,51] made with 
disulfide building blocks. Figure 2A and Figure 2C each illustrate such release that includes a 
cisplatin (IV) prodrug loaded on SWNT which undergoes reductive activation to a platinum (II) 

Figure 2. Representative strategies of therapeutic release by endogenous factors. (A) Single-walled
carbon nanotube (SWNT) carrying a cisplatin (IV) prodrug, and its activation at endosomes
where lowered pH facilitates reductive release of platinum (II) complex [43]. Reproduced with
permission, Copyright 2007, American Chemical Society. (B) Bortezomib (Btz)-loaded polydopamine
nanoparticle designed for pH-mediated drug release in combination with photodynamic therapy [47].
Reproduced with permission, Copyright 2019, Royal Society of Chemistry. (C) Docetaxel-loaded
nanomicelle for fluorescence-guided tumor imaging and glutathione (GSH)-mediated drug release [49].
Reproduced with permission, Copyright 2016, American Chemical Society. (D) pH-responsive
polymer micelles designed for extracellular activation triggered by acidic pH or proteinases in a tumor
microenvironment [18]. Reproduced with permission, Copyright 2009, American Chemical Society.

2.2. Glutathione (GSH)

Cellular cytosols contain glutathione (GSH) at higher levels (2–10 mM) than the extracellular
side [19]. This differential GSH expression serves as a trigger for facilitated intracellular release
which occurs through a thiol (GSH)-disulfide exchange [50]. Release systems controlled by GSH
are composed of disulfide drug linkers [50], reducible prodrugs or nanomaterials [49,51] made with
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disulfide building blocks. Figure 2A,C each illustrate such release that includes a cisplatin (IV) prodrug
loaded on SWNT which undergoes reductive activation to a platinum (II) species [43] and docetaxel
release from degradable polymer micelles made of GSH-cleavable poly(ethylene glycol) (PEG) [49].
The latter micelle system is of relevance to image-guided drug delivery due to its ability for induction
of fluorescence by a boron dipyrromethene (BODIPY) derivative that serves as a fluorescent probe
when it is co-released with docetaxel.

Other pathophysiological conditions play a significant role in therapeutic activation as well.
These are related with upregulated redox enzymes [52,53] and tumor hypoxia (low oxygen) [54].
Each of these is exploitable for prodrug activation or release as reported in prodrugs based on SN38 [53],
naloxone [52], and Pt [43,55]. Another condition involves matrix metalloproteinase [56–58], a hydrolytic
enzyme upregulated at tumors which is applicable for catalytic linker cleavage. It plays a role in the
tumor-targeted delivery of methotrexate carried by dendrimer [56,57] or hyaluronic acid polymer [58].
In short, though passively controlled, drug release that occurs under endogenous conditions constitutes
one of principal strategies explored in delivery systems.

3. Photocontrolled Therapeutic Release

Light stimulation serves as one of the important strategies that allow an active control in drug
release [5,39]. It occurs via linker photolysis, nanomaterial disassembly [59–67], and pore gating [68–74].
It shows a higher degree of spatiotemporal resolution [3,75–77] than other external strategies stimulated
by ultrasound or magnetic field [13,78]. Collectively, this accounts for its relatively higher precision
in imaging and therapeutic activation [9,79]. However, it is notable that despite its benefits in
spatial resolution and greater photochemical selectivity, light irradiation suffers from relatively lower
tissue penetration, light scattering, and absorption by non-targeted biological molecules and tissues,
each contributing to reducing its efficiency for drug activation [80].

3.1. Linker Photolysis

Release controlled by linker photolysis involves drug conjugation through a photocleavable linker
made of o-nitrobenzyl (ONB) [11,81,82], thioacetal ONB [9,79], coumarin [51,83,84], quinolone [85,86],
pyrene [87], acridin-9-methanol [88], or N-methyl-4-picolinium [89]. Figure 3 illustrates two linker
systems made of either gold nanoparticle (AuNP) (Figure 3A) [81] or poly(amidoamine) (PAMAM)
dendrimer (Figure 3B) [10], each carrying ONB linked 5-fluorouracil (5-FU) or ciprofloxacin, respectively.
Upon exposure to long wavelength UV (365 nm), linker photolysis occurs, leading to rapid drug
release. This also occurs consistently in cell studies in which 5-FU release results in induction of
cytotoxicity in MCF-7 tumor cells (Figure 3A) as does ciprofloxacin in induction of antibacterial
activity against Escherichia coli (Figure 3B). This release strategy is broadly applicable to various
payloads from anticancer drugs (doxorubicin [9,11,14,90], methotrexate [91,92], 5-fluorouracil [81,83,89],
paclitaxel [93], camptothecin [94], chlorambucil [84,87,95], platinum prodrug [96–98]), antibacterial
ciprofloxacin [10,99,100], and biomolecules (DNA [101], oligonucleotide [102,103], Cas9-sgRNA [104])
to gas molecules (CO [105], NO [106–109], SO2 [110], H2S [111,112]).

Selecting light wavelengths that are optimal for linker photolysis is dependent on specific
photophysical properties defined by linkers. This is illustrated with UV-cleavable ONB [11,81,82],
visible light-cleavable coumarin [51,83,84], and near IR (NIR)-responsive cyanine [113,114]. However,
linker integration with UCN opens an indirect route for NIR-triggered linker photolysis due to
UCN luminescent emission at the UV and visible region upon irradiation at 980 nm [9,14,90].
This concept is illustrated in Figure 3 with UCN-based delivery systems designed for doxorubicin
(Figure 3C) [14] or hydrogen sulfide (Figure 3D) [111], each linked through ONB to the UCN shell
layer. Thus, NIR irradiation at 980 nm results in doxorubicin-induced cytotoxicity in folate receptor
(FAR)-positive KB cancer cells as potent as UV irradiation (Figure 3C), whereas it accounts for more
effective H2S release in a pork skin model due to its deep tissue irradiation than UV (Figure 3D). This NIR
control is equally demonstrated in a range of payloads from doxorubicin [9,14,90] to macromolecular
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CRISPR-Cas9 [104]. Further benefits conferred by UCN relate to irradiation at NIR, which shows deeper
tissue penetration compared to UV or visible light. Additionally, its luminescent bands contribute to
UCN imaging and tracking as well [14,60,104,115].
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Figure 3. Representative strategies of therapeutic release via linker photolysis. (A) UV controlled 
release of 5-fluorouracil (5-FU)@AuNP [81]. Reproduced with permission, Copyright 2009, American 
Chemical Society. (B) Light-controlled delivery of ciprofloxacin at Gram (−) cells using 
lipopolysaccharide (LPS)-targeting dendrimer [10]. Reproduced with permission, Copyright 2016, 
Royal Society of Chemistry. (C) Near IR (NIR)-controlled doxorubicin release from folate receptor 
(FAR)-targeting upconversion nanocrystal (UCN) via linker photolysis by luminescence emission 
from UCN [14]. Reproduced with permission, Copyright 2015, John Wiley & Sons. (D) 
NIR-controlled H2S release from its precursor and UCN-loaded nanogel [111]. Reproduced with 
permission, Copyright 2015, Royal Society of Chemistry. 

3.2. Disassembly 

Release systems via disassembly are designed in diverse ways though their mechanisms occur 
mainly through linker photolysis [51,59,117–125] or photoisomerization. Systems that are applicable 
for photolytic disassembly rely on photodegradable soft nanomaterials made of liposome [117,118], 
polymer [125], polymer micelle [119–121,123,124,126,127], polymersome [51], tubisome [122], and 
functionalized UCN [59–61]. These are applicable for loading various therapeutic agents that include 
doxorubicin [51,59,121–123,126,127], camptothecin [125], siRNA [61], and aptamer Sgc8 [124]. 
Co-loading a fluorescent dye (6-carboxyfluorescein [117], Nile red [119,120]) or an MRI contrast 
agent [118] serves as a route for monitoring drug release under image guidance. This is highlighted 
in Figure 4 with photocleavable liposomes loaded with Gd chelates demonstrated for MRI-guided 
delivery (Figure 4A) [118]. Upon irradiation at 400 nm, this liposome shows a time-dependent 

Figure 3. Representative strategies of therapeutic release via linker photolysis. (A) UV controlled release
of 5-fluorouracil (5-FU)@AuNP [81]. Reproduced with permission, Copyright 2009, American Chemical
Society. (B) Light-controlled delivery of ciprofloxacin at Gram (−) cells using lipopolysaccharide
(LPS)-targeting dendrimer [10]. Reproduced with permission, Copyright 2016, Royal Society of
Chemistry. (C) Near IR (NIR)-controlled doxorubicin release from folate receptor (FAR)-targeting
upconversion nanocrystal (UCN) via linker photolysis by luminescence emission from UCN [14].
Reproduced with permission, Copyright 2015, John Wiley & Sons. (D) NIR-controlled H2S release
from its precursor and UCN-loaded nanogel [111]. Reproduced with permission, Copyright 2015,
Royal Society of Chemistry.

In brief, release strategies via linker photolysis have yielded a remarkable growth in delivery systems.
They have shown broad utilities in a variety of nanoscale systems including polymer [83,87,106], polymer
micelle [87,94,97,116], PAMAM dendrimer [9–11,91,92,100], UCN [14,90,98,103–105,110] (LiNbO3 [84]),
AuNP [81,101], silver nanoparticle (AgNP) [102], quantum dot (QD) [89,107], TiO2 [109], mSiO2 [95],
graphene [108], RNA nanocage [93], and hydrogel [99].

3.2. Disassembly

Release systems via disassembly are designed in diverse ways though their mechanisms
occur mainly through linker photolysis [51,59,117–125] or photoisomerization. Systems that
are applicable for photolytic disassembly rely on photodegradable soft nanomaterials made of
liposome [117,118], polymer [125], polymer micelle [119–121,123,124,126,127], polymersome [51],
tubisome [122], and functionalized UCN [59–61]. These are applicable for loading various therapeutic
agents that include doxorubicin [51,59,121–123,126,127], camptothecin [125], siRNA [61], and aptamer
Sgc8 [124]. Co-loading a fluorescent dye (6-carboxyfluorescein [117], Nile red [119,120]) or an MRI
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contrast agent [118] serves as a route for monitoring drug release under image guidance. This is
highlighted in Figure 4 with photocleavable liposomes loaded with Gd chelates demonstrated
for MRI-guided delivery (Figure 4A) [118]. Upon irradiation at 400 nm, this liposome shows a
time-dependent decrease in relaxivity (mM−1 s−1) in a consistent manner with a decrease in its ONB
absorbance at 365 nm.

Disassembly via photoisomerization occurs in systems incorporated with light-responsive
units that undergo bond isomerization including azobenzene [128] or donor–acceptor Stenhouse
adduct [129]. These units are readily incorporated in a range of nanomaterials from liposomes [128],
polymer micelles [129–134], hydrogel [135,136], and metal-organic frameworks [137], to UCN [138].
These disassembly systems are successfully applied in the delivery of various payloads including
erlotinib [130], 5-fluorouracil [137], doxorubicin [134], ciprofloxacin [136], propranolol [131],
siRNA [132], and green fluorescent protein [135].
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Figure 4. Representative strategies of therapeutic release via controlled disassembly. (A) Light-activated
liposome disassembly for magnetic resonance imaging (MRI) contrast imaging and therapeutic
release [118]. Reproduced with permission, Copyright 2019, Royal Society of Chemistry. (B) MRI and
photoacoustic image-guided photothermal ablation therapy using a polyethylenimine (PEI)-based
nanogel carrying Gd/CuS@PEI-FA-PS [139]. Reproduced with permission, Copyright 2020, American
Chemical Society. (C) Ultrasound (US)-triggered cytosolic delivery of green fluorescent protein
(GFP) loaded in fluorous nanoemulsions [140]. Reproduced with permission, Copyright 2020,
American Chemical Society. (D) US triggered release of encapsulated doxorubicin (Dox) from polymer
microcapsules via capsule perforation and destruction [141]. Reproduced with permission, Copyright
2017, American Chemical Society.

3.3. Gating

Gating refers to a process in which a payload is retained in a carrier until it is released upon gate
opening. One approach involves a mechanism that induces photolytic alteration at a gate entrance
by which its gate is opened (Figure 5). As shown in Figure 5A, this often occurs in porous materials
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like mesoporous silica nanoparticle (MSN), which is temporarily blocked at its gate entrance with
a photocleavable valve [69,142,143] or polymer brush [68,115,144]. This system is effective for NIR
(974 nm)-controlled doxorubicin delivery in HeLa cells as evidenced with the induction of potent
cytotoxicity [69]. Another approach involves valve isomerization at the entrance as illustrated in
Figure 5B [143]. Its delivery application is consistent with UV-controlled release of doxorubicin which
results in the induction of cytotoxicity in macrophages. Molecular valves commonly utilized in this
isomerization approach comprise azobenzne [71,143,145,146], coumarate [147], fumaramide [148],
spiropyran [149], and donor–acceptor Stenhouse adduct [150]. Their role in gated release is
well established by applications in various payloads including doxorubicin [71,143,145,146,150],
camptothecin [150], naproxen [147], curcumin [151], DNA [152], and dye molecules including
rhodamine B [148] and 4′,6-diamidino-2-phenylindole [149].
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Figure 5. Representative strategies of therapeutic release via controlled gating. (A) Doxorubicin
release via NIR-triggered cleavage of a Ru complex valve in mSiO2-coated UCN [69]. Reproduced with
permission, Copyright 2015, Royal Society of Chemistry. (B) Doxorubicin release via photoisomerization
at a gate entrance in mesoporous silica nanoparticle (MSN) [143]. Reproduced with permission,
Copyright 2015, Royal Society of Chemistry. (C) NIR light-controlled release of ampicillin from
TiO2/Au@UCN nanocomposite [153]. Reproduced with permission, Copyright 2020, American
Chemical Society.

Whereas most gating systems are designed for activation by UV or visible light, they can be
functionalized for opening by NIR. This is achieved by integration of valve-attached mSiO2 with nano
gold [68] or UCN [153], each serving as an NIR-responsive nanomaterial. Of note is a TiO2/Au@UCN
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nanocomposite (Figure 5C), a dual action system designed for NIR-controlled ampicillin release
and ROS production by irradiation at 980 nm. This shows potent antibacterial activities against
E. coli and methicillin-resistant Staphylococcus aureus (MRSA) in vitro [153]. Their gate opening occurs
through valve alteration or isomerization in response to photothermal heating by nano Au or UV–VIS
luminescence emitted from NIR-excited UCN. This NIR control has been successfully applied to several
payloads including doxorubicin [68,69,143], fluorescein [115,144], and ruthenium-bipyridyl [142].

Briefly, light control constitutes one of principal strategies employed in the activation of
nanotherapeutic systems. Its mechanisms for therapeutic release occur via linker photolysis,
disassembly, or pore gating.

4. Photodynamic Activation

4.1. Reactive Oxygen Species (ROS)

Photodynamic activation involves the production of reactive oxygen species (ROS) which
comprise singlet oxygen (1O2) and oxygen-based radical species [154,155]. This occurs through
photosensitizer (PS) excitation as applicable to zinc phthalocyanine (ZnPc) [156,157], chlorin e6
(Ce6) [158], rose bengal [12,13], and NIR-responsive indocyanine dye [159]. Alternatively, ROS are
produced by other types of PS based on photoactive polymers including polydopamine (Figure 2B) [47]
and photoactive nanomaterials [76,160] including nanoTiO2 [161]. ROS production by most
PS systems occurs by light absorption at visible wavelengths. However, UCN-integrated PS
systems [12,13,153,157,162,163] are able to produce ROS by NIR irradiation at 980 nm due to UCN
luminescence at UV–VIS bands. This NIR-based PS activation is more beneficial in therapeutic
applications in vivo than in vitro due to its deeper penetration [12,163].

4.2. Photodynamic Delivery Systems

A typical system designed for photodynamic delivery consists of PS molecules encapsulated
or conjugated in nanomaterials like mesoporous nanoparticles (NPs) [156], liposomes [164–166],
polymers [47,167,168], polymer micelles [65,67,159,169,170], and lipid NPs [171]. Due to high chemical
reactivity, ROS produced from these systems are able to make a broad range of non-selective cellular
damages from lipid oxidation responsible for membrane ruptures to oxidative degradation in proteins
and nucleic acids [76,160]. This accounts for its potent cytotoxicity induced in mammalian cells
and bacterial pathogens [154,172], and it serves as a therapeutic basis for photodynamic therapy
(PDT) [155,173–175].

Moreover, ROS contributes to controlled drug release through its participation in oxidative
linker cleavage, disassembly or gating [66]. This is illustrated with Ce6-bound IgG nanocomplexes,
an anticancer system demonstrated for its ability to deliver an immune checkpoint inhibitor under
fluorescent image guidance [176]. Photodynamic release is equivalently applied to a broad range
of therapeutic agents from anticancer drugs including doxorubicin [65,66,167], paclitaxel [166],
bortezomib [47], SN38 [67], camptothecin [159], mitoxantrone [169], and 7-dehydrocholesterol [165] to
antibacterial agents vancomycin [168] and ampicillin [153]. UCN integration allows NIR-controlled
photodynamic drug release as illustrated in Figure 5C where ampicillin is released from a UCN-coated
TiO2/Au nanocomposite [153].

In short, photodynamic activation serves as an important route for a dual therapy due to
ROS-mediated cytotoxicity and the ability to participate in controlled drug release. PS systems also offer
an optical imaging capability due to their fluorescence emission from PS or photoactive nanomaterials
themselves, as frequently applied in image-guided delivery [170,174,177]. Their fluorescence detection
is coupled with other imaging modes. This is illustrated with a Ce6-based system co-loaded with an
Mn2+ chelate, which is designed for photodynamic therapy under dual image guidance by fluorescence
and MRI [170,174,177].
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4.3. Challenges in Photodynamic Systems

PS systems are faced with certain challenges that are attributable to unfavorable physicochemical
properties and cellular occurrence of ROS resistance. Most PS molecules show poor aqueous
solubility and high aggregation tendency because of their hydrophobic aromatic rings that engage in
intermolecular π–π stacking interaction. As a consequence, these are responsible for lowered efficiency
in ROS production, fluorescence quenching, or suboptimal imaging resolution. This issue can be
overcome in part by ROS production using either photoactive nanomaterials or polymer particulates
that display aggregation induced emission (AIE) [178,179], including integrin-targeting polymer
nanodots [179].

Another challenge relates to occurrence of cellular ROS resistance, a known mechanism responsible
for reduction in PDT efficacy. This occurs through reductive inactivation of ROS by intracellular
antioxidant thiols, primarily, GSH. A few approaches are reported to address this problem including
co-delivery of an Mn2+ contrast agent [177] or MnO2, which releases thiol-oxidizing manganese
ions [170]. Their oxidative role contributes to a decrease in GSH level via thiol oxidation. An alternative
approach involves facilitating the rate of ROS production by increasing the intracellular concentration
of O2, a precursor molecule for ROS. This involves co-delivery of catalase, an oxidative enzyme
that engages in catalyzing endogenous hydrogen peroxide to O2 [170,180]. The latter approach is of
most relevance to applications in tumors where their oxygen level remains relatively lower (hypoxia)
than normal tissues. Potent antitumor efficacy is achieved by catalase co-delivery systems made of
Ce6-modified chitosan micelles [170] or indocyanine green-loaded albumin complexes [180].

In short, photodynamic activation produces ROS for application in photodynamic therapy [155,158]
as well as dual therapy by engagement in controlled drug release [176]. Photodynamic systems
are applied for image-guided delivery through their fluorescence alone or in combination with
MRI [170,177], photoacoustic imaging (PAI) [180], and/or thermal imaging [170].

5. Photothermal Activation

Certain classes of nanomaterials are able to produce localized heat through plasmonic
photoactivation [181]. These comprise nano Au (AuNP, gold nanorod (AuNR) [182], hollow Au
nanosphere (AuNS) [183]), black phosphorus [36], CuS [184], and MoS2 nanosheet [185]. Their heat
production results in the induction of cytotoxic hyperthermia, and this constitutes a therapeutic basis
in photothermal ablation therapy (PTT) [186,187]. The heat is further exploited in release mechanisms
for dual therapy. Additionally, it serves as an imaging modality applicable in photothermal imaging,
which is widely applied in image-guided systems.

5.1. Photothermal Drug Release

Despite its cytotoxicity, it is possible that hyperthermia alone is not potent enough for complete
tumor ablation, leaving a marginal area of tumor for potential recurrence. This insufficiency is improved
by combination with drug release. Delivery systems ideal for photothermal release are designed
through nanomaterial integration that consists of a drug-loadable porous nanomaterial and, separately,
a photothermally-active nanomaterial. Their integration is illustrated with various combinations of
nano Au and mSiO2 including smaller AuNR-loaded mSiO2 [188], Au-coated mSiO2 [74], mSiO2-coated
AuNR [72], and UCN coated with carbon dot-loaded mSiO2 [73].

Photothermal drug release occurs through one of two main mechanisms, pore opening and
disassembly. First, pore opening occurs in a system when a local temperature is elevated by
photothermal activation. This photothermal release is applied to doxorubicin [72,73], naproxen [188],
and ibuprofen [74] loaded in porous silica oxide. Second, disassembly occurs in thermally
unstable nanomaterials including liposomes co-loaded with nano Au [189] or black phosphorous
QD [190]. Polymer micelles are equivalently applied for photothermal disassembly as illustrated with
those encapsulated with nano Au (AuNR [63,191,192], Au nanoflower [193]), polydopamine [194],
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or photothermal dyes including cypate [195], indocyanine green [196,197], and BODIPY [64].
Other systems designed for the photothermal disassembly include drug-loaded Au nanoshell [198] and
nano Au-coated polymer particulates [199]. Overall, nanomaterials integrated for photothermal
activation are successfully applied to a variety of payloads from doxorubicin [62,190,192,196],
camptothecin [64], berberine [189], cisplatin [200], Pt (IV) prodrug [195,197], plasmid DNA [191,199],
and siRNA [199] to precursor DNAzyme [198].

5.2. Photothermal Imaging Delivery

Heat production itself serves as an imaging modality in photothermal systems. This is illustrated
with AuNR-coated mSiO2 developed for photothermal image-guided dual therapy via hyperthermia
and 5-fluorouracil release [182]. A few other systems have been developed similarly that include UCN
(Gd2O3:Yb,Er)-coated nano Au [201], black phosphorus-loaded hydrogel [36], polydopamine-coated
IONP [202], or extracellular vesicles loaded with Au–IONP [203]. Each of these is effectively applied in
the photothermal delivery of doxorubicin [36] or anti-miR-21 aptamer [203] under imaging guidance.
Yet, unlike purely imaging modalities, such as MRI scans, photothermal imaging has a risk of inducing
premature cytotoxicity or drug activation by photothermal heat produced during its scanning process.
Therefore, its application is limited on photothermal verification or optimization purposes at target
tissues instead of pre-activation imaging guidance, which is achieved by supplementary modalities
such as MRI [201], fluorescence [36,182], and PAI [182,202].

5.3. Photoacoustic Imaging (PAI) Delivery

The technique of PAI is based on detecting a sound wave (photoacoustic signal) which
is generated upon photoexcitation at certain functional systems. It occurs via photothermal
expansion (thermoelastic), vaporization (perfluoro molecule), and nanomaterial breakdown [37].
Photoacoustic systems are designed with chromophore molecules or photoactive nanomaterials
including polydopamine [202], AuNR [204], CuS [139], and MoS2 [205]. These are integrated in
various ways by nanomaterial coating [202], encapsulation in nanobubbles [204], or loading in a
nanogel [139]. These include a paclitaxel-loaded multifunctional nanobubble composed of AuNR and
perfluorohexane [204]. Its photoacoustic activation involves perfluorohexane vaporization that occurs
in response to temperature elevation induced by photoactivated AuNR. This leads to shockwave
production that triggers bubble implosion, serving as a mechanism for drug release and PAI [204].
Systems loaded with CuS [139] and MoS2 [205] are reported as well for PAI-guided photothermal
therapy as illustrated with a FAR-targeted polyethylenimine (PEI)-based nanogel loaded with CuS
and Gd chelates (Figure 4B) [139]. This nanogel system allows dual image (PAI, MRI)-guided PTT in
FAR-overexpressing tumors by laser irradiation at 1064 nm. In a similar way, MoS2 nanosheet modified
with IONP and 64Cu on its shell surface shows a multifunctional capability that allows PAI-guided
PTT in combination with two complementary imaging modes, MRI and PET [205].

5.4. Computed Tomography (CT) Imaging Delivery

CT-guided photothermal systems rely on nanomaterials with ability for X-ray absorption.
These comprise nano Au [206], CuS [184], CuS-Pt [207], Bi2Se3 nanosponge [208], and MoS2 nanosheet [185],
and many of these exhibit strong absorbance at NIR wavelengths. Therefore, CT systems allow
additional imaging capabilities including thermal imaging and PAI [208]. Examples of CT-guided delivery
include doxorubicin-loaded MoS2 nanosheet [185] and CuS-encapsulated hyaluronic acid polymer [184].
Liposomes loaded with IONP@Au are effectively applicable for dual CT and magnetic particle imaging
as demonstrated in the delivery of tenofovir disoproxil, an antiviral drug, in HIV-infected microglia
cells [206]. Using Bimetallic CuS-Pt is dually beneficial for CT guidance as well as Pt chemotherapy in
which cytotoxic Pt (II) is released inside the cell following its photothermal activation at 808 nm [207].
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5.5. Positron Emission Tomography (PET) Imaging Delivery

The basis of PET imaging relies on detecting γ-rays generated in a tissue when tissue electrons
react with positrons emitted from radionucleotide tracers carried in a delivery system [209]. PET tracers
used in clinical agents include 11C, 13N, 15O, and 18F, each incorporated as an isotope in a ligand or drug
molecule. Post-transition metal elements constitute another class of PET tracers that includes 89Zr [45],
64Cu [205,210,211], and Au [212]. PET systems developed for drug delivery are designed in a number
of ways. First, PET tracers are incorporated as a part of the carrier as illustrated with 89Zr incorporated
in a metal-organic framework [45], a system developed for doxorubicin delivery under PET guidance.
Second, some of these tracers are available as chelated species as seen in 64Cu chelated in polymer
micelles [211] and 64Cu-NOTA conjugated to mSiO2 [213]. Third, PET tracers allow direct integration
through chemoadsorption or coating as evident in 64Cu-adsorbed MoS2 nanosheets [205], Au-coated
PdCu nanotripods [212], and 64Cu-coated AuNR [210]. Overall, CT imaging systems designed in
these ways are applied for therapeutic delivery. This includes doxorubicin-loaded mSiO2@64Cu-NOTA
demonstrated for tumor vasculature-targeted delivery under PET imaging [213]. Nanodots composed
of 64CuS display a similar capability for PET-guided photothermal ablation as demonstrated in
tumor-bearing mice [214].

5.6. Single Photon-Emission Computerized Tomography (SPECT) Imaging Delivery

SPECT is a dual imaging modality composed of CT and radiation imaging [209]. Like PET,
radionuclide elements are required that include 111In, 123I, 131I, 99mTc, and 188Re, and they are often
incorporated in aromatic compounds through 123I/131I labeling [139] and in pharmaceuticals through
99mTc-chelation [209]. Radionucleotide tracers used in SPECT have longer half-lives (6–68 h) on
average than PET tracers. This property is highly beneficial during their radiolabeling, nanomaterial
incorporation, and uses because it allows more time until full decay.

Several systems have been reported for SPECT-guided therapy based on nano Au [183],
dendrimer [139], and liposomes [215]. These include 111In-labeled hollow AuNS designed for
epidermal growth factor receptor (EGFR)-targeted photothermal ablation in head and neck cancer [183].
131I-labeled dendrimer is effectively used as a tumor-targeted radionuclide therapy after ligand
functionalization with a tumor targeting the LyP-1 peptide [139]. Micelle serves as another platform
for SPECT-guided delivery as illustrated with 188Re-labeled micelles loaded with IR-780 dye applied
for PTT in tumors [215].

6. Ultrasound Activation

6.1. Mechanism of Ultrasound Activation

Low-intensity ultrasound (US) is commonly used in diagnostic ultrasonography [38],
however high-intensity US can serve as an external stimulus strong enough for inducing therapeutic
release. This US activation occurs in nanomaterial systems composed of gas-filled cavities or
US-responsive molecules including perfluorocarbon [140,216], fluorous tag [20], and polymer [141].
Like photoacoustic activation described above, the physical basis of US activation involves
cavitation which occurs upon vaporization of molecules loaded in the cavity. This leads to
induction of bubble ruptures or open pores, both contributing to drug release as illustrated in
Figure 4C,D [20]. This is evident in A549 cells treated with GFP-loaded fluorous nanoemulsions
that show a significant increase in intracellular fluorescence following US application compared
to free GFP as a control (Figure 4C). Similarly, stimulating microcapsule-treated MCF-7 cells by
therapeutic US leads to induction of cytotoxicity, which does not occur without microcapsule
treatment or by diagnostic weaker US (Figure 4D).

High-intensity focused ultrasound (HIFU) is also able to induce hyperthermia, which serves as
another mechanism applicable for controlled drug release [22]. Similar to photothermal activation,
this occurs in thermo-sensitive systems [22] including doxorubicin-loaded liposomes, which show
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controlled drug release in response to high-intensity US [217,218]. In spite of its potential and recent
advances in transducer designs, the efficacy of HIFU activation is limited by its focal length that can
reduce spatial resolution, its slow onset of activation which takes hours, and its challenges in certain
tissue areas that require crossing a bone or intact skull [219].

6.2. Ultrasound Delivery Systems

Delivery systems that are responsive to US activation comprise microbubbles [20,21,220],
nanobubbles [216], probubbles [221], nanoemulsions [140], nanodroplets [222], and microcapsules [141].
Microbubbles are popularly used in US applications due to their large shell or cavity space available for
loading supplementary imaging probes and therapeutic agents. These include IONP (Fe3O4)-coated
microbubbles developed for dual MRI and US-guided delivery of tPA [21]. Multifunctional nanobubbles
that are loaded with 5-fluorouracil, a Gd chelate and IR-780 dye, are comparably used in US-controlled
drug release under guidance by multiple imaging modalities [216]. US activation is also applied
in the controlled release of gas molecules as illustrated with liposomal probubbles loaded with a
H2S precursor for application in tumor ablation therapy [221]. Non-bubble US systems are made of
nanoemulsions (Figure 4C) [140], microcapsules (Figure 4D) [141], and nanodroplets [222], each applied
in the delivery of doxorubicin [141], green fluorescent protein and antibodies [140], and paclitaxel [222],
respectively. Porous nanomaterials are useful as well for US activation. This is illustrated with mSiO2

loaded with an NO precursor and superparamagnetic iron oxide nanoparticle (SPION) for MRI-guided,
US-controlled NO release in tumor [223].

One of the limitations in US systems relates to bubble sizes. Most microbubble systems are
excellent in contrast imaging capability, although they are considerably too large for efficient tissue
penetration and cellular uptake. On the other hand, nanometer-sized systems are reversed in the
trend with greater tissue infiltration at lower imaging contrast. This conflicting unbalance has been
recently addressed using size-variable polymersome (~200 nm), which is able to grow in size under
acidic conditions [224]. Thus, once taken up in tumor tissues and subcellular compartments, its signal
intensity in US imaging is enhanced as a result of its enlarged size.

In summary, US has been actively explored for therapeutic activation in image-guided delivery
systems. This strategy is applied to a variety of payloads from drugs (doxorubicin [141,224],
paclitaxel [20,222]) and proteins (tissue plasminogen activators [21], green fluorescent protein [140],
antibodies [140]) to gas molecules of therapeutic significance (H2S [221], NO [223]).

7. Electric and Magnetic Field Activation

Stimulation under an electrical field is potentially applicable in controlled delivery systems.
A notable approach involves electroporation, a technique that applies an electrical pulse to induce
temporary pores across cell membranes. This technique has played an important role in enhancing cell
permeability as often applied to small drug molecules, biomolecules, and genes [225,226]. However, it is
rarely used in nanomaterial delivery though it can be beneficial as illustrated with doxorubicin-loaded
SPION demonstrated for tumor uptake through electroporation [227]. Unlike normal electroporation,
this system offers an imaging guidance through magnetic particle imaging that helps precise positioning
of electrodes at its uptake area.

Applying an alternating magnetic field (AMF) on magnetic nanomaterials is more often used
in delivery systems. It is able to produce a localized heat applicable for controlled drug release [3].
This magnetic hyperthermia is observed in IONP systems loaded with DNA [228] or doxorubicin
linked through a thermally unstable azo bond [229]. SPION is equally applicable for magnetically
induced hyperthermia demonstrated in photothermal therapy [230]. Its use also plays a critical role in
MPI-guided spatial and temporal control of magnetic hyperthermia, drug delivery, or the combination
of these [230–232]. This approach helps to attain precise localization and positioning of magnetic
nanocarriers within a target region prior to drug release through AMF-triggered hyperthermia.
This is demonstrated with SPION-encapsulated poly(lactic-co-glycolic acid) (PLGA) [232] and



J. Nanotheranostics 2020, 1 90

doxorubicin-loaded liposomes [231]. Furthermore, applying a magnetic field serves as a physical force
that enables the control of particle movement. Therefore, drug-loaded magnetic nanomaterials are
guided and transported by a magnet for accumulation in a targeted tissue, which has been effectively
applied in a few systems. These include a magnetic nanospear designed for gene transfection in
glioblastoma cells [233], SPION-loaded microbubbles for doxorubicin delivery in brain tumors [217],
and IONP-coated microbubbles for accumulation at specific blood vessels [21]. Overall, delivery systems
developed for magnetic control offer several benefits including magnetically inducible hyperthermia,
magnetic particle imaging, and magnetic particle guidance.

8. Conclusions and Perspectives

This article described recent advances in nanotherapeutic systems developed for image-guided
delivery with a focus on their design concepts and mechanisms in therapeutic activation. Some of
their mechanisms are attributed to cellular and pathophysiological factors, primarily low pH
conditions [35,45,46] or elevated GSH levels [49]. Other mechanisms involve external stimulations which
are more actively controlled via light-triggered linker cleavage [11,81,91,92,101], disassembly [59–67],
pore gating [68–74], photothermal activation [36,182,204], photodynamic activation [156,164–166],
US-mediated disassembly [140,141,216], hyperthermia [217], electroporation [227], and magnetic thermal
activation [230]. Developing these activation strategies is making a significant impact on advancing
knowledge and creating a new capability in nanotherapeutic delivery systems.

It is however worth noting current limitations associated with activation strategies. The degree of
spatial resolution conferred by each activation strategy is variable as it is defined by the perimeter of
its stimulus. Some strategies characterized by US, electromagnetic field, or thermal stimulation show
relatively lower precision in spatiotemporal control compared to light activation. On the other hand,
light shows a lower level of tissue penetration compared to US or electromagnetic stimulation [80].
This light limitation is currently worked out using an optical technique that allows tissue bypassing in
which laser irradiation is delivered through a catheter inserted in a needle injected in tissue [201].

Another critical aspect which is of broad interest involves how to achieve specific nanomaterial
uptake and localization in targeted cells only. Many systems discussed here are designed for tumor
uptake via enhanced permeation and retention (EPR), a passive targeting strategy that facilitates
particle infiltration through leaky vessels in tumors (Figure 1) [234]. However, this passive targeting
is not applicable for distinguishing specific tumor biomarkers or targeted binding and uptake at
specific biomarker-overexpressing tumor cells. This lack of specificity is achieved otherwise by an
active targeting strategy [3,235,236] in which a drug-loaded nanomaterial is functionalized through
multivalent conjugation with a target-specific ligand or antibody. This active targeting has been
applied to a few tumor biomarkers that include FAR [46,204,216], αvβ3 integrin [179,210,237,238],
IGF1 receptor [48], EGFR [183], CD105 [213], CCR5 [212], and nucloelin [45]. It would be equally
applicable to other promising but less explored biomarkers that include prostate-specific membrane
antigen (PSMA) receptors [239], Her2 [240], riboflavin receptors [241,242], and transferrin receptors [243]
for brain delivery. In brief, multivalent ligand conjugation serves as an important strategy in the design
of actively targeted systems.

Finally, clinical translation of nanotherapeutic agents is associated with significant challenges due
to their multifunctional design, difficulty in synthetic scalability, and paucity of efficient clinical
devices needed for their optimal activation. Nevertheless, they show a growing potential as
evident with numerous types of nanotherapeutic agents either approved or advanced to clinical
studies [244]. Of those, release control by endogenous factors is most actively engaged as shown in
PLGA NPs encapsulated with leuprolide (Eligard®) [245], albumin NPs bound with paclitaxel
(Abraxane®) [246], and liposomes encapsulated with doxorubicin (Doxil®) [247], mifamurtide
(Mepact®) [248], vincristine (Marqibo®) [249], or irinotecan (Onivyde®) [250]. Thermal control
of drug release is also successfully applied in heat-sensitive liposomes loaded with doxorubicin
(ThermoDox®) [251]. Clinical development of photoactivated nanotherapeutics has been relatively
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slower but was already demonstrated by PDT-based verteporfin liposome (Visudyne®), which is
approved for age-related macular degeneration and is currently being investigated for locally advanced
pancreatic cancer [252,253]. This strategy is also applicable in topical and superficial treatments as
illustrated with PDT nanoemulsion (BF-200) [254], a topical agent investigated for treating actinic
keratosis [255]. In summary, nanotherapeutic activation strategies are currently being evaluated for
their clinical translation [39,244].
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