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Abstract: We now use the Internet of things (IoT) in our everyday lives. The novel IoT devices collect
cyber–physical data and provide information on the environment. Hence, IoT traffic will count for a
major part of Internet traffic; however, its impact on the network is still widely unknown. IoT devices
are prone to cyberattacks because of constrained resources or misconfigurations. It is essential to
characterize IoT traffic and identify each device to monitor the IoT network and discriminate among
legitimate and anomalous IoT traffic. In this study, we deployed a smart-home testbed comprising
several IoT devices to study IoT traffic. We performed extensive measurement experiments using
a novel IoT traffic generator tool called IoTTGen. This tool can generate traffic from multiple
devices, emulating large-scale scenarios with different devices under different network conditions.
We analyzed the IoT traffic properties by computing the entropy value of traffic parameters and
visually observing the traffic on behavior shape graphs. We propose a new method for identifying
traffic entropy-based devices, computing the entropy values of traffic features. The method relies on
machine learning to classify the traffic. The proposed method succeeded in identifying devices with
a performance accuracy up to 94% and is robust with unpredictable network behavior with traffic
anomalies spreading in the network.

Keywords: Internet of Things; traffic analysis; network entropy; anomaly detection; traffic generator;
traffic modeling; machine learning

1. Introduction

The rapid development of the Internet of Things (IoT), such as smart homes, smart
cities, and industries 4.0, has opened up a new cyber–physical technological era, impacting
our daily lives. According to the International Data Corporation, approximately 41.6 billion
IoT devices will be connected to the Internet, and 79.4 zettabytes of data will be the total
generated data in 2025 [1]. The growth is not expected to slow down and will keep
increasing for the next years.

There are more innovations in smart devices. For instance, smart homes can be
equipped with several sensors, remotely controlling video surveillance, lighting, and
heating systems [2]. The users can access information from these IoT devices or perform
daily tasks (e.g., turning off the light). Therefore, many consumer IoT devices (e.g., light
actuators, Wi-Fi plugs, and cameras) are connected, setting up a smart-home environment.

IoT will expectedly count for a major part of Internet traffic; however, there exist only
a few studies for modeling IoT traffic and characterizing its properties [3]. Compared
with current Internet traffic, IoT traffic exhibits different characteristics because of the
diversity of sources, heterogeneity of hardware devices, and novel services, leading to new
traffic patterns [4,5]. IoT traffic is the aggregation of packets generated by several devices
from different environments, such as smart homes or smart cities. These environments
include several sensors dedicated to specific tasks, such as monitoring systems or collecting
cyber–physical values (e.g., temperature and humidity).
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Traffic generators are essential tools for evaluating network performance and character-
izing traffic [6]. Several traffic generators [7], such as Iperf, PackETH, D-ITG, and Ostinato,
focus on Internet traffic. IoT traffic has different characteristics, such as heterogeneity of
sources, multiple sources, new traffic patterns, and different supported services [4].

The rise of the IoT has also unveiled new vulnerabilities, as observed with the Mirai
distributed denial of service (DDoS) botnet in 2016, severely impacting the Internet [8].
The virtual carjacking of a vehicle has been reported as an exploit [9]. Data from heart
monitoring systems for babies were found to be unencrypted, and alerts in the case of
an emergency could have been modified and strongly impacted the medical process [10].
Hence, the IoT is facing new challenges regarding the cybersecurity of devices, data privacy,
and communication. The collected data can convey critical information about users, their
privacy, and the environment. It is essential to characterize the traffic of IoT devices to
prevent security threats and mitigate vulnerabilities.

To study IoT traffic characteristics, we set up an IoT testbed for smart-home environ-
ments. Then, we performed extensive measurement experiment campaigns to study IoT
traffic. We designed a novel IoT traffic generator tool called IoTTGen. It is a packet-level
traffic generator that can generate traffic from multiple devices, emulating large-scale
scenarios with different devices under different network conditions. It can study the
properties of IoT traffic from various environments, such as smart homes and biomedical
environments [3].

From our IoT traffic dataset, we computed the entropy values of traffic parameters
and visually observed the IoT traffic on the behavior shape (BS) graphs. We propose a
new method for identifying traffic entropy-based devices, computing the entropy values
of traffic features. The method relies on machine learning to classify the traffic. The
proposed method succeeds in identifying devices under various network conditions with
a performance accuracy up to 94% in all cases and is robust with unpredictable network
behavior with traffic anomalies spreading in the network.

The rest of the paper is organized as follows. Section 2 surveys the related work on
IoT traffic. Section 3 introduces the proposed IoT testbed for smart-home environments.
Section 4 describes the proposed novel IoT traffic generator tool called IoTTGen. Section 5
presents our measurement experiments. Section 6 shows the traffic entropy analysis.
Section 7 introduces the proposed new entropy-based identification method and discusses
its performance accuracy. Section 8 concludes this paper and provides some insights into
future work.

2. Related Work
2.1. Network Traffic Generator

Traffic generators are important and powerful tools because they evaluate network
performance and characterize traffic. Many traffic generators have been developed in
different forms, such as open-source software, research projects, or commercial products.
Table 1 shows the popular traffic generators. Most traffic generators use different interfaces
and transport protocols to generate traffic. A traffic generator is one of the best ways to inject
traffic into the network for utilization by other devices. It is also useful in evaluating the
performance of devices. Most previous traffic generators focus on Internet traffic; therefore,
we only considered IoT traffic in this study. In [11], Eric Ke Wang et al. simulated voice
transfer attacking in an industrial IoT environment. They showed that their method for
synthesizing speech and the attack model reached a high level of efficiency. As we followed
the same trend by modeling anomalous traffic for the IoT, our focus was on the IoT for
smart-home environments where IoT devices are widely spread in the home environment.
Hence, we used IoTTGen as a traffic generator, which is dedicated to IoT networks.
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Table 1. Traffic generators from previous studies.

Traffic
Generator Transport Protocol Interface Open

Source
IoT

Traffic

D-ITG [12] UDP, TCP, DCCP, SCTP, ICMP Command line X x
PackETH [13] UDP, TCP, ICMP, IGMP GUI, command line x x
PktGen [14] UDP, TCP, ARP, ICMP, GRE, MPLS Command line X x
Iperf [15] UDP, TCP, SCTP Command line X x
Ostinato [16] TCP, UDP, ICMP, IGMP, MLD GUI X x
IP-Traffic [17] UDP, TCP, ICMP GUI x x
IoTTGen [3] UDP, TCP, ICMP Command line X X

2.2. IoT Traffic Characterization

IoT has become a tremendous topic; however, only a few studies have investigated
IoT traffic and its impact on networks. Shahid et al. [18] collected traffic from smart-
home sensor devices by visualizing IoT traffic with the t-distributed stochastic neighbor
embedding (t-SNE) method to classify network traffic for each device. Koroniotis et al. [19]
deployed a bot–IoT testbed, the data obtained from which are publicly available. They
analyzed their dataset through machine-learning methods for forensics purposes. Ferrando
et al. [20] relied on streaming data analytics to detect abnormal IoT traffic by visually
observing the traffic from heterogeneous sensor devices with the BS graphs. This study
is different from others because we aimed to characterize IoT traffic by designing an IoT
traffic generator tool for modeling traffic. We also applied our generator to a case study of
an IoT traffic anomaly.

2.3. Identifying and Classifying IoT Devices

In identifying and classifying IoT devices, machine-learning algorithms are used.
Shahid et al. [18] used the t-SNE method to recognize the four kinds of IoT devices. Feng
et al. [21] relied on a hybrid IoT device classification framework by combining empiri-
cal models with advanced machine-learning models to classify IoT devices. Bezawada
et al. [22] built a static and dynamic behavioral model based on packet headers and pay-
load features. They fingerprinted IoT device types with high accuracy using multiple
machine-learning classifiers. To classify and distinguish IoT devices from other devices,
Ortiz et al. [23] relied on the long short-term memory neural network to automatically
learn features from device traffic. Their study showed that it is feasible to identify devices
after learning a few TCP-flow samples with high accuracy.

2.4. Entropy-Based Method

Regarding Internet traffic, several studies have relied on the entropy-based method as
a good candidate for detecting anomalies [24–26]. Bereziński et al. [25] showed the ability
to detect a broad spectrum of anomalies using supervised learning with parameterized
entropy. Shukla et al. [27] computed the entropy values for a features vector and a list of
legitimate traffic, which were then provided for filtering the traffic. Callegari et al. [28]
proposed an intrusion detection system by measuring the entropy associated with the
traffic descriptors. They identified traffic features and detected anomalies with different
network scenarios.
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2.5. Anomaly Detection

For modeling attacks, Arnaboldi et al. [29] proposed an IoT system model for generat-
ing a synthetic denial of service (DoS). Erlacher et al. [30] proposed an automated system
for generating attack traffic for network intrusion detection systems. Huang et al. [31]
implemented attack models in the Omnet++ simulator tool and evaluated the performance
of their intrusion detection system for sensor networks. Salem et al. [32] proposed a frame-
work for detecting abnormal changes in a medical wireless sensor network. Several studies,
including the study by Cassas et al. [33], have relied on machine-learning methods for
classification and anomaly detection.

There are also studies for detecting anomalies in IoT traffic. Ozcelik et al. [34] proposed
a model for detecting and mitigating IoT-based DDoS attacks by investigating Software-
Defined Networking (SDN)’s capabilities in edge IoT networks. Hence, they evaluated
the use case of the Mirai malware. An intrusion detection system has also been proposed
for the IoT. Fu et al. [35] presented an automata-based intrusion detection method for the
IoT. Using an extension of the labeled transition systems, they detected three types of IoT
attacks: jamming attacks, false attacks, and reply attacks. Similarly, Gajewski et al. [36]
proposed a two-tier intrusion detection system for smart-home environments to identify
network attacks using neural networks based on the monitoring records.

Based on the analysis of attackers’ behavior, Martin et al. [37] combined three
practical techniques: honeypot, deep packet inspection (DPI), and a realization of moving
target defense in port forwarding, to detect an anomaly. Summerville et al. [38] proposed
a deep packet anomaly-detection approach that can distinguish between normal and
abnormal payloads. They used the bit pattern matching technique to perform feature
selection. However, this method’s applicability to resource-constrained IoT devices is
limited, especially because this study considered consumer IoT devices. Moreover, this
method is not easy and costly when the data are encrypted. Some IoT devices, such as
the Amazon Echo and TP-link Bulb, use the Transport Layer Security (TLS) protocol to
communicate, causing traffic to be encrypted. Using the DPI method without the user’s
permission can also violate the user’s information privacy [39]. Furthermore, Ke Wang
et al. [40] proposed a neural network architecture search method to balance the robustness
and efficiency of artificial intelligence-enabled Internet of things (AIoT) systems. They
reanalyzed MobileNet’s feature maps to detect anomalies. Their results show that the
performance of various networks under offensive conditions is different.

2.6. Smart-Home Testbed

Many previous studies deployed IoT testbeds to research IoT networks. Hence, there
are large-scale testbed facilities, such as FIT IoT-Lab [41] and WISEBED [42], that have
used many sensors from different vendors. However, for reproducing a real smart-home
environment, most testbeds are small-scale testbeds equipped with commercial IoT devices,
as shown in Table 2. For consumers, the number of devices in a smart home is mostly
limited (e.g., a few for each room). However, previous studies have taken a different
approach to building a testbed. In [18,43,44], only one manufacturer per device was used;
in [45], three different manufacturers for the camera were used; in [21], three different
manufacturers for the plug were used. Besides, some testbeds [44,45] have additional
non-IoT devices, such as Raspberry Pi sensors [21]. These studies all used smart-home
testbeds and machine learning to identify the classes of IoT devices (e.g., hubs, cameras,
and plugs). Hence, we also deployed a small-scale testbed, as most previous studies used.
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Table 2. Internet of things (IoT) testbeds from previous studies.

Testbed
Number of

Manufacturers Type of IoT Device
IoT Devices Other Devices

Adjih et al. [41] 2,845 0 WSN430, M3, A8, Turtlebot, Wifibot Sensor, mobile robot
Chatzigiannakis
et al. [42] >750 0 Pacemate, iSense, TelosB, MicaZ,

SunSPOT, Tmote Sky, MSB-A2 Sensor

Feng et al. [21] 11 0 Samsung, Insteon, YI, Belkin, Wemo,
Z-Wave, Raspberry Hub, camera, plug, sensor

Ammar et al. [45] 7 5 D-Link, Panasonic, TRENDnet, Philips,
Chromecast Camera, light, speaker, TV

Anthi et al. [44] 7 3 Amazon, Belkin, TP-link, Hive, Apple,
HP

Hub, camera, plug, sensor, TV,
printer

Apthorpe et al. [43] 4 0 Amazon, Nest, Belkin, Sense Hub, camera, plug, monitor
Shahid et al. [18] 4 0 TP-link, Nest, D-Link Light, camera, plug, sensor
Our testbed [5] 5 0 Amazon, TP-link, Lefun, Teckin Hub, camera, light, plug

3. IoT Testbed for Smart-Home Environment

Figure 1 shows the setup of our smart-home testbed for collecting IoT traffic. Table 3
shows that our testbed comprises five popular IoT devices connected to the Internet
with Wi-Fi through a home gateway for controlling the flow of information among smart
appliances to the remote network.

Table 3. Smart-home testbed.

Manufacturers Model Number of Devices

Smart hub Amazon Echo Dot 1
Smart light TP-link Kasa Wi-Fi Smart Bulb 1
Smart camera Lefun Indoor Security Camera 1

Smart plug TP-link Wi-Fi Smart Plug 1
Teckin Wi-Fi Smart Plug 1

We configured a Raspberry Pi 3 Model B (Raspberry Pi Ltd., Cambridge, UK) as the
wireless access point, serving as the gateway to the public Internet for collecting the traffic.
We used the Raspbian Jessie OS (Raspberry Pi Ltd.). We then installed additional software,
such as DNSMasq for the Domain Name Server (DNS) and Dynamic Host Configuration
Protocol (DHCP) services, Hostapd for the access point and authentication server services,
and Tcpdump for collecting the traffic. All the traffic from the IoT devices were recorded
and stored in a single trace file in the “pcap” file format. We collected the IoT traffic for
several days; however, we only present the results of one day’s traffic on our testbed
(Figure 2), as the other days showed similar traffic properties.

Figure 1. Smart-home testbed.



IoT 2021, 2 145

Figure 2. Testbed for IoT traffic.

3.1. ON/OFF Scenarios

IoT devices are dedicated entities responsible for sensing or interacting with the
physical world (e.g., activating a bulb light or switching off a plug). Most use cases in
IoT environments are periodic transmissions of messages containing sensor measure-
ments, statuses, or simple commands. For instance, the ON/OFF status is periodically
sent in a smart light. On the traffic collection day, we performed some activities us-
ing the IoT devices from 13:50 to 15:00, during which the traffic significantly increased
(Figure 2). We also performed other activities from 22:00 to 05:30. We refer to these periods
of activity as “ON” periods and those other periods without any activity as “OFF” periods.
The total traffic reached approximately 3.2 Kbps without any activity (OFF), and it could
reach 16–40 Kbps if some activities were using the IoT devices (ON).

Network activity varies during the daytime (intense-activity period (ON) or no-activity
period (OFF)) under several cybersecurity threats (DDoS, DoS, and port scanning). Thus,
we split the one-day traffic traces into 5 min traffic traces (288 5 min traces for a 24 h day
trace). To classify the 5 min traces into the ON or OFF periods (or anomalous), we relied on
the k-means clustering method by combination with the mean silhouette value to optimize
the number of clusters [46]. Thus, each 5 min trace could be classified as active, inactive, or
under cybersecurity attacks.

4. IoT Traffic Generator Tool

In the previous section, we presented our testbed for collecting smart-home IoT traffic.
The deployment of a testbed allows collecting a real dataset. However, it exhibits some
limitations, as it is complex to extend the scale of a testbed in order to test new devices. In
direct relation to the number of devices, it is also costly. To address this, we designed a
new IoT traffic generator tool that we will introduce in this section. Therefore, by using our
generator, it is possible to reproduce the behavior of IoT networks in various environments
and on any scale.

4.1. Overview

IoT traffic is the aggregation of packets generated by several devices from different
environments, such as smart homes or smart cities. These environments involve several
sensors dedicated to specific tasks, such as monitoring systems or collecting cyber–physical
values (temperature, humidity, etc.). IoT traffic can be more easily predicted, as sensor
devices are deployed to perform the same tasks continuously and generate the same
amount of data periodically.It is the opposite of the Internet traffic, where the traffic
has some human-generated aspects (flash-crowds, popularity, etc.). Some alerts can also
occur, adding less predictable traffic behavior; however, they are still part of the sensor
devices’ behavior. Hence, we designed a novel IoT traffic generator tool called IoTTGen.
Our packet-level generator can finely tune all the traffic feature parameters, such as the
packet size or time interval between packets. This tool is essential for modeling IoT traffic,
studying its characteristics, modeling unpredicted traffic behavior, and understanding IoT
traffic anomalies.
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4.2. Architecture

Different kinds of IoT environments can be modeled using IoTTGen, in which each
sensor device produces its traffic trace according to its functionality and characteristics.
For instance, a video recording camera generates continuous data flows with large-sized
packets, and smart plugs generate small-sized packets at a slow pace. IoTTGen is designed
to configure each device’s parameters easily. All the packets generated for each device are
stored in a single trace file in the following supported file formats: pcap, csv, and txt.

The IoTTGen architecture comprises (i) a device configuration module, (ii) a packet
creator module, and (iii) a main controller.

The device configuration module defines the IoT device configuration, such as the
packet size, port number, payload, and period between packets. The user needs to define a
new device template to add a new device (a smart light bulb or camera).

The packet creator module forges the packets based on the device configuration from
the previous module. To forge packets and generate real packet traffic, we used Scapy [47].
It can generate packet traces in text format only, depending on its needs. For a long-duration
experiment, it drastically reduces the duration of the packet generation process.

The main controller controls the execution of IoTTGen. The controller extracts the
parameters provided by the device configuration module and causes the packet creator to
forge packets or provide packet traces. It also merges each device trace into a single trace;
however, it is still possible to generate one trace per device.

4.2.1. Device-Generated Traffic

IoT devices are dedicated entities continuously performing their tasks, such as sensing
the environment, transferring data among objects or users automatically without human
intervention. Thus, each device is continuously generating traffic even though no user
is requesting its explicit information. Figure 3 shows the packet generation process for
IoTTGen. The period for generating packets varies for each kind of device and can be
configured. For example, Figure 3 shows that the devices have periods of 1, 1.5, 1, and
2 s. As for generating traffic, all the devices are synchronized with the same time origin;
however, it is also possible to configure the starting time and add some delays among
packets and periods to reduce devices’ synchronicity. Then, each device generates a
different number of packets with different periods for the entire duration of the scenario.
Besides predefined parameters, it is also possible to assign parameters within intervals so
that the parameters can be randomly chosen within ranges of values. This way of working
is useful for modeling the unpredictable behavior of devices and users in cases of specific
scenarios (e.g., a daily routine except for one day, new behaviors and different interactions
with devices, etc.). Thus, our generator is a complete scenario composition framework for
the IoT.

4.2.2. Human-Generated Traffic

IoTTGen can generate traffic triggered by human activities. Each device has different
event patterns (e.g., the smart plug has a turn-on event and turn-off event); hence, IoTTGen
can also model the traffic generated by human activities. Besides, the user can create
different scenarios using IoT devices in regular daily activities. For example, when coming
home, the user can turn on the bulb and plug, launch the Spotify music service on the hub,
and access the camera’s recording activities. Figure 3 shows that plug 1 is switched on at
activity 1, and two packets are generated for plug 1. Then, when the bulb is switched on at
activity 2, IoTTGen generates packets accordingly. Furthermore, human activities can also
be created randomly. For example, when the user has a party at home, smart-home devices
can operate randomly. Therefore, IoTTGen can also set the time to trigger events for these
devices randomly. Thus, human-generated traffic can be generated easily using IoTTGen.
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Figure 3. IoTTGen: packet generation process.

We will show how we applied IoTTGen to the IoT environment and generated a
different kind of traffic in the following section.

5. IoT Traffic Measurement Experiments

We set up three experiments: collecting measured traffic using the testbed, generating
synthetic traffic using IoTTGen, and generating anomalous traffic by injecting malicious
traffic into synthetic traffic and measured traffic.

We used IoTTGen for implementing experiments and generating synthetic IoT traffic
for smart-home environments. The measured traffic was obtained from our testbed, as
discussed in Section 3.1. We also generated malicious traffic by extracting anomalous traffic
from the real dataset [19]. Thus, we aimed to investigate the properties of IoT traffic and
study the impact of malicious traffic.

IoTTGen can generate one day’s traffic for the five-device smart-home scenario in a
few seconds with more than 60,000 packets per second. The generation of the 52-device
scenarios reaches up to 80,000 packets per second, and one day’s traffic in a few seconds.
This larger experiment is faster, as more devices have similar properties. The complexity
of IoTTGen are presented in Table 4. Thus, IoTTGen can generate daily traffic in a few
seconds and generate a longer traffic trace according to the scenarios. We conducted all the
experiments on a computer running an Intel Core i7-7700 at 3.6 GHz, with 8 GB of RAM
and 64-bit Windows 10 Professional (Microsoft Co., Redmond, WA, USA).

Table 4. Complexity of IoTTGen - 1 day traffic.

Scenarios Number of Packets Total Size
(MB)

Running
Time (s)

13-devices extracted parameters (Table 5) 346,551 23.2 4.4
13-devices custom parameters (Table 5) 7,689,600 583.3 104.2
5-devices measured parameters (Table 8) 208,781 15.5 3.4
52-devices measured parameters (Table 8) 1,439,887 109.4 17.7
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5.1. Generating Synthetic Traffic
5.1.1. Smart-Home Environment

A smart home is defined as a house equipped with (multiple) cyber–physical sensors
for temperature, humidity, light control, smart hubs, and other things, allowing inhabitants
to obtain information on their environment (e.g., temperature) and control and monitor it
remotely (e.g., turning on equipment). In our smart-home environment, the devices were
connected to the Internet with Wi-Fi through a home gateway for controlling the flow of
information among smart appliances and to the remote network. Thus, remote users can
access data and control home sensors with dedicated devices, such as smartphones, tablets,
and computers.

5.1.2. Smart-Home Scenario

To generate IoT traffic for a smart home, we set up an experiment with a four-room
house equipped with the following 13 smart devices (Figure 4): one smart hub (e.g.,
Amazon Echo) for controlling other devices, four smart cameras (e.g., Belkin NetCam),
four smart lights (e.g., Lifx Bulb), and four smart plugs (e.g., TP-link Smart Plug).

Figure 4. Smart-home scenario for synthetic traffic.

Table 5. IoTTGen: parameters for smart home.

Extracted Parameters Custom Parameters

Period (s) Packet Size (B) Period (s) Packet Size (B)

Smart hub 2.77 144 1 200
Smart light 3.2 94 1 100
Smart camera 2 100 0.05 1000
Smart plug 10 120 1 100

To show that the different parameters would have an impact on the generated traffic,
we considered two distinct sets of parameters for the smart-home environments: a case
with custom parameters and another case with parameters extracted from the dataset [48].
Table 5 summarizes the custom parameters that we modeled based on the functionality of
each device. For instance, a smart plug generates short-sized packets (100 bps) periodically,
as smart plugs are low-bandwidth sensor devices. A smart hub may have larger packets
(200 bps) for a management purpose but with the same period. We consider that a smart
camera is a high-bandwidth device that continuously generates large-sized video packets
(1000 bytes) in a short period (50 ms) for a video bitrate at 160 Kbps. Table 5 shows the
parameters extracted from the previous study [48]. The same network configuration, smart
hub, smart light, smart plug, and smart camera generated short-sized packets (144, 94, 120,
and 100 bytes) at distinct periods (2.77, 3.2, 10, and 2 s, respectively).
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Different parameter values (custom vs. extracted parameters) will have an impact on
the traffic properties (Figure 5), which will be described in Section 4.

For this smart-home environment scenario, the overall smart-home traffic was gener-
ated by IoTTGen for three durations: 8 h, 24 h, and 7 days.

In adding new devices, we also implemented an experiment with a biomedical envi-
ronment from a previous study [3].

Figure 5. Behavior shape: synthetic traffic with custom and extracted parameters.

5.2. Measured Traffic on Testbed
5.2.1. Traffic Trace Observation

Table 6 summarizes the one-day trace of the collected traffic. The camera, a high-
bandwidth device, generated the major part of the packets and bytes, whereas the plugs
counted for a small amount of the traffic. The hub also generated more packets than the
camera, but overall, the hub counted for a lower amount of traffic.

Table 6. IoT traffic traces on testbed (1 day).

Number of Packets Packet Size (B) Total Size (MB)

Hub 82,251 82.5 10.9
Camera 110,776 306 33.5
Bulb 6707 80 0.563
Tpl plug 1849 85 0.15
Tk plug 7198 85 0.583

5.2.2. Cloud Server Observation

There are many IoT manufacturers in the market today. Each manufacturer has its
cloud server that manages its devices, and each DNS query–response pair is mapped into
a particular domain owned by the manufacturers, as shown in Table 7. For instance, the
TP-link plug device is directed to the TP-Link cloud server at devs.tplinkcloud.com. For
Internet users, they may access many online servers (e.g., the web, Online Social Network,
and e-Business) during their activities. However, IoT devices are dedicated to a single task
and communicate only to pre-established servers. Inspecting the remote servers that IoT
devices are connected to can indicate whether the devices have been corrupted or whether
they may send information to nonlegitimate servers.
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Table 7. Cloud servers and DNS queries for IoT devices.

Devices Cloud Servers DNS Queries

Hub Amazon CloudFront www.d3p8zr0ffa9t17.cloudfront.net
(accessed on 20 February 2021)

Camera Mipc s0.mipcgw.com
(accessed on 20 February 2021)

Bulb TP-link cloud devs.tplinkcloud.com
(accessed on 20 February 2021)

Tpl Plug TP-link cloud devs.tplinkcloud.com
(accessed on 20 February 2021)

Tk Plug Tuya cloud a3.tuyaus.com
(accessed on 20 February 2021)

5.3. Synthetic Traffic vs. Measured Traffic

To compare the measured traffic and synthetic traffic, we used IoTTGen to generate
traffic based on parameters extracted from Table 8. These parameters are similar to the
parameters of measured traffic from our testbed.

For many devices, we also considered a scenario with a house equipped with the
following 52 smart devices: four hubs, eight cameras, 20 bulbs, 10 Tpl plugs, and 10 Tk
plugs. The total duration of this experiment was 2 h. Figure 6 shows the differences
between two scenarios of five devices and 52 devices. With 52 devices, the traffic was eight
times higher than that with five devices.

Table 8. IoTTGen: measured parameters for smart home.

Period (s) Packet Size (B)

Hub 1.05 82.5
Camera 0.78 306
Bulb 12.88 80
Tpl plug 46.73 85
Tk plug 12.01 85

Figure 6. Comparison of 5 devices and 52 devices in terms of synthetic traffic with measured
parameters.

5.4. Anomalous Traffic

From the regular users’ activity described previously as ON or OFF periods from the
testbed and IoT traffic for smart-home environments generated from IoTTGen, another
scenario of interest is when the IoT devices are under attack, and there are some security
threats in the network. There are many IoT devices connected to the Internet, and there
have been many cybersecurity threats or anomalies seen, such as the Mirai DDoS botnet.
Thus, it is also essential to accurately detect when the devices are under attack or have
anomalous traffic. In that case, the operator can react quickly in the case of new threats.
We also wanted to model IoT anomalous traffic.
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To this end, we relied on a public IoT traffic dataset [19] by extracting the traffic into
three cybersecurity threats: port scanning (PS), DoS, and DDoS. Five bots generated DDoS,
whereas a single bot generated DoS and port scanning. Each of the malicious traffic traces
was injected into our generated IoT traffic. Then, we obtained five different traces: one
original trace for IoT traffic, four malicious traffic traces for each anomaly, and a mixture of
them (referred to as DDoS, DoS, PS, and mix). The total duration of the experiment was
24 h, and the cybersecurity threats occurred at 06:00 for 38 min. However, for other traffic,
we had different configurations for anomalous traffic.

For the measured traffic scenario, the anomalous traffic traces are presented in Table 9,
and the total duration of each trace was 1 min. The original traffic is depicted in Figure 2.

For the synthetic traffic scenario, the anomalous traffic statistics are presented in
Table 10, and the total duration of the traces was 38 min. Figure 7 shows the generated
traffic used for the smart-home scenario. The generated anomalous traffic is a mixture of
the three different attacks and the IoT traffic.

Table 9. IoT anomaly traffic traces (1 min) for the measured traffic.

Number of Packets Packet Size (B) Total Size (MB)

DDoS 773,045 60 44
DoS 727,210 60 41
Port scanning 23,587 100–1000 22

Table 10. IoT anomaly traffic traces (38 min) for the synthetic traffic.

Number of Packets Packet Size (B) Total Size (MB)

DDoS 29,375,746 60 1640
DoS 27,634,013 60 1540
Port scanning 896,335 100–1000 841.7

Figure 7. Synthetic traffic with extracted parameters and extracted anomaly traffic.

6. Behavior Shape Traffic Analysis

To study the different traffic properties, we computed the entropy of the six traffic
parameters: the IP source, IP destination, port source, port destination, packet size, and
byte count. Then, we plotted the BS graphs [20] of the entropy to visualize and compare
the traffic properties. The entropy can also be represented with time series [49] or three-
dimensional graphs [24]. In our work, we chose the behavior shape graph, as we aimed
at characterizing the traffic visually. Then, we plot the BS graphs [20] of the entropy to
visualize and compare the traffic properties.

In this section, the theory of information entropy is first briefly introduced. Then,
the results of our experiments are presented through the use of the entropy behavior
shape. First, we present the results for regular traffic (Section 6.2) (i) generated by IoTTGen
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(Section 6.2.1) and (ii) measured from the testbed (Section 6.2.2), and the comparison
(Section 6.2.3). Second, we present the results with anomalous traffic. In these experiments,
we also showed the overall traffic of a smart home as well as the traffic of individual devices.

6.1. Entropy

As we aimed to identify IoT devices based on network traffic (legitimate or anomalous),
the frequencies of traffic parameters, such as IP addresses or ports, could help to identify
the devices and the network conditions. Hence, we computed the entropy values of the
following traffic parameters [24]: the IP source, IP destination, port source, port destination,
packet size, and bytes.

Information entropy is a quantity in information theory for measuring uncertainty
(see Equation (1)) [25].

H(X) = −
n

∑
i=1

p(xi) log(p(xi)) (1)

The entropy value can vary from 0 to log(n). An entropy value equal to 0 means
that the observations (i.e., packets) are similar, whereas a higher entropy value shows that
the observations are different. In the rest of the paper, these parameters convey sufficient
information for precisely identifying the devices under different network conditions.

6.2. IoT Traffic under Regular Network Condition

In the following, we present the characterization of the IoT traffic collected on the
testbed and generated by our generator.

6.2.1. Synthetic Traffic under Regular Network Condition

Figures 5 and 8 present the BS graphs of the generated traffic for the smart home from
the experiments presented in Section 5.1. Figure 5 shows that our generator used custom
parameters in Table 5 and extracted parameters in Table 5. Figure 8 shows that smart-home
traffic was also generated on the basis of the extracted parameters in Table 5.

Figure 8. Behavior shape: synthetic traffic with extracted parameters.

In all the figures, the entropy value for the IP destination parameter is equal to 0.
This is because, for all the experiments, the traffic generated from IoT devices flowed to
the same destination (i.e., the gateway). Then, there was no entropy, as there was only a
single destination. Figure 5 shows that the IoT traffic had been generated over 24 h as a
regular daily activity with the same network configuration (smart-home environment).
The parameter values directly impacted the shape of the traffic: the extracted parameters
exhibited a larger shape than the custom parameters. There was the same number of IoT
devices, but the parameters were different (period and packet size), resulting in different
BS graphs. Figure 8 shows that the experiments were performed for 8 h, 24 h, and 7 days.
For all these durations, the IoT traffic exhibited the same BS graph. As the synthetic traffic
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was generated, the traffic parameters stayed unchanged during all the experiments. There
was no traffic evolution (e.g., there were no new connected devices or failures).

6.2.2. Measured Traffic under Regular Network Condition

As we split the traffic into 5 min time slots, each trace from the same state (i.e., ON,
OFF, or anomalous) showed similar properties. We show the BS graph of a single 5 min
trace for each device.

Figure 9 shows the BS graph of one day’s traffic for five consecutive days. As the traffic
shapes were consistent over a day, a single day’s traffic is representative of the other days.

Figures 10–14 present the BS graphs for different smart devices during one day. The
OFF period area is smaller than that of the ON period, except for the camera. This can
be explained by the fact that in the ON period, the camera uses almost only one type of
packet, whereas the remaining devices use more diverse types. This leads to a decrease in
the entropy value, expressed by a smaller BS area for the camera ON traffic. Moreover, the
BS graph for each device is very different, and this BS graph can help to identify the IoT
devices. This can be explained by the fact that each device has different characteristics and
functionality; hence, they are sending or receiving different kinds of packet. For example,
the camera uses many different source ports when sending packets and shows a greater
entropy value for the port source (3.7) than that for the hub (2.9) or those of other devices
(i.e., the Tpl plug (1.55), Tk plug (2.0), and bulb (1.9)).

Figure 9. Behavior shape of the measured traffic over five consecutive days.

Figure 10. Behavior shape of the measured camera traffic.

Figure 11. Behavior shape of the measured hub traffic.
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Figure 12. Behavior shape of the measured bulb traffic.

Figure 13. Behavior shape of the measured Tpl plug traffic.

Figure 14. Behavior shape of the measured Tk plug traffic.

Regarding the OFF period, the BS graphs for the camera and hub are larger than those
of the other devices. Those devices have many functionalities and generate many more
packets, even in the OFF period, than the other devices (the bulb or plugs). The entropy
values for such devices reached a higher level.

6.2.3. Synthetic Traffic vs. Measured Traffic under Regular Network Condition

We validated the effectiveness of our generator by comparing synthetic traffic and
measured traffic.

Figures 15 and 16 show the BS graphs of the generated traffic from IoTTGen (based
on parameters in Table 8) and testbed, as presented in Section 5.3. The BS graphs of the
synthetic traffic with the measured parameters and the measured traffic overlap in both
figures and exhibit the same properties. Figure 15 shows that the entropy values were
nearly even in pairs of the synthetic traffic and measured traffic. Figure 16 shows that these
values are similar when focusing only on the hub device with the ON/OFF activity. This
shows that our generator succeeded in modeling the IoT traffic and capturing its main
characteristics.



IoT 2021, 2 155

Figure 15. Behavior shape: synthetic traffic with measured parameters and measured traffic.

Figure 16. Behavior shape of the hub traffic: synthetic traffic with measured parameters and mea-
sured traffic.

6.3. Anomalous Traffic

The number of packets increased drastically when the network was under attack.
Therefore, anomalous traffic had a strong impact on the shape of the IoT traffic. Figures 17–21
presents the BS graph of the anomalous traffic (see Section 5.4) for the smart-home environment.

6.3.1. Synthetic Traffic under Network Attack Condition

Figure 17 shows the IoT traffic, each of the malicious traffic types (DoS, DDoS, and
PS), and the aggregation of all the traffic (IoT and anomalies). As we previously observed,
the duration of the experiments had no impact on the entropy values; for this experiment,
we focused on the daily activity patterns and present the experiment results for 24 h.

Figure 17 shows that the malicious traffic impacted the entropy values and the BS
graph of the IoT traffic.

For all the malicious traffic, there was a higher entropy for the destination port. It was
more pronounced for DoS and DDoS (14.5) than for port scanning (12.8). These anomalies
come from security threats targeting a large number of destination ports. Thus, it is possible
to visually observe such anomalies in the network by computing the entropy value.

Regarding the entropy value of the IP source, the IoT traffic had higher entropy than
the other malicious traffic. Remember that traffic was generated by 13 IoT devices for
the smart-home environment and that the DDoS was generated by five bots. By contrast,
the DoS and port scanning were generated by a single bot, so there were more distinct IP
sources in the legitimate traffic, leading to more variations and higher entropy. However,
this parameter allowed us to observe variation in the traffic and differentiate the malicious
traffic from the legitimate traffic. For the source port, the observation was similar to that
for the IP source. The DoS and DDoS relied on a single port to send traffic, so their entropy
values reached the lowest value at 0.11. IoT scenarios involve more source ports and show
higher entropy.

Regarding the packet size parameter, port scanning reached a higher value than the
other traffic, and the DoS and DDoS traffic showed the lowest value. This is because the
DoS and DDoS traffic sent only 60-byte packets, whereas the port scanning used various
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sizes of packets (100 B to 1 MB; Table 10). The IoT traffic also used various packets according
to the devices and environment, as shown in Table 5. Thus, there were more variations for
port scanning and higher entropy.

The DoS traffic showed lower entropy because the byte count computes the total bytes
by IP source, and the entropy depends on the diversity of the packet size and the number
of IP sources.

We experimented with computing the entropy level regarding traffic parameters and
visually observed the traffic on BS graphs. Different traffic, such as legitimate or malicious
traffic, shows different entropy values and has different impacts on a network. Using our
IoT generator, we succeeded in picturing IoT traffic characteristics and showed that it is
possible to detect anomalies based on entropy and the visual representation of the traffic,
such as the behavior shape.

Figure 17. Behavior shape: synthetic traffic with extracted parameters and anomalous traffic.

6.3.2. Measured Traffic under Network Attack Condition

Figure 18 shows that the shape of the hub traffic with DDoS was different from that
of the hub traffic. The DDoS exhibited much higher entropy values for port destinations
(16) because it targeted many destination ports. For the packet size and port source, the
hub traffic had higher entropy than the DDoS traffic. DDoS relies on a single port to send
the same size packets, so its traffic entropy for this feature is close to zero. Overall, the BS
graph can represent the nature of the traffic.

We also compared the entropy values of all the device traffic with those of each type
of anomalous traffic. Figure 19 shows the difference between the ranges of the entropy
values of the anomalous traffic and normal traffic. The entropy values of the normal traffic
always fluctuated within a certain range, and those values of all the anomalous traffic were
almost kept stable. Additionally, the minimum or maximum value of the normal traffic
was always greater or less than that of the anomalous traffic. From the observation of the
entropy value, it is possible to detect anomalies for IoT devices.
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Figure 18. Behavior shape of the measured hub traffic with DDoS.

Figure 19. Entropy for normal and anomalous measured traffic.

6.3.3. Synthetic Traffic vs. Measured Traffic under Network Attack Condition

We also used BS graphs to evaluate the effectiveness of our generator under the
influence of anomalous traffic. Figures 20 and 21 show that anomalous traffic directly
impacted the shape of the traffic. This impact was equivalent to that of both the synthetic
traffic and measured traffic. As analyzed in previous sections, the malicious traffic shapes
were still different from those of the legitimate traffic. With different attack cases, the
shape of the anomalous synthetic traffic nearly coincided with that of the anomalous
measured traffic.
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Figure 20. Behavior shape of the hub traffic under DDoS: synthetic traffic with measured parameters,
measured traffic, and anomalous traffic.

Figure 21. Behavior shape: synthetic traffic with measured parameters, measured traffic, and
anomalous traffic.

With IoTTGen, we can still model IoT traffic successfully under various network
conditions.

7. Entropy-Based IoT Device Identification

Based on the experimental results, we propose a new approach to identifying and
classifying IoT devices based on machine learning and traffic entropy values.

7.1. Classification Algorithms

Previously, the entropy values of traffic features showed different characteristics and
could help to identify devices. We now aimed at classifying the devices by relying on
machine learning algorithms. Our collected one-day trace was split into several 5 min
traces. We evaluated the effectiveness of our classification using a 10-fold cross-validation
method [50] and then applied it to an independent validation dataset. The dataset was
randomly divided into two datasets: the training dataset (80% of the total instances, i.e.,
5-min traces) and validation dataset (20% of the total instances).

Using the Weka software [51], we relied on six classification algorithms: (i) decision
tree (DT), (ii) random forest (RF), (iii) k-nearest neighbors (KNN), (iv) Gaussian Naive Bayes
(NB), (v) neural network (NN), and (vi) support vector machine (SVM). We considered
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the following metrics for evaluating the algorithms’ performance: the true positive rate
(TPR), false positive rate (FPR), precision, recall, and F-measure. Table 11 shows the
classification results for these algorithms for the validation dataset for all the devices and
network conditions.

In our experiments, the SVM and NN algorithms performed poorly based on the
TPR metric: 0.2996 and 0.3137, respectively. NB and DT showed better performance;
however, NB only reached an average level of performance (0.5712), and DT reached
a higher level and could classify approximately 72% of the IoT devices properly. The
RF and KNN algorithms outperformed the other algorithms and showed a high level of
performance. KNN succeeded in classifying >92% of the devices, and RF exhibited even
higher performance, up to 94.74%. As RF and KNN succeeded in classifying IoT devices
based on the entropy value, RF showed the best performance. In the following, we relied
on the RF algorithm for computing the classification matrix.

Table 11. Performance of the ML algorithms (validation dataset).

RF KNN DT NB NN SVM

TPR 0.9474 0.9277 0.7179 0.5712 0.3137 0.2996
FPR 0.0013 0.0022 0.0110 0.0159 0.0283 0.0291
Precision 0.9512 0.9356 0.7271 0.5767 0.3188 0.3008
Recall 0.9474 0.9277 0.7179 0.5712 0.3137 0.2996
F-Measure 0.9465 0.9267 0.7171 0.5583 0.3813 0.2835

7.2. Confusion Matrix for IoT Identification

Through all our data, we could define 50 classes based on the states of each device and
the type of network traffic (normal or anomalous). More precisely, the five devices could
be classified into ON or OFF states and under five different network conditions: regular
traffic, DDoS, DoS, PS, and the three attacks jointly.

After processing the data with RF, we obtained a probability vector for each class,
shown on the confusion matrix (CM) in Figure 22. The accuracy of the classification
depends on the ratio of accurate predictions. The CM provides further information on the
accuracy of different classifiers and which classes are correctly or incorrectly predicted. It
also provides the misclassification type.

Figure 22. Confusion matrix for RF classification algorithm.
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Our classification method showed a very high accuracy for detecting the devices under
different network conditions for all the devices. For the plugs, 96% of the traffic for these
devices were accurately classified. The precision for the hub under the regular network
condition was also very high (95%) and still over 80% under anomalous network conditions.
The prediction for camera OFF also reached a high level (96%), but the prediction accuracy
decreased under network anomalies. Similarly, for the bulb, the prediction was very
high for the ON period (98–99%) but dropped drastically with the OFF period (43–57%).
The predictions were very accurate with regular traffic and dropped while cyberattacks
compromised the network. The intense-activity period (ON) also showed higher accuracy
than the no-user-activity period (OFF).

Finally, IoT device classification based on entropy succeeds in identifying IoT devices
and under various network conditions.

8. Conclusions

We performed measurement experiments and modeling to study the properties of
IoT traffic. We set up a smart-home testbed to collect consumers’ IoT traffic. From these
experiments, we derived a new IoT traffic generator tool to model and emulate IoT traffic.
Our tool can be used as a scenario composition framework for modeling IoT environments,
such as smart homes.

We also extracted IoT anomalies from a public dataset, performed comparisons of
synthetic traffic, and generated traffic by computing the entropy of the traffic parameters
and observing the BS graphs’ results. The traffic shape differed significantly for different
scenarios and each type of smart IoT device, and it was also possible to observe the impact of
anomalous traffic. Our traffic generator succeeded in representing the traffic characteristics,
and our methodology shows that we can also compare traffic and highlight anomalies.

Furthermore, we introduced a new entropy-based method for identifying IoT devices
based on the computation of the entropy values of traffic features. We used machine-
learning algorithms, such as RF, to classify the devices based on the IoT traffic’s entropy
value in different scenarios. Our results show that our method reached a high level of
performance, accurately classifying the devices (94% accuracy), especially in the case of
intense activity. We also applied our method under different scenarios and cybersecurity
threats, in which it still classified devices accurately.

For future work, we are now using our generator to model other IoT environments
and characterize different IoT devices. For instance, we are adapting our generator tool
for new scenarios, such as a biomedical or smart factory. Our generator is also being
tuned to generate IoT network anomalies and combine them with the measured traffic. It
is an essential tool for studying consumer IoT devices in a wide range of scenarios. For
visualizing IoT traffic, we are now using the BS graphs to observe and analyze in general.
In the future, the similarity of these shapes will be clarified to detect IoT anomalies; for
example, we can use the Euclidean distance to evaluate the differences between shapes.
Regarding our entropy-based identification method, we are now adapting it to classify
IoT devices on the fly. This method could be used in a gateway to immediately detect
legitimate or malicious devices in the network environment. Furthermore, other deep-
learning algorithms or feature selection methods will be applied to our dataset to improve
and evaluate the performance of our method.
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