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Abstract: In the derived approach, an analysis is performed on Twitter data for World Cup soccer
2014 held in Brazil to detect the sentiment of the people throughout the world using machine
learning techniques. By filtering and analyzing the data using natural language processing techniques,
sentiment polarity was calculated based on the emotion words detected in the user tweets. The dataset
is normalized to be used by machine learning algorithms and prepared using natural language
processing techniques like word tokenization, stemming and lemmatization, part-of-speech (POS)
tagger, name entity recognition (NER), and parser to extract emotions for the textual data from
each tweet. This approach is implemented using Python programming language and Natural
Language Toolkit (NLTK). A derived algorithm extracts emotional words using WordNet with its
POS (part-of-speech) for the word in a sentence that has a meaning in the current context, and is
assigned sentiment polarity using the SentiWordNet dictionary or using a lexicon-based method.
The resultant polarity assigned is further analyzed using naïve Bayes, support vector machine (SVM),
K-nearest neighbor (KNN), and random forest machine learning algorithms and visualized on the
Weka platform. Naïve Bayes gives the best accuracy of 88.17% whereas random forest gives the best
area under the receiver operating characteristics curve (AUC) of 0.97.

Keywords: natural language processing (NLP); data preprocessing; word tokenization; word
stemming and lemmatizing; POS tagging; name entity recognition; machine learning; naïve Bayes;
SVM; maximum entropy; KNN; random forest

1. Introduction

In this advancing world of technology, expressing emotions, feelings, and views regarding any
and every situation is much easier through social networking sites. Sentiment analysis along with
opinion mining are two processes that aid in classifying and investigating the behavior and approach
of customers in regards to the brand, product, events, company, and customer services [1]. Sentiment
analysis can be defined as the automatic process of extracting the emotions from the user’s written text
by processing unstructured information and preparing a model to extract the knowledge from it [2].

In this paper, one such social networking site is taken into account, which is among the largest
networking sites, Twitter. Looking at the statistics, users that are active monthly range around
316 million, and on an average, about 500 million tweets are sent daily [3]. There are many approaches
used for sentiment analysis on linguistic data, and the approach to be used depends on the nature
of the data and the platform. Most research carried out in the field of sentiment analysis employs
lexicon-based analysis or machine learning techniques. Machine learning techniques control the
data processing by the use of machine learning algorithms and by classifying the linguistic data by
representing them in vector form [4]. On the other side, a lexicon-based (also called dictionary-based)
approach classifies the linguistic data using a dictionary lookup database. During this classification,
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it computes sentence- or document-level sentiment polarity using lexicon databases for processing
linguistic data like WordNet, SentiWordNet, and treebanks. Moreover, a lexicon dictionary or database
contains the opinionated words that are classified by positive and negative word type, and the
description of the word that occurs in the current context. For each word in the document, it is assigned
a numeric score; the average score is computed by summing up all the numeric scores and sentiment
polarity is assigned to the document. Using this approach, the words in the sentence are considered in
the form of vectors and analyzed using different machine learning algorithms like naïve Bayes, support
vector machine (SVM), and maximum entropy. The data are trained accordingly, which can be applied
to machine learning algorithms.

In this paper, both approaches were combined, namely lexicon-based and machine learning for
sentiment analysis of Twitter data. These algorithms were implemented for the preprocessing of a
dataset, and filtering and reducing the noise from the dataset. In this approach, the core linguistic data
processing algorithm using natural language processing (NLP) has been designed and implemented,
and sentiment polarity is assigned to the tweets using a lexicon-based approach. Later, the resultant
dataset was trained using machine learning algorithms, naïve Bayes, SVM (support vector machine),
K-nearest neighbor (KNN), and random forest for measuring the accuracy of the training dataset and
comparison of the results was accomplished. An abstract view of the derived approach that combines
lexicon-based and machine learning for sentiment analysis is shown in Figure 1.
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2. Related Work

In this era, information sharing through social media has increased and most users actively
share their personal ideas and information publicly. This information for an analyst or researcher
is a gold mine to dig out the valuable information for strategic decision-making [5]. Fishing out
sentiments embodied in the user’s written text, in the world of social media is known as sentiment
analysis or opinion mining. Firmino Alves et al. [6] state that from the beginning of the 21st century,
sentiment analysis has been one of the most interesting as well as active research topics in the
domain of natural language processing. It helps the decision maker to understand the responses of
people towards a particular topic and aids in determining whether the event is positive, negative,
or neutral. Twitter has been considered a very important platform for data mining by many researchers.
Hemalatha et al. [7] discuss that the Twitter platform contains much relevant information on particular
events with hashtags that have been followed and accepted by many popular personalities. The main
fundamental objective of sentiment analysis is to classify sentiment polarity from a text as positive,
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negative, or neutral. This classification can be done at the sentence level, document level, or entity
and aspect level. There are many approaches to classify the sentiment polarity from user-generated
text. Firmino Alves et al. [6] gives an insight of the main approaches for classifying sentiment polarity,
which are machine learning, statistical approach, semantic approach, and approach based on lexical
analysis or thesaurus. Hemalatha et al. [8] show a very nice approach for preprocessing Twitter data
following simple steps, and demonstrate how to prepare the data for training in a machine learning
technique. This approach eliminates unnecessary noise such as slang, abbreviation, URLs, and special
characters from the linguistic data and also reduces the size of the dataset by eliminating noise. In this
research, algorithms have been developed using proper sequencing for preprocessing of the dataset
for filtering as well as reducing the noise from the dataset. Bandgar and Kumar, [9] using their
research methodology, illustrated how to create a Windows application for real-time Twitter data for
preprocessing of text data using available natural language processing resources like WordNet, SMS
(Short Message Service) dictionary, and Stanford dictionary. Augustyniak, Łukasz, et al. [10] proposed
a new method called “frequentiment” that robotically evaluates sentiments (opinions) of the user from
the Amazon reviews dataset. Extending the work in this method, they developed a dictionary by
calculating the probabilistic frequency of words present in the text and evaluated the influence of
polarity scored by separating the features present in the text. They analyzed the outcome that was
produced by unigram, bigram, and trigram lexicon using lexicon-based, supervised, and unsupervised
machine learning approaches, and compared 37 machine learning methods to evaluate results in
analyzing the Amazon dataset. Isah et al. [11] illustrated a reliable framework for sentiment analysis
using a machine learning and lexicon-based approach. The literature of Neri et al. [1] compares
the sentiment analysis of 1000 Facebook posts from newscasts by using a knowledge-based system.
They proposed semantic and linguistic approaches for classifying and analyzing the huge amount of
distributed data, and assigned automatic polarity classification for sentiment analysis to use in the
knowledge-based systems.

In this paper, the approach discussed by Hemalatha et al. [7] on data preprocessing steps for data
cleaning and noise reduction discussed above was extended and altered. The algorithm proposed
in Section 4 inverts the sentiment score and fulfills the objective of achieving accuracy in the results
of assigning sentiment polarity to the tweets. Using this approach, the word(s) that relate negative
meaning in the sentence are marked with “_NEG” and further marked as “1” for the negative sense
word meaning in the sentence. This is a key step of analyzing sentiment polarity and to obtain an
accurate sentiment score for the given synset when applied to the lexical resources. The overall
sentiment score evaluated by inverting the sentiment gives accurate results as was observed analyzing
the sentiment of the Twitter data.

Further, reference [12] relates generating the dictionary of words and its relationship in proper size
using a “data-driven” approach. In the data-driven technique, words are a shared form of information
and frequency of words are grouped together with seed words that iterate through the synonyms and
antonyms using WordNet lexical resources. The approach suggested in reference [10] is to produce a
set of professionally nominated emotions from the text and group these emotions by using vocabularies
or the lexical resources like WordNet. Much of the work cited above focuses on identifying the prior
polarity of the terms or phrases to use before assigning the sentiment polarity to the word using
WordNet lexical resource. Moreover, due to the absence of sentiment knowledge in the WordNet
database, it is not likely to be used directly to compute sentiment polarity. The designed algorithm in
Table 10 gives accurate synsets, lemmas, and antonyms, as well as part-of-speech (POS) tags which
most accurately relate to the synset terms in the tweets. The correct synset terms derived are also
based on the negation mark obtained using the algorithm proposed in Section 4 by iterating through
the loop and finding a correct lemma for the given word in the synset. This is further applied to the
SentiWordNet database to calculate an accurate sentiment score which is evaluated in the knowledge
base defined in Section 4.
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3. Dataset and Preprocessing

The Twitter data used in this study are from the World Cup soccer tournament held in Brazil
2014 with the hashtags “#brazil2014”, “#worldcup2014”, and games hashtags, as shown in Table 1.
It classifies the tweets by the games played between the two countries, for example, #ALGRUS (Algeria
vs. Russia) only contains tweets representing this particular game or match. The dataset available
for the analysis contains a huge number of tweets for the game hashtags—approximately 2 million
tweets. The statistics on overall tweets in the dataset can be seen in Table 1. Table 2 shows statistics
about the Twitter platform [13]. Table 3 shows a sample dataset with its attributes and tweets by user.
This dataset consists of six attributes, namely, id (user id), created_at (date and time), screen_name
(@username), followers_cnt (number of followers), retweet, and text (or the blog posted by user).

Table 1. Statistics of available dataset.

Hashtags # Date Number of Tweets File Size
(Approximately)

#brazil2014 8 June to 15 June 2014
(8 days) 1,415,958 268 MB

#worldcup 6 June to 14 July 2014
(40 days) 44,040,192 4 GB

Game hashtags
(e.g., #ALGRUS Algeria vs. Russia) June–July 2014 Approx.

2 million tweets More than 2 GB

Table 2. Statistics of the Twitter platform.

Monthly Active Users 313 M

Unique visits monthly to the sites with embedded tweets 1 Billion

Active users on mobile 82%

Employees around the world 3860

Offices around the world 35+

Accounts outside U.S. 79%

Languages supported 40+

Employees in technical roles 40%

The total tweets exceeded 3.5 million. Due to the large amount of data and limited computing
resources, the data for hashtag #brazil2014 was taken from Sunday 8 June to Monday 9 June 2014
(2 days) and time between 19:49:54 (7:45 pm) to 23:59:58 (approximately 12:00 am), which is 5 h and
15 min in total. The total number of tweets available to us from the data collector for this period was
24,335 tweets. These data were collected during the promotion period of the World Cup; the starting
date of the World Cup was 12 June 2014.

Table 3. Sample of dataset.

Id Created at Screen
Name

Followers
Count Retweet Text

4760000000 Sun 8 June 19:49:54 2014 CDT ravi2talk28 4 TRUE
RT @MeetTheMazda: birthday From Waka

Waka for South Africa to this for Brazil.
LOVE Shakira _ÙÕÄ #Brazil2014

4760000000 Mon 9 June 23:59:58 2014 CDT Franc**** 185 FALSE
Feel it, it‘s here I know how Brazilians r feeling, that

feeling is special @robertmarawa @YesWeCrann
@Soccer_Laduma @GoalcomSA

47600000002 Mon 9 June 23:59:16 2014 CDT B**Farlz 27 TRUE

RT @Socceroos: NEWS | Chile are likely to be
without Arturo Vidal for our

#Brazil2014 opener - http://t.co/yJ4ej6M6lS
#GoSocceroos #CHIAUS

http://t.co/yJ4ej6M6lS
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Data Cleaning and Noise Reduction

To analyze linguistic data, it is necessary that the noise or irregular patterns are filtered, so that
the true meaning and sentiments can be derived from the data [8]. This is where data preprocessing
comes into play. These tweets are in an unstructured form of data and are full of noise and unwanted
information. Preprocessing of data normalizes the linguistic data, eliminates noise, and simplifies the
vocabulary used for analyzing sentiments from the tweets [14]. The most generic view for preprocessing
can be seen in Figure 2.
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Figure 2. Overview of data preprocessing.

There are various steps to be performed in order to reassess the data correctly and determine the
true meaning behind it, through data processing. It is also necessary to follow a proper sequence to
preprocess data to achieve accuracy as well as consistency in the dataset. In the derived approach,
the proper sequence has been taken into consideration to achieve high accuracy in data preprocessing.
Figure 3 shows the overview of the structure for preprocessing the tweets. The algorithm to implement
preprocessing of tweets using natural language processing is given in Table 4.
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Figure 3. Structure for preprocessing user tweets on Twitter.

Table 4. Algorithm for preprocessing of Twitter linguistic data.

Input: Twitter comments or text data
Output: Pre-processed text data

For each comment in the Twitter data file
Initialize temporary empty string processedTweet to store result of output.
1. Replace all URLs or https://links with the word ‘URL’ using regular expression methods and store the result
in processedTweet.
2. Replace all ‘@username’ with the word ‘AT_USER’ and store the result in processedTweet.
3. Filter All #Hashtags and RT from the comment and store the result in processedTweet.
4. Look for repetitions of two or more characters and replace with the character itself. Store result in
processedTweet.
5. Filter all additional special characters (: \ | [ ] ; : {} – + ( ) < > ? ! @ # % *,) from the comment. Store result in
processedTweet.
6. Remove the word ‘URL’ which was replaced in step 1 and store the result in processedTweet.
7. Remove the word ‘AT_USER’ which was replaced in step 1 and store the result in processedTweet.
Return processedTweet.

The second step to perform preprocessing in the given algorithm is to remove “@username” from
the tweet. “@username” is the tag with “@” followed by the user id or the user name on Twitter
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platform. In this process, a two-step approach was used to eliminate RT “@username” from the
tweet. First, the words “@username” were replaced by “AT_USER” and then by finding patterns
“RT + AT_USER” in the sentence and replacing them with the blank character, these words were
removed from the dataset. This preprocessing step reduces the size of the dataset as well as eliminates
the information that does not contain sentiment or emotional meaning to it. In step 3, the “#”
or “hashtag” symbols are removed from the tweet. Therefore, special characters are removed from
the sentences, and, in Step 4, repeated characters in the words are removed to obtain the sentimental
meaning from words in the sentence. Preprocessing the tweets removes the noise and reduces the
size of the dataset as shown in Figure 4. As a result, the filtered data can achieve high performance in
analyzing data when the machine learning algorithm is trained. The size of the dataset is reduced and
matched after each preprocessing step. Table 5 shows the reduction in file size after each preprocessing
step. The reduction and cleaning of the data allow the other natural language processing tasks to be
performed with high performance and accuracy.IoT 2019, 2 FOR PEER REVIEW  7 

 
Figure 4. Reduction in file size after each preprocessing task. 

Further, #Hashtags were filtered from the dataset followed by the word which may give us 
sentiment meaning to the word(s). It took 2.60 seconds to filter the #Hashtags from the dataset. Once 
applied, the size was reduced to 3442 KB (79.90%). The reduced size of a 3420 KB (79.39%) dataset 
was obtained after preprocessing and filtering, which means approximately 888 KB of noise was 
eliminated from the raw text. 

As shown in Figure 4, the file size decreased when we filtered the data by applying 
preprocessing steps. The maximum time taken is 2.70 seconds for filtering special characters and 2.42 
seconds for filtering repeated characters. Additionally, a pattern-matching task can be performed and 
due to a large number of duplicate characters in the dataset, it might take a longer time to process 
thereby increasing the load on the processor. From Figure 4 it can be observed that there was a 
reduction in dataset size by 20% by removing URLs, RT@username, and #Hashtags from the tweets. 
Moreover, it gives us a cleaner dataset after filtering the tweets using preprocessing steps. Natural 
language processing (NLP) can be applied for sentiment analysis on the clean data for better 
efficiency and accuracy. 

Table 5. Analysis of file size and data processing time using derived algorithm. 

Preprocessing Tasks File Size (KB) File Size in % Processing Time (s) 
Before preprocessing  4308 100% NA 
After removing URLs 3695 85.77% 1.15 

Rename and removing of “RT@username” 
from the tweets 

3518 81.66% 1.32 

Filtering #Hashtags from tweets 3442 79.90% 2.06 
Removing repeated characters  3431 79.64% 2.42 
Removing special characters  3420 79.39% 2.70 

4. Linguistic Data Processing Using Natural Language Processing (NLP) 

Processing of natural language can be categorized in two ways: firstly, by logically thinking and 
writing, and secondly, logically thinking and verbally communicating. Moreover, the term “logically 
thinking or understanding” is defined as “natural language processing”, which we process in our 
mind logically as a human, and a computer performs using instructional steps written in 
programming language through central processing units (CPUs). Therefore, the term natural 
language processing involves a comprehensive set of techniques that allows automatic generation, 
manipulation, and analysis of natural human languages. 

Using natural language processing (NLP) steps, one can process a large amount of non-
structured data by analyzing sentence structure, and can compute sentence- or document-level 
sentiment polarity with the use of famous linguistic databases or lexical resources like WordNet, 
SentiWordNet, and treebanks [2]. The techniques involved in processing natural language are part-
of-speech POS tagging, parsing, named entity recognition, information extraction, word sense 

Figure 4. Reduction in file size after each preprocessing task.

Table 5. Analysis of file size and data processing time using derived algorithm.

Preprocessing Tasks File Size (KB) File Size in % Processing Time (s)

Before preprocessing 4308 100% NA

After removing URLs 3695 85.77% 1.15

Rename and removing of
“RT@username” from the tweets 3518 81.66% 1.32

Filtering #Hashtags from tweets 3442 79.90% 2.06

Removing repeated characters 3431 79.64% 2.42

Removing special characters 3420 79.39% 2.70

Table 5 shows the raw tweet data from period 8 to 9 June 2014 which has 24,336 raw tweets and
the size of.csv file as 4308 KB. After removing URLs from the data, there was a significant drop in the
size of the dataset to 3695 KB (85.77%). It shows the noise in the Twitter data consisting of URLs in
tweets that do not contribute to the sentiments in the data. The processing time for filtering URLs
from the dataset took 1.15 seconds. Further, to process sentence analysis, all the words that contained
tag “RT” followed by “@username” were eliminated. This reduced the size of the dataset to 3518 KB
(81.66%) in comparison to the original dataset.

Further, #Hashtags were filtered from the dataset followed by the word which may give us
sentiment meaning to the word(s). It took 2.60 s to filter the #Hashtags from the dataset. Once applied,
the size was reduced to 3442 KB (79.90%). The reduced size of a 3420 KB (79.39%) dataset was obtained
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after preprocessing and filtering, which means approximately 888 KB of noise was eliminated from the
raw text.

As shown in Figure 4, the file size decreased when we filtered the data by applying preprocessing
steps. The maximum time taken is 2.70 s for filtering special characters and 2.42 s for filtering repeated
characters. Additionally, a pattern-matching task can be performed and due to a large number of
duplicate characters in the dataset, it might take a longer time to process thereby increasing the load
on the processor. From Figure 4 it can be observed that there was a reduction in dataset size by 20%
by removing URLs, RT@username, and #Hashtags from the tweets. Moreover, it gives us a cleaner
dataset after filtering the tweets using preprocessing steps. Natural language processing (NLP) can be
applied for sentiment analysis on the clean data for better efficiency and accuracy.

4. Linguistic Data Processing Using Natural Language Processing (NLP)

Processing of natural language can be categorized in two ways: firstly, by logically thinking
and writing, and secondly, logically thinking and verbally communicating. Moreover, the term
“logically thinking or understanding” is defined as “natural language processing”, which we process
in our mind logically as a human, and a computer performs using instructional steps written in
programming language through central processing units (CPUs). Therefore, the term natural language
processing involves a comprehensive set of techniques that allows automatic generation, manipulation,
and analysis of natural human languages.

Using natural language processing (NLP) steps, one can process a large amount of non-structured
data by analyzing sentence structure, and can compute sentence- or document-level sentiment
polarity with the use of famous linguistic databases or lexical resources like WordNet, SentiWordNet,
and treebanks [2]. The techniques involved in processing natural language are part-of-speech POS
tagging, parsing, named entity recognition, information extraction, word sense disambiguation, word
stemming and lemmatization, stop word analysis, word tokenization, and many others depending
upon the research objective. During the evaluation process, punctuations between the lines are noted
carefully and the expressions that are either idiomatic or colloquial are recognized, which helps in
clarifying and understanding the “negations” that revises the word’s polarization depending upon
the various types of parts of speech (nouns, prepositions, adverbs, pronouns, adjectives, interjections,
conjunctions, and verbs) by taking into consideration the particular “functional-logic” statements [1].
This approach used for analyzing sentiment from linguistic data is known as a lexicon-based or
dictionary-based approach. The derived architecture for sentiment analysis using natural language
processing (NLP) is shown in Figure 5.
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Here, a knowledge-based tool is developed as shown in Figure 5 that analyzes each word in
the context, and finds the related synsets (synonyms of word) and lemmas (head words) to achieve
accuracy in the sentiment score obtained from the tweets.

A. Word Tokenization
After filtering the noise from that dataset, all that was left were raw words in the sentences.

These words individually have some meaning and may consist of emotion or sentiment expressed
by the user in the tweet. In natural language processing, the process or steps for breaking down
sentences into words and punctuation marks is known as tokenization [2]. The goal for generating the
list of words by separating the string is called tokenizing sentences into words [15]. Here, to tokenize
the words, the Natural Language Toolkit (NLTK) tokenize package Tweet Tokenizer module is used.
The choice for selecting tokenizer depends on the characteristic of data and the language. The algorithm
for word tokenization using Tweet Tokenizer is shown in Table 6.

Table 6. Algorithm for word tokenization.

Input: Filtered tweets
Output: Tokenize words

For all words in Processed Tweets
Tokenize the word passing to Tweet Tokenizer Method and append Tokenize Sentence
Return Tokenize Sentence

B. Word Stemming
Stemming and lemmatizing of words are used to produce the normalized form of a word [16]

in the text. According to reference [5], word stemming is a technique that gets the root (base) of the
word in the text. It normalizes the word by removing the suffix from the word, which gives the root
meaning of the word. In this approach of data preprocessing, the Porter stemmer algorithm is used
for stripping a suffix from the word to retrieve the proper meaning from the text. Porter stemmer
algorithm originally was published by M.F. Porter [16], and the algorithm was developed using Basic
Combined Programming Language (BCPL) for removing a suffix from the word automatically and it
gives the root meaning to the word in text by removing various suffixes like –ed, -ing, -ion, and -ions
by stemming methodology and gives more abstract meaning to the word [17]. Porter stemmer stems
the word, character by character, and removes the suffix and gives the base meaning to the word.
To achieve accuracy in sentiment analysis, only stemming the word whose length is greater than two,
as words like “a”, “is”, “an”, and “the” are not taken into consideration when applied to the sentiment
dictionary for getting polarity of the word. The algorithm for performing word stemming is shown in
Table 7. The returned stemmed word will be in a more generic form (e.g., the words like “connected”,
“connecting”, “connects” stemmed to the single word “connect”, which is the more generic form of the
word) and can be used in the further steps of a natural language processing task.

Table 7. Algorithm for word stemming and lemmatizing.

Input: Tokenize words
Output: Stemmed and lemmatized words

For word in word Tokens
Initialize StemmedSentence variable to empty list
If length of word greater than 2
Method call for stemming the word using PorterStemmer object.
Method call for lemmatizing the word using WordNetLemmatizer object
Append StemmedSentence list
Return Stemmed Sentence List

C. Word Lemmatization
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It is a technique that transforms the structural form of a word to the base or dictionary form
of a word by filtering the affixation or by changing a vowel from the word. The outcome achieved
from the word is known as lemma [18]. Lemmas are the word that has a root meaning of the term
requested and the lemmatized word is the gateway to the WordNet [19]. Therefore, lemmatizing
the word using an algorithm will create a lemma which will further pass to the WordNet dictionary
that pulls out the sense of the word and its sense number, which is the objective for getting a better
sentiment score for the word. Lemmatizing words by matching character by character is done through
the “WordNetLemmatizer” class available through WordNet class of stem package in Python NLTK.
To achieve an effective lemma or root meaning of the word using WordNetLemmatizer, it is really
important that the input word must be passed in lower case to the WordNetLemmatizer algorithm to
achieve accuracy. Therefore, the lowercase word is passed to the function, which is greater than two in
length to retrieve an effective lemmas word from WordNetLemmatizer class (e.g., word “women”
is lemmatized to form “woman”, which is a root meaning in the WordNet dictionary).

D. Removing Stop Words
While processing natural language, some of the words which have high occurrence in the

document are stop words (e.g., “and”, “the”, “am”, “is”), which only have little emotional meaning and
they do not affect the sentiment score when applied to lexical resources. According to reference [19],
in their experiment, they compared both the results of keeping the stop words in the text as well as
filtering stop words from the text. The result obtained has high accuracy in sentiment classification
for keeping stop words as is in the document. Therefore, keeping the idea of reference [20], both the
approaches to compare sentiment classification, with and without stop words in the tweets, were taken
into consideration. Therefore, the stop words like “I”, “am”, “with”, “and”, “it’s”, “each”, “other”,
and “with” are filtered from the tweets.

E. Part-of-Speech (POS) Tagging
This technique annotates the part-of-speech (e.g., noun, adverb, adjective, subjects, objects) to the

words, analyzing the sentence structure, and creates the raw form of word sense disambiguation [12].
According to reference [21], it is the last step in natural language processing for analyzing the sentiment
score from the sentence. By performing this step, one can obtain featured words that represent
the sentence structure and the meaning of the words in the domain it belongs to in the sentence.
To achieve annotated part-of-speech in the approach used, the POS tagger class available in the NLTK
package was used to develop an algorithm and to obtain word sense for only English language tags
from the sentence. It analyzes the lowest level of syntactic structure of the sentence and tags them
with their related part-of-speech (e.g., “NN-NOUN”, “IN-Proposition or subordinating conjunction”,
“NNP-Proper Noun singular” etc.), which categorizes the word lexically with its POS label and glosses
together for further classification. After tagging part of speech to each word in the sentence, it is
necessary to structure the sentence in order to achieve accuracy in sentiment polarity for the sentence.
As a result, it will affect the accuracy in assigning the sentiment polarity to the sentence, i.e., positive,
negative, or neutral.

As an example, the sentence “I do not like to watch this game it is not interesting” contains the
phrase “do not”, “not” is the negation word, which changes the meaning of the sentence. To solve
this problem, the meaning of the word is changed to the opposite (antonym of word) meaning, if the
word is followed by a negation word. In the sentence “I do not like to watch this game, it is not
interesting” the word “like” will be replaced by “dislike” and the word “interesting” will be replaced
by “uninteresting”. Hence, to analyze this sentence using lexical resources (like SentiWordNet or
WordNet Affect), it will provide a higher total negative sentiment score for the sentence. Therefore,
to achieve accuracy in sentiment analysis, we developed an algorithm shown in Table 8 that reverses
the sentiment score, if the word(s) sense in the sentence refers to negative meaning (for example:
“do not”, “not”, “did not”, “cannot”) and occurrence of such words in a sentence. The algorithm takes
negation words into account for the analysis, which refers to the mark negation module available in
sentiment utility under the NTLK package.
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Table 8. Algorithm for marking negation words.

Input: Stemmed and lemmatized words
Output: Negation tagged word ‘1’ for negative reference word and ‘0’ for positive reference word

Initialize Total_Mark_List
For neg_mark in mark_negation
Parse last 4 character in the neg_mark is ‘_NEG’
If parsed word contain the tag ‘_NEG’
If tail word contains ‘_NEG’
Add 1 to the Total_Mark_List
Else
neg_mark
Add 0 to the Total_Mark_List
Return Total_Mark_List

This method assigns the “_NEG” tag for the words which are followed by the negation words.
During the sentence analysis, if the words like “not”, “didn’t”, and “do not” appear in the sentence,
all the words until the last word of the sentence are classified with tag “_NEG”. The result of the first
step is stored in the list for further analysis, and will further provide a negation score (1 or 0) to the
word. In the second step, by iterating the results obtained in the first step and parsing the word with
the tag “_NEG” the score ‘1’ is assigned to the negation tagged word and “0” to the word without a tag.
The word with score “1” will return the list of lemmas that contains the antonym to the original word
and will reverse the meaning as well the polarity of the sentence when applied to the lexical resources
to achieve accuracy in sentiment analysis from the Twitter data. Table 9 displays the functioning of
algorithm steps as described above.

Table 9. Example of marking negation word.

Example: Negation Words Example 1 Example 2

Input words

[‘I’, ‘am’, ‘connect’, ‘with’, ‘world’,
‘cup’, ‘and’, “it’”, ‘GOOD’,

‘Connect’, ‘each’, ‘other’, ‘with’,
‘team’, ‘World’, ‘Cup’, ‘Song’,
‘connect’, ‘Worldcup’, ‘2014’,

‘Brazil’, ‘2014’]

[‘I’, “don’t”, ‘enjoy’, ‘this’, ‘game’,
‘it’, ‘was’, ‘disgusting’, ‘and’, ‘all’,

‘the’, ‘audience’, ‘was’, ‘upset’]

First step (Mark Negation)

[‘I’, ‘am’, ‘connect’, ‘with’, ‘world’,
‘cup’, ‘and’, “it’”, ‘GOOD’,

‘Connect’, ‘each’, ‘other’, ‘with’,
‘team’, ‘World’, ‘Cup’, ‘Song’,
‘connect’, ‘Worldcup’, ‘2014’,

‘Brazil’, ‘2014’]

[‘I’,“don’t”, ‘enjoy_NEG’,
‘this_NEG’, ‘game_NEG’, ‘it_NEG’,

‘was_NEG’, ‘disgust_NEG’,
‘and_NEG’, ‘all_NEG’,

‘the_NEG’, ‘audienc_NEG’,
was_NEG’, ‘upset_NEG’]

Second Step List of score:
‘1’—Negative sense word meaning in sentence
‘0’—Positive sense word meaning in sentence

[‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’,
‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’,

‘0’, ‘0’, ‘0’, ‘0’]

[‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’,
‘1’, ‘1’, ‘1’, ‘1’, ‘1’]

4.1. Computing Sentiment Polarity

An algorithm was developed to find the correct synset from a given word and then the
part-of-speech was used to obtain the most accurate sentiment score when applied to lexical resources.
This interconnection of semantic and lexical relationship for the words and their meanings are known
as synsets or synonyms set or group of synonyms. The algorithm in Table 10 finds accurate synsets
(all synonyms), lemmas (head words), and antonyms, as well as the part-of-speech (POS) tag which
most accurately relates to the term. The WordNet form of the lexical database was used to label the
synsets, lemmas, antonyms, and POS from the given tweets. The WordNet form of the lexical databases
is commonly used by the dictionary- (lexicon) based approach, which automatically generates the
dictionary of the words and its relationship in proper size. According to reference [22], the WordNet
database consisted of 150,000 words which were organized in over 115,000 synsets. The synsets resulted
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in 207,000 pairs of word senses in the year 2006. The book by Bird et al. [2] mentions that the WordNet
lexical resource contained 155,287 words and 117,659 synset (synonyms set) records by the year 2009.

Table 10. Algorithm extract emotional words from tweet.

Input: POS (part-of-speech) tagged word, negation marks (‘1’ for negative or ‘0’ for positive)
Output: A unique synset word with its part of speech and close meaning to the word.

Method GetSynset by passing POS tag word and Negation mark
Method to Sanitize part-of-speech (POS) tag to WordNet accepted POS
For synset in WordNet Synsets (word, POS tag):
Returns list of synsets for the words
For lemma in synset list:
If word equals to ‘lemma name’
Append Synonyms (word with the same meaning) list
If word has its Antonyms
Append Antonyms (word with opposite meaning) list
If negation mark is ‘0’ and it is not NULL
Return first synonym of word and POS tag from Synonyms
list
Else
Return the same word and POS requested
Else IF negation mark is ‘1’ and it is not NULL
Return first antonyms of word and POS tag from Synonyms
list
Else
Return the same word and POS requested

Once all the synonyms and the antonyms are obtained from the selected lemma names, negation
marks are added to the lemma names as shown in the second step of Table 9. When the negation
mark is 1, it will return antonyms for the given lemma in synset with its POS tag and if the negation
mark is 0, it will return the most accurate synonyms for the lemma and POS tag. WordNet lexicon
assigns the expressions, positioning the semantic meaning to the lemma, and prepares the information
in the context for further identifying the accurate sentiment polarity of the word which conveys its
specific emotional content. The extracted opinionated term from the WordNet database is assigned
a numerical score using the SentiWordNet dictionary. SentiWordNet is a resource that consists of
opinion information for the word extracted from the WordNet database where each term is assigned
its numerical scores that contain sentiment value for the word and the gloss (information) associated
with the word [23]. It has been constructed with information attached to the synset term, which is built
on a quantitative analysis concept and it denotes the vector representation via semi-supervised synset
classification methods [24].

In order to explore the words from the tweets and to evaluate emotional words and their
relationships using the WordNet object, NLTK is used by importing the WordNet class from the
“nltk corpus” module. The WordNet dictionary returns synonyms (synsets) or the antonyms for the
word, part-of-speech (POS), and its sense number for the requested corpus. Firstly, it sanitizes the
word’s part-of-speech to standardize the POS tags for WordNet. To do so, a method that sanitizes the
part-of-speech has been developed that places all POS tags starting with the letter “V” to “WordNet
Verb”, “N” to “WordNet NOUN”, “J” to “WordNet ADJECTIVE”, “R” and “A” to “WordNet ADVERB”
and others were tagged to “NONE”. The results of the sanitization of the POS tags are shown
in Table 11.
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Table 11. Example of word sanitization.

Example: Word Sanitize Tagged Text Data

POS tagged sentence

[(‘I’, ‘PRP’), (‘am’, ‘VBP’), (‘connect’, ‘JJ’), (‘with’, ‘IN’), (‘world’, ‘NN’),
(‘cup’, ‘NN’), (‘and’, ‘CC’), (“it’”, ‘VB’), (‘GOOD’, ‘JJ’),

(‘Connect’, ‘NNP’), (‘each’, ‘DT’), (‘other’, ‘JJ’), (‘with’, ‘IN’),
(‘team’, ‘NN’), (‘World’, ‘NNP’), (‘Cup’, ‘NNP’), (‘Song’, ‘NNP’),

(‘connect’, ‘NN’), (‘Worldcup’, ‘NNP’), (‘2014’, ‘CD’),
(‘Brazil’, ‘NNP’), (‘2014’, ‘CD’)]

Sanitized POS tags with word

(I , None) (am , v) (connect , a) (with, None) (world, n) (cup, n)
(and, None) (it’, v) (GOOD, a) (Connect, n) (each, None) (other, a)
(with, None) (team, n) (World, n) (Cup, n) (Song, n) (connect, n)

(Worldcup, n) (2014, None) (Brazil, n) (2014, None)

Further, in the next step of the algorithm in Table 10, the possible synset terms were obtained for
the given word and analyzed by iterating through the loop and finding a correct lemma for the given
word in the synsets using the WordNet database. After performing the processing of the word and POS
tag to obtain synsets, the list of analyzed synset terms obtained is shown by the example in Table 12.

All the synsets were analyzed and lemmas were obtained by parsing the synset. The lemmas are
the head words or the domain of the word from which it belongs to and contain additional information
like part of speech and sense definition [2]. The example in Table 13 shows the list of lemmas for
the synset of the word (e.g., “good”) that contains the lemmas from all the domains it belongs to.
Here, the last expression or the term in the lemmas is the lemma’s name, which compares the lemma
name to the input word. Once the lemma’s name matches the requested (input) word, it is appended
to all possible synonyms or antonyms for the matched cases and the sentiment score is obtained.

Once all the synonyms and the antonyms for the lemmas are obtained, the lemma is selected
based on the negation mark. If the negation mark is 1, it will return antonyms for the given lemma in
synset with its POS and if the negation mark is 0, it will return the most accurate synonyms for the
words and POS tag.

Therefore, the synset term is obtained based on the negation mark and the most accurate lemma’s
name with its POS tag that gives an accurate sentiment score when applied to the SentiWordNet
database. The sentiment score obtained for all the related terms or words with its POS tag followed
by sense number has its “PosScore” and “NegScore” tagged for each word associated with every
synset term. The evaluated positive and negative term score from the SentiWordNet dictionary is to
determine sentiment orientation for each term in the sentence or tweet. In this approach, firstly, list the
sentiment score for the first synset in the synsets list. The score obtained for each synset term is based
on the context or the occurrence in the given sentence. An example of a sentiment score calculated for
a tweet is illustrated in Table 14.

The evaluated positive and negative term score from the SentiWordNet database determines
the sentiment orientation for each term in the sentences or tweets. In this approach, firstly list the
sentiment score for the first synset in the synsets list. The score obtained for each synset term is based
on the context or the occurrence in the given sentence. Equation (1) calculates the total positive score
(TotalPosScore) and total negative score (TotalNegScore), where n is the number of terms, and t denotes
the tweet.

TotalPosScoret =
n∑

s=1
TotalPosScore + PosScores

TotalNegScoret =
n∑

s=1
TotalNegScore + NegScores

(1)

Each tweet that sums up the total positive score and total negative score is then compared for
labeling the sentiment as “positive”, “negative”, or “neutral”. Equation (2) gives the overall sentiment
polarity Polarityswn(t) for the tweet t.
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Polarityswn(t) =


POSITIVE or 1, i f TotalPosScore(t) > TotalNegScore(t)

NEGATIVE or− 1, i f TotalPosScore(t) < TotalNegScore(t)
NEUTRAL or 0, otherwise

(2)

The sentiment score Polarityswn(t) obtained for the tweet t using the SentiWordNet database
provides three measures that determine the sentiment of the user tweet t. The tweet t is positive or 1
if the total positive score is greater than the total negative score; if the total negative score is greater
than the total positive score, the overall sentiment is negative or −1, else it is neutral or 0 as shown
in Table 15.

Table 12. Example of WordNet synset.

Example: Synsets for Word Text Data

Sanitized POS tags with word

(I, None) (am, v) (connect, a) (with, None) (world, n) (cup, n)
(and, None) (it‘, v) (GOOD, a) (Connect, n) (each, None) (other, a)
(with, None) (team, n) (World, n) (Cup, n) (Song, n) (connect, n)
(Worldcup, n) (2014, None) (Brazil, n) (2014, None)

Synsets obtained for each word followed
by POS tag and sense number #

[Synset(‘iodine.n.01’), Synset(‘one.n.01’), Synset(‘i.n.03’),
Synset(‘one.s.01’)]
[Synset(‘be.v.01’), Synset(‘be.v.02’), Synset(‘be.v.03’),
Synset(‘exist.v.01’), Synset(‘be.v.05’), Synset(‘equal.v.01’),
Synset(‘constitute.v.01’), Synset(‘be.v.08’), Synset(‘embody.v.02’),
Synset(‘be.v.10’), Synset(‘be.v.11’), Synset(‘be.v.12’),
Synset(‘cost.v.01’)]
[Synset(‘universe.n.01’), Synset(‘world.n.02’), Synset(‘world.n.03’),
Synset(‘earth.n.01’), Synset(‘populace.n.01’), Synset(‘world.n.06’),
Synset(‘worldly_concern.n.01’), Synset(‘world.n.08’)]
[Synset(‘cup.n.01’), Synset(‘cup.n.02’), Synset(‘cup.n.03’),
Synset(‘cup.n.04’), Synset(‘cup.n.05’), Synset(‘cup.n.06’),
Synset(‘cup.n.07’), Synset(‘cup.n.08’)]
[Synset(‘good.a.01’), Synset(‘full.s.06’), Synset(‘good.a.03’),
Synset(‘estimable.s.02’), Synset(‘beneficial.s.01’),
Synset(‘good.s.06’), Synset(‘good.s.07’), Synset(‘adept.s.01’),
Synset(‘good.s.09’), Synset(‘dear.s.02’), Synset(‘dependable.s.04’),
Synset(‘good.s.12’), Synset(‘good.s.13’), Synset(‘effective.s.04’),
Synset(‘good.s.15’), Synset(‘good.s.16’), Synset(‘good.s.17’),
Synset(‘good.s.18’), Synset(‘good.s.19’), Synset(‘good.s.20’),
Synset(‘good.s.21’)]
[Synset(‘each.s.01’), Synset(‘each.r.01’)]
[Synset(‘other.a.01’), Synset(‘other.s.02’), Synset(‘early.s.03’),
Synset(‘other.s.04’)]
[Synset(‘team.n.01’), Synset(‘team.n.02’)]
[Synset(‘universe.n.01’), Synset(‘world.n.02’), Synset(‘world.n.03’),
Synset(‘earth.n.01’), Synset(‘populace.n.01’), Synset(‘world.n.06’),
Synset(‘worldly_concern.n.01’), Synset(‘world.n.08’)]
[Synset(‘cup.n.01’), Synset(‘cup.n.02’), Synset(‘cup.n.03’),
Synset(‘cup.n.04’), Synset(‘cup.n.05’), Synset(‘cup.n.06’),
Synset(‘cup.n.07’), Synset(‘cup.n.08’)]
[Synset(‘song.n.01’), Synset(‘song.n.02’), Synset(‘song.n.03’),
Synset(‘birdcall.n.01’), Synset(‘song.n.05’), Synset(‘sung.n.01’)]
[Synset(‘brazil.n.01’), Synset(‘brazil_nut.n.02’)]

Finally, the analyzed data file is appended with three additional attributes namely, PosScore
(positive score), NegScore (negative score), and the sentiment label. The sentiment label can be either
“positive”, “negative”, or “neutral”, defining the sentiment prediction of the user tweet. The dataset
obtained after appending the three attributes has a total of nine attributes (Table 3 shows the attributes
before appending).
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Table 13. Example of word lemmas.

Example: Obtaining Lemmas
(Head Word) from the Synsets

Text Data
The Example Shown for the Synset Term “Good”.

Synsets obtained for each word followed
by POS tag and sense number #

[Synset(‘good.a.01’), Synset(‘full.s.06’), Synset(‘good.a.03’),
Synset(‘estimable.s.02’), Synset(‘beneficial.s.01’),
Synset(‘good.s.06’), Synset(‘good.s.07’), Synset(‘adept.s.01’),
Synset(‘good.s.09’), Synset(‘dear.s.02’),
Synset(‘dependable.s.04’), Synset(‘good.s.12’),
Synset(‘good.s.13’), Synset(‘effective.s.04’), Synset(‘good.s.15’),
Synset(‘good.s.16’), Synset(‘good.s.17’), Synset(‘good.s.18’),
Synset(‘good.s.19’), Synset(‘good.s.20’), Synset(‘good.s.21’)]

Lemmas for the synsets
Here the last or end word

is known as ‘lemma’s name’

Lemma(‘good.a.01.good’) Lemma(‘full.s.06.full’)
Lemma(‘full.s.06.good’)
Lemma(‘good.a.03.good’) Lemma(‘estimable.s.02.estimable’)
Lemma(‘estimable.s.02.good’)
Lemma(‘estimable.s.02.honorable’)
Lemma(‘estimable.s.02.respectable’)
Lemma(‘beneficial.s.01.beneficial’)
Lemma(‘beneficial.s.01.good’) Lemma(‘good.s.06.good’)
Lemma(‘good.s.07.good’) Lemma(‘good.s.07.just’)
Lemma(‘good.s.07.upright’) Lemma(‘adept.s.01.adept’)
Lemma(‘adept.s.01.expert’) Lemma(‘adept.s.01.good’)
Lemma(‘adept.s.01.practiced’) Lemma(‘adept.s.01.proficient’)
Lemma(‘adept.s.01.skillful’) Lemma(‘adept.s.01.skilful’)
Lemma(‘good.s.09.good’) Lemma(‘dear.s.02.dear’)
Lemma(‘dear.s.02.good’)
Lemma(‘dear.s.02.near’)
Lemma(‘dependable.s.04.dependable’)
Lemma(‘dependable.s.04.good’)
Lemma(‘dependable.s.04.safe’)
Lemma(‘dependable.s.04.secure’) Lemma(‘good.s.12.good’)
Lemma(‘good.s.12.right’)
Lemma(‘good.s.12.ripe’) Lemma(‘good.s.13.good’)
Lemma(‘good.s.13.well’)
Lemma(‘effective.s.04.effective’)

Table 14. Assigning sentiment polarity to a word.

Example: Assigning Polarity Using SentiWordNet Text Data

Input: Sanitized POS tags with word

(I, None) (am, v) (connect, a) (with, None) (world, n)
(cup, n) (and, None) (it‘, v) (GOOD, a) (Connect, n)
(each, None) (other, a) (with, None) (team, n)
(World, n) (Cup, n) (Song, n) (connect, n)
(Worldcup, n) (2014, None) (Brazil, n) (2014, None)

Output: Sentiment score for the synset term obtained
from the SentiWordNet database

<i.n.01: PosScore = 0.0 NegScore = 0.0>
<be.v.01: PosScore = 0.25 NegScore = 0.125>
<universe.n.01: PosScore = 0.0 NegScore = 0.0>
<cup.n.01: PosScore = 0.0 NegScore = 0.0>
<good.a.01: PosScore = 0.75 NegScore = 0.0>
<each.s.01: PosScore = 0.0 NegScore = 0.0>
<other.a.01: PosScore = 0.0 NegScore = 0.625>
<team.n.01: PosScore = 0.0 NegScore = 0.0>
<universe.n.01: PosScore = 0.0 NegScore = 0.0>
<cup.n.01: PosScore = 0.0 NegScore = 0.0>
<song.n.01: PosScore = 0.0 NegScore = 0.0>
<brazil.n.01: PosScore = 0.0 NegScore = 0.0>
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Table 15. Example of output for sentiment analysis.

Text Data Total PosScore Total NegScore Sentiment Polarity

[‘I’, ‘am’, ‘connect’, ‘with’, ‘world’, ‘cup’,
‘and’, “it‘”, ‘GOOD’, ‘Connect’, ‘each’,

‘other’, ‘with’, ‘team’, ‘World’, ‘Cup’, ‘Song’,
‘connect’, ‘Worldcup’, ‘2014’, ‘Brazil’, ‘2014’]

1.0 0.75 positive

[‘MATCHDAY’, ‘arg’, ‘v’, ‘bel’, ‘argbel’,
‘WorldCup’, ‘2014’, ‘TousEnsembl’] 0.0 0.0 neutral

[‘I’, ‘am’, ‘child’, ‘woman’, ‘swimmer’,
‘and’, ‘I’, ‘like’, ‘swim’] 0.375 0.125 positive

[‘I’, “don’t”, ‘enjoy’, ‘thi’, ‘game’, ‘it‘, ‘wa’,
‘disgust’, ‘and’, ‘all’, ‘the’, ‘audienc’,

‘wa’, ‘upset’]
0.375 1.125 negative

Figure 6 shows the distribution of the data into positive, negative, and neutral tweets. Figure 6
shows 24,335 tweets classified into 7254 positive tweets; 12,993 neutral tweets; and 4088 negative
tweets. The number of neutral tweets is higher than the number of positive and negative tweets as only
English language tweets were analyzed and the tweets in other languages were ignored. However,
the response toward the promotion of the World Cup 2014 was more positive sentiment as opposed to
negative sentiment. The positive sentiment of the people towards the event is helpful to the investors
and the organizers in taking valuable decisions in promoting the event based on people’s feedback,
likes, and dislikes. Figure 7 shows the statistical analysis of the overall sentiment with maximum,
mean, and standard deviation of the positive scores and the negative scores.
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The maximum positive sentiment score evaluated for the tweets is 2.75, which is the most
positive sentimental tweet in the dataset of World Cup 2014 promotion. The tweet which was given a
maximum positive score is “Contact with nature is good for health. Come to the #EarthPortal and
discover the wonders of the South of #Brazil! #Brazil2014” tweeted by the username “portaldaterra”.
The most negative sentiment scores were observed between 0.246 to 0.273 which are accounted for by
2533 negatively classified tweets. The maximum negative sentiment score is 2.375 as seen in Figure 7.
In the next section, we discuss machine learning techniques for sentiment analysis.

4.2. Machine Learning Techniques for Sentiment Analysis

A machine learning classifier was trained on the dataset obtained after the sentiment label is
computed as discussed in Section 4. Classification performance was measured on the test dataset
obtained by the natural language processing task. Naïve Bayes, SVM (support vector machine),
KNN (K-nearest neighbor), and random forest algorithms were applied to measure the accuracy and
performance metrics for the sentiment-labeled data obtained by processing the Twitter linguistic data
using natural language processing (NLP) techniques and assigning sentiment score and polarity to the
dataset. The most abstract view that performs sentiment analysis using machine learning is shown
in Figure 8.
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The software WEKA 3.8 [25] was used for training and testing the classifiers and measuring the
performance of the classifiers. The classification of the data was performed by splitting the dataset into
training and testing ratios of 90:10, 80:20, 70:30, and 60:40 with 10-fold cross-validation. The 10-fold
cross-validation is used to avoid overfitting of the data by the classifiers.

Naïve Bayes
Naïve Bayes is the most commonly used classifier in natural language processing (NLP). The main

advantage of this classifier is its simplicity as well as the prediction of the correct class for a new
instance [26]. The probability calculations for each hypothesis are simplified for the instances in the
class (e.g., positive, negative, and neutral).

In the derived dataset, a given class is Y (positive, negative, and neutral), where X is the instance
defined by a feature vector {X1, X2, . . . , Xn} with n being the number of features (sentiment labels)
in the Dataset. Therefore, Bayesian probability of the given class Y with an instance X can be computed
P(Y|X) using the following Equation (3) [26]:

P(X|Y) =
P(X|Y)P(Y)∑c

y′=1 P(X|Y′)P(Y′)
(3)

where:

• X: instance of class (sentiment labels for each tweet)
• Y: sentiment class (positive, negative, or neutral)
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• P(X|Y): instance occurred in particular class for each value of Y (class-conditional density)
• P(Y): prior probability of class

Using Equation (3), we have P(Y|X), the Bayesian probability classification for the class Y to
the instance X, which is equal to the probability P(X|Y) for the particular instance being seen under
specific class. In this case, the probability of each instance (sentiment labels) belongs under a specific
class (positive, negative, or neutral). Further, it is multiplied with the prior probability of the class
P(Y). At last, the result obtained is normalized so that the final probability for the given class with its
instances will sum up to 1.

Support Vector Machine (SVM)
It is a supervised learning method that produces a mapping function from the available training

dataset [27]. Support vector machine (SVM) is widely applied for classification problems and
nonlinear regression, which classifies both linear and nonlinear [27]. The mapping function can be
the classification function that classifies the labeled data in the dataset. According to reference [28],
SVMs are universal learners, which can be used to learn polynomial classifiers and have the ability
to learn independent of the dimensionality of the feature space. SVM is very useful in dealing with
questions related to the classification of texts by linearly separating them as suggested by reference [28].
One of the disadvantages of using SVM is that it is incapable of differentiating between words that
have different senses in different sentences and as a result, particular “domain-based lexicons” cannot
be generated [28].

Random Forest
Random forest is a method used to create predictive models for classification and regression

and is also known as random forest decisions. A number of decision trees are classified on different
sub-samples for the chosen datasets and are fitted into a meta estimator known as random forest [29].
In reference [29], the resultant class is derived based on the majority voting from the generated
classes by similar sub-sampled trees generated as the output of the random forest. A random forest
classification improves the precision of the forecast and over-fitting control on average and as an
ensemble method uses different learning models to produce effective predictive outcomes.

KNN (K-Nearest Neighbor)
K-nearest neighbors (KNN) is a lucid and easy-to-implement algorithm. This algorithm searches

for the predefined samples from the training dataset by determining the close proximity for similar
things. In other words, similar things are assumed to be close to each other. The distance between the
sample space and the query is calculated by selecting the specified number of samples (K) closest to
the query and then by evaluating for the most common label (during classification on sentiment labels
tweets) or label average (in the regression case). When KNN is used for regression, the prediction
is done on the basis of their mean or median values [29]. The output with the highest frequency of
identical instances determines the class using KNN classification. Each instance is considered a vote for
that class and the class with the most votes determines the sentiment polarity of the prediction class.

5. Results and Discussion

Various performance measures, namely, accuracy, area under the receiver operating characteristics
(ROC) curve, recall, false positive rate, precision, and F-measure were used to analyze the results of the
classification algorithms naïve Bayes, SVM, random forest, and K-nearest neighbor. The definitions of
the measures are given in Equations (4)–(8). Let TPA be the number of true positives of the class A
(positive sentiment), TPB be the true positives of the class B (neutral sentiment), and TPC be the number
of true positives of class C (negative sentiment). Then, the accuracy can be defined by Equation (4).

Accuracyclassi f ier =
(TPA + TPB + TPC)

Total instance classi f ied f or class
(4)
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The area under the ROC curve (AUC) is a plot of true positive rate (TPR, or specificity) against
false positive rate (FPR, or sensitivity).

The true positive rate (TPR), sensitivity, or recall is the number of sentiment labels predicted
positive that are actually positive. Recall is defined by Equation (5).

TPR, Sensitivity, Recall =
∑

True Positive (TP)∑
Condition Positive

(5)

The false positive rate (FPR) is the number of sentiment labels predicted positive that are actually
negative and is defined in Equation (6).

FPR =

∑
False Positive (FP)∑
Condition Negative

(6)

Precision is the proportion of the predicted positive cases that were correct. The precision can be
calculated using Equation (7).

Precision =
TP

TP + FP
(7)

The F-Measure score is the harmonic mean of the precision and recall. This evaluates the
equivalency between the sensitivity (recall) and the precision (correctness) of the data. This gives us the
interpretation of how the measure recall and precision values behave for the dataset. The F-measure
can be calculated using Equation (8).

F−measure =
2 ∗ (Precision ∗Recall)
(Precision + Recall)

(8)

Table 16 shows the performance for the sentiment analyzed tweets or labeled tweets for naïve
Bayes, SVM, random forest, and K-nearest neighbor classifiers using training-to-testing ratios 90:10,
80:20, 70:30, and 60:40 with 10-fold cross-validation.

Table 17 shows the confusion matrix for the naïve Bayes classifier. It can be observed that
21,456 sentiment-labeled tweets are correctly classified with just 11.83% (2879) incorrectly classified
tweets using a training-to-testing ratio of 90:10 with 10-fold cross-validation. The prediction of
sentiment classes positive, negative, and neutral using the naïve Bayes classifier has an accuracy rate
of 88.17%. The TP rate for positive, neutral, and negative tweets is 0.821, 0.960, and 0.739, respectively.
The weighted average of the TP rate is 0.882. This observation shows that the dataset classified is
sensitive, which belongs to the actual class. The FP rate for the positive, neutral, and negative tweets
is 0.022, 0.191, and 0.016 respectively. From the data, one can conclude that the classification of the
sentiment label has a minimal number of tweets that are incorrectly classified. The precision for the
positive, neutral, and negative tweets is 0.941, 0.852, and 0.900, respectively and the weighted average
for precision is 0.89. The F-measure for the positive, neutral, and negative tweets are 0.877, 0.903,
and 0.812, respectively and the weighted average for the F-score for the classes A, B, and C is 0.88.
The AUC for the positive, neutral, and negative classes is 0.966, 0.958, and 0.946 respectively.

Table 18 shows the confusion matrix for estimation of the predictive performance of the
SVM classifier for a training-to-testing ratio of 90:10 with 10-fold cross-validation giving the best
performance of classifying sentiment analysis for tweets. An accuracy of 41.77% is obtained where
10,157 sentiment-labeled tweets are correctly classified and 14,178 sentiment-labeled tweets are
incorrectly classified. A recall of 0.417, an FP rate of 0.364, a precision of 0.431, an F-measure of 0.398,
and an AUC of 0.527 were obtained for SVM, which is the lowest among all classifiers. It shows that
SVM is not able to classify the tweets accurately.
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Table 16. Performance results for sentiment analyzed tweets.

Ratio Sensitivity/RecallFP Rate Precision F-Measure Accuracy AUC

Classifier: Naïve Bayes

60:40 0.860 0.137 0.868 0.856 86.00% 0.957

70:30 0.876 0.119 0.881 0.873 87.57% 0.958

80:20 0.878 0.116 0.883 0.876 87.79% 0.958

90:10 0.882 0.111 0.887 0.880 88.17% 0.958

Classifier: SVM

60:40 0.409 0.362 0.427 0.393 40.91% 0.524

70:30 0.411 0.362 0.426 0.393 41.11% 0.524

80:20 0.412 0.363 0.428 0.394 41.22% 0.525

90:10 0.417 0.364 0.431 0.398 41.74% 0.527

Classifier: Random Forest

60:40 0.853 0.127 0.853 0.840 85.32% 0.970

70:30 0.848 0.135 0.848 0.835 84.75% 0.969

80:20 0.850 0.130 0.850 0.837 85.01% 0.970

90:10 0.848 0.132 0.848 0.835 84.81% 0.968

Classifier: KNN

60:40 0.875 0.086 0.874 0.874 87.45% 0.911

70:30 0.875 0.086 0.874 0.875 87.48% 0.911

80:20 0.875 0.085 0.874 0.875 87.49% 0.911

90:10 0.875 0.086 0.874 0.874 87.45% 0.911

FP—false positive, AUC—area under the receiver operating characteristics curve.

Table 17. Confusion matrix for sentiment class (naïve Bayes).

Predicted Class

Actual Class

A (positive) B (neutral) C (negative) Total

A (positive) 5955 (TP) 1171 (FN) 128 (FN) 7254

B (neutral) 308 (FP) 12,479 206 12,993

C (negative) 68 (FP) 998 3022 4088

Total 6331 14,648 3356 24,335

Table 18. Confusion matrix for sentiment class (SVM).

Predicted Class

Actual Class

A (positive) B (neutral) C (negative) Total

A (positive) 4463 (TP) 2537(FN) 254 (FN) 7254

B (neutral) 6972 (FP) 5542 479 12,993

C (negative) 2324 (FP) 1612 152 4088

Total 13759 9691 885 24,335

Table 19 shows the confusion matrix for the estimation of predictive performance by random
forest classifier for a training-to-testing ratio of 60:40 with 10-fold cross-validation which gives the
best performance in classifying sentiment analysis for tweets. An accuracy of 85.32% was achieved
with 20,763 sentiment-labeled tweets correctly classified and 3572 sentiment-labeled tweets incorrectly
classified. The diagonal counts show the correctly classified tweets for the positive, neutral, and negative
classes in the confusion matrix. A recall of 0.853, an FP rate of 0.127, a precision of 0.853, an F-measure
of 0.840, and an AUC of 0.970 were obtained for random forest. It can be observed that random forest
gives the best performance among all the classifiers.

Table 20 shows the confusion matrix for the estimation of predictive performance by KNN
classifier for training-to-testing ratio of 80:20 with 10-fold cross-validation which gives the best
performance in classifying sentiment analysis for tweets. An accuracy of 87.49% was achieved with
21,290 sentiment-labeled tweets correctly classified and 3045 sentiment-labeled tweets incorrectly
classified. The diagonal counts show the correctly classified tweets for the positive, neutral, and negative
classes in the confusion matrix. A recall of 0.875, an FP rate of 0.085, a precision of 0.874, an F-measure
of 0.875, and an AUC of 0.911 were obtained for KNN.
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Table 19. Confusion matrix for sentiment class (random forest).

Predicted Class

Actual Class

A (positive) B (neutral) C (negative) Total

A (positive) 6606 (TP) 498(FN) 150 (FN) 7254

B (neutral) 448 (FP) 12,364 181 12,993

C (negative) 510 (FP) 1785 1793 4088

Total 7564 14,647 2124 24,335

Table 20. Confusion matrix for sentiment class (KNN).

Predicted Class

Actual Class

A (positive) B (neutral) C (negative) Total

A (positive) 6183 (TP) 795(FN) 276 (FN) 7254

B (neutral) 722 (FP) 11,835 436 12,993

C (negative) 299 (FP) 517 3272 4088

Total 7204 13,147 3984 24,335

Different machine learning techniques were used for training the sentiment-labeled dataset and
the results obtained using the classifiers vary using different classifiers. The performance evaluation
of the classification results obtained using naïve Bayes, SVM, random forest, and KNN supports the
objective for processing a linguistic dataset using natural language processing (NLP) techniques and
measuring the accuracy and AUC of the sentiment-labeled dataset. Comparing different classifiers for
measuring the accuracy and AUC for the sentiment-labeled dataset, naïve Bayes and KNN algorithms
give the highest accuracy with random forest giving the best AUC in data classification. Table 21
shows accuracy and AUC using different classifiers and Figure 9 shows the graphical analysis for the
combined results.

The objective of combining lexicon-based and machine learning methods for sentiment analysis
of Twitter data shows that using natural language processing (NLP) techniques gives an accurate
classification for a linguistic dataset.

IoT 2019, 2 FOR PEER REVIEW  20 

performance in classifying sentiment analysis for tweets. An accuracy of 87.49% was achieved with 
21,290 sentiment-labeled tweets correctly classified and 3045 sentiment-labeled tweets incorrectly 
classified. The diagonal counts show the correctly classified tweets for the positive, neutral, and 
negative classes in the confusion matrix. A recall of 0.875, an FP rate of 0.085, a precision of 0.874, an 
F-measure of 0.875, and an AUC of 0.911 were obtained for KNN. 

Table 20. Confusion matrix for sentiment class (KNN). 

 Predicted Class 

Actual 
Class 

 A (positive) B (neutral) C (negative) Total 
A (positive) 6183 (TP) 795(FN) 276 (FN) 7254 
B (neutral) 722 (FP) 11,835 436 12,993 

C (negative) 299 (FP) 517 3272 4088 
Total 7204 13,147 3984 24,335 

Different machine learning techniques were used for training the sentiment-labeled dataset and 
the results obtained using the classifiers vary using different classifiers. The performance evaluation 
of the classification results obtained using naïve Bayes, SVM, random forest, and KNN supports the 
objective for processing a linguistic dataset using natural language processing (NLP) techniques and 
measuring the accuracy and AUC of the sentiment-labeled dataset. Comparing different classifiers 
for measuring the accuracy and AUC for the sentiment-labeled dataset, naïve Bayes and KNN 
algorithms give the highest accuracy with random forest giving the best AUC in data classification. 
Table 21 shows accuracy and AUC using different classifiers and Figure 9 shows the graphical 
analysis for the combined results. 

Table 21. Combined result analysis. 

 Ratio Accuracy AUC 
Naïve Bayes 90:10 88.17% 0.958 

SVM 90:10 41.77% 0.527 
Random Forest 60:40 85.32% 0.970 

KNN 80:20 87.49% 0.911 

The objective of combining lexicon-based and machine learning methods for sentiment analysis 
of Twitter data shows that using natural language processing (NLP) techniques gives an accurate 
classification for a linguistic dataset. 

 
Figure 9. Graphical results analysis. 

6. Conclusions and Future Work 

In this paper, a unique approach to perform sentiment analysis on a linguistic dataset was 
introduced using machine learning algorithms. The developed algorithms for removing noise or data 
filtering and preprocessing linguistic data using natural language processing (NLP) techniques were 

Figure 9. Graphical results analysis.

Table 21. Combined result analysis.

Ratio Accuracy AUC

Naïve Bayes 90:10 88.17% 0.958

SVM 90:10 41.77% 0.527

Random Forest 60:40 85.32% 0.970

KNN 80:20 87.49% 0.911



IoT 2020, 1 238

6. Conclusions and Future Work

In this paper, a unique approach to perform sentiment analysis on a linguistic dataset was
introduced using machine learning algorithms. The developed algorithms for removing noise or
data filtering and preprocessing linguistic data using natural language processing (NLP) techniques
were demonstrated. The preprocessing of the input tweets was filtered and processed to give more
accurate data as well as to reduce the size of the dataset. Work tokenization, stemming, lemmatization,
and part-of-speech (POS) were used to find sentiment scores for the tweets. Further analysis of data
using machine learning algorithms like naïve Bayes, SVM, random forest, and KNN was applied for
classifying the tweets as positive, neutral, or negative sentiment and the performance of the classifiers
was measured for accuracy and reliability of the classified sentiment analysis. The results show the
usefulness and efficiency of the techniques used and described in the paper.

For the future work on sentiment analysis, it would be useful to perform real time sentiment
polarity assignment to the Twitter data. The implementation could be performed on the cloud that
would increase the performance efficiency for sentiment analysis using natural language processing
(NLP) techniques. This can be done by creating nodes on a cloud data platform like Hadoop that allow
us to store the data on the cloud using the Hadoop File System (HDFS) and map-reduce concept to
distribute the data processing algorithm to load and process large size datasets, and real time sentiment
analysis for the linguistic data can be performed. This will be the contribution towards real time
sentiment analysis in a cloud environment and will allow the business users to determine real time
sentiment analysis for the linguistic data.
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10. Augustyniak, Ł.; Szymański, P.; Kajdanowicz, T.; Tuligłowicz, W. Comprehensive Study on Lexicon-based
Ensemble Classification Sentiment Analysis. Entropy 2015, 18, 4. [CrossRef]

11. Isah, H.; Trundle, P.; Neagu, D. Social media analysis for product safety using text mining and sentiment
analysis. In Proceedings of the 2014 14th UK Workshop on Computational Intelligence (UKCI), Bradford, UK,
8–10 September 2014; IEEE: New York, NY, USA, 2014.

12. Bakshi, R.K.; Kaur, N.; Kaur, R.; Kaur, G. Opinion mining and sentiment analysis. Found. Trends Inf. Retr.
2008, 2, 1–135. [CrossRef]

13. MacArthur, A. The Real History of Twitter, In Brief-How the Micro-Messaging Wars were Won. Lifewire.
Available online: https://www.lifewire.com/history-of-Twitter-3288854 (accessed on 11 September 2020).

14. Fernández-Gavilanes, M.; Álvarez-López, T.; Juncal-Martínez, J.; Costa-Montenegro, E.; González-Castaño, F.J.
Unsupervised method for sentiment analysis in online texts. Expert Syst. Appl. 2016, 58, 57–75. [CrossRef]

15. Perkins, J. Python Text Processing with NLTK 2.0 Cookbook; Packt Publishing Ltd.: Birmingham, UK, 2010.
16. Toman, M.; Roman, T.; Karel, J. Influence of word normalization on text classification. Proc. Inscit 2006, 4,

354–358.
17. Porter Martin, F. An algorithm for suffix stripping. Program 1980, 14, 130–137. [CrossRef]
18. Liu, H.; Christiansen, T.; Baumgartner, W.A.; Verspoor, K. BioLemmatizer: A lemmatization tool for

morphological processing of biomedical text. J. Biomed. Semant. 2012, 3, 1. [CrossRef] [PubMed]
19. Bhattacharyya, P.; Bahuguna, A.; Talukdar, L.; Phukan, B. Facilitating multi-lingual sense annotation:

Human mediated lemmatizer. In Proceedings of the Seventh Global Wordnet Conference, Tartu, Estonia,
25–29 January 2014.

20. Saif, H.; He, Y.; Alani, H. Semantic sentiment analysis of Twitter. In International Semantic Web Conference;
Springer: Berlin/Heidelberg, Germany, 2012.

21. Kouloumpis, E.; Wilson, T.; Moore, J. Twitter Sentiment Analysis: The Good the Bad and the OMG!
In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM), Catalonia,
Spain, 17–21 July 2011; pp. 538–541.

22. Wawer, A.; Choukri, K.; Maegaard, B.; Mariani, J.; Odijk, J. Is Sentiment a Property of Synsets? Evaluating
Resources for Sentiment Classification using Machine Learning. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta, 17–23 May 2010; pp. 1101–1104.

23. Ohana, B.; Tierney, B. Sentiment classification of reviews using SentiWordNet. In Proceedings of the 9th
IT & T Conference Dublin Institute of Technology, Dublin, Ireland, 22–23 October 2009.

24. Esuli, A.; Sebastiani, F. Sentiwordnet: A publicly available lexical resource for opinion mining. In Proceedings
of the Fifth International Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy,
22–28 May 2006; Volume 6, pp. 417–422.

25. Weka 3: Data Mining Software in Java. Weka 3-Data Mining with Open Source Machine Learning Software in
Java. N.p., n.d. Web. 03 Jan 2017. Available online: http://www.cs.waikato.ac.nz/ml/weka/ (accessed on
16 July 2019).

26. Murphy, K.P. Naive Bayes Classifiers; The University of British Columbia: Vancouver, BC, Canada, 2006;
Volume 18, p. 60.

27. Wang, L. (Ed.) Support Vector Machines: Theory and Applications; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2005; Volume 177.

28. Joachims, T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features.
In European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany, 1998.

29. Al Amrani, Y.; Lazaar, M.; El Kadiri, K.E. Random forest and support vector machine based hybrid approach
to sentiment analysis. Procedia Comput. Sci. 2018, 127, 511–520. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e18010004
http://dx.doi.org/10.1561/1500000011
https://www.lifewire.com/history-of-Twitter-3288854
http://dx.doi.org/10.1016/j.eswa.2016.03.031
http://dx.doi.org/10.1108/eb046814
http://dx.doi.org/10.1186/2041-1480-3-3
http://www.ncbi.nlm.nih.gov/pubmed/22464129
http://www.cs.waikato.ac.nz/ml/weka/
http://dx.doi.org/10.1016/j.procs.2018.01.150
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Dataset and Preprocessing 
	Linguistic Data Processing Using Natural Language Processing (NLP) 
	Computing Sentiment Polarity 
	Machine Learning Techniques for Sentiment Analysis 

	Results and Discussion 
	Conclusions and Future Work 
	References

