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Abstract: The present investigation explores the spatial distribution of Cooper pair density in graph-
shaped arrays of Josephson junctions using a Ginzburg–Landau approach. We specifically investigate
double-comb structures and compare their properties with linear arrays as reference systems. Our
findings reveal that the peculiar connectivity of the double-comb structure leads to spatial gradients
in the order parameter, which can be readily detected through measurements of Josephson critical
currents. We present experimental results which indicate the specific dependence of the order
parameter on the branches of the graphs and are evidence of the theoretical predictions.

Keywords: superconductivity; solid state condensates; Josephson effect

1. Introduction

Josephson junctions and the systems or devices they can originate from have gathered
noticeable attention in recent decades in the field of superconductivity [1–6]. The highly
nonlinear internal dynamics of the junctions, their magnetic properties, and their intriguing
potentials have originated research avenues and promising perspectives for both “point
junctions” [7–9], namely junctions with physical dimensions smaller than the Josephson
penetration depth [1–6], and “long” junctions, with at least one physical dimension larger
than this characteristic parameter [10–13]. The investigation and the properties of Josephson
potentials have also generated interest and a vast number of studies [14–19].

Within Josephson research, however, substantial efforts have been devoted to the
understanding of the complex physics of arrays of junctions, both in two dimensions (2D),
or planar space [20], and three dimensions (3D) [21]. Research on these arrays was also
motivated by the rather successful operation of the quantum voltage standard, both in
superconductor-isolator-superconductor (SIS) junctions’ [22–24] and in superconductor-
normal-superconductor (SNS) junctions’ [25,26] operation modes. Nowadays, arrays
of Josephson junctions and related voltage standard chips are being used for relevant
implementations of high-precision metrology [27]. From a fundamental point of view, 2D
arrays have served as a benchmark for testing solid-state phase transitions [28–33] and
the coherent generation of microwave and millimeter-wave radiation [34–41]. Both the
structure of polycrystalline high-temperature superconducting materials and the layered
structure of single crystals of these materials have drawn much attention toward arrays of
Josephson junctions for modeling intergrain or interlayer coupling [42] in view of specific
applications [43,44].

In Ref. [45], the ability of an array of bosonic islands, linked by suitable potentials, to
induce a Bose–Einstein condensation (BEC) effect was investigated. Concurrently, evidence
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was presented that a planar array of superconducting islands—housing zero-momentum
Cooper pairs and connected via Josephson tunnel junctions—could also demonstrate the
bosonic behavior of Cooper pairs, as initially proposed in Refs [46,47]. This issue has
been further analyzed from a mathematical perspective by other researchers [48–52]. In
Refs. [46–52] it was suggested that the BEC phenomenon could be observed in tree-like
inhomogeneous graphs comprised of bosonic islands connected by suitable potentials. In
this respect and for the sake of clarity, it is important to distinguish the BEC phenomenology
discussed above from the BEC phase of a system undergoing a Bardeen-Cooper-Schrieffer
(BCS)–BEC transition, which relates to the size of a Cooper pair as determined by the
pairing interaction strength. The essence of Bose–Einstein condensation is the macroscopic
occupation of the ground state by a system of non-interacting bosons at low temperatures.
This phenomenon, fundamentally, does not imply the spatial localization of bosons in
physical space. However, when one considers BEC on inhomogeneous graphs, an intriguing
situation arises.

In such graphs, characterized by their non-uniform connectivity, the ground state
of the single boson problem can indeed be exponentially localized around the node(s)
with the highest degree of connectivity. These highly connected nodes effectively act as
potential wells, attracting bosons to localize around them. This localization is not merely a
spatial concentration but is intrinsically linked to a complicated interplay between phase
coherence and the system’s topology. When extending this scenario to multiple bosons,
the BEC phenomenon promotes the occupation of this energetically favorable, spatially
localized ground state. Therefore, BEC in inhomogeneous graphs is not only a manifestation
of bosons occupying the lowest energy state but also exhibits exponential localization at
the node(s) with the highest connectivity. This dual aspect of BEC in such systems—both a
quantum statistical phenomenon and a spatial localization due to the underlying graph
topology—is exactly what we highlight in this paper.

Thus, it is essential to stress that the reported spatial localization of bosons on inho-
mogeneous graphs, while inherently tied to the network’s topology, is also accompanied
by phase coherence due to its unique nature. This dual characteristic of localization and
coherence firmly situates this study within the applicability region of a Ginzburg–Landau
theory. Remarkably, the aforementioned spatial localization also applies to Cooper pairs,
which are composite bosons obeying a modified algebra.

Since 2004, evidence has been piling up that in both double-comb structures [53–55]
and in star-shaped structures [56], the effects predicted by the theories [46,47] could be
qualitatively and quantitatively recorded in arrays of Josephson junctions. An explana-
tion of the experimentally observed phenomena displaying anomalous distributions of
Josephson currents in the arrays has been provided so far only in terms of the theories
mentioned just above and no alternative models in terms of specific electromagnetic or
thermodynamic effects have ever been provided or suggested.

Recently, it has been shown [57,58] that not only the Josephson critical currents of
the arrays but even the energy gaps of the tunnel junctions forming the arrays could be
conditioned by the peculiar shape of the graph. This was a somewhat surprising effect
since it showed that the topology also influences the superconducting spectral gap of the
whole network and thus its superconducting transition temperature. This phenomenon
could not be predicted within the framework of BEC-biased theories [46,47] since the latter
assume the existence of preformed bosons (Cooper pairs), so within the mentioned context,
no prediction about the superconducting condensation temperature is available.

In order to account for the effects of inhomogeneous superconductivity such as those
reported above, a De Gennes–Alexander model of granular superconductors was devel-
oped [59] and applied to star-shaped arrays of junctions. This approach, based on a
discrete version of the Ginzburg–Landau (GL) theory [60–62], showed consistency with
the previous BEC-based theoretical models and very good agreement with experimental
results [63,64]. In the present paper, by using the same approach formulated in Ref. [59],
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we describe, for the first time, the spatial inhomogeneity of the Josephson critical currents
of a double-comb-shaped array and compare the theoretical results with experimental data.

In close proximity to the phase transition temperature, the GL theory on graphs is
mathematically equivalent to a single-particle eigenproblem in quantum mechanics [59].
The ground state of the equivalent problem leads us to estimate the critical temperature
and the order parameter profile of a granular system at the phase transition. Thus, the
linearized GL theory is based on the diagonalization of a “Hamiltonian” matrix, describing
the connectivity of the granular system. Within this framework, the network critical
temperature and the order parameter profile are determined by the ground state energy
and its associated eigenstate. The minimum eigenvalue, ε0, of the Hamiltonian matrix,
i.e., the ground state energy, is related to the transition temperature of the network (Tc)
according to the following equation:

Tc = Tc

(
1 − ε0

αTc

)
,

where Tc represents the bulk critical temperature of the superconducting material used for
synthetizing the islands forming the superconducting network and α is the temperature-
independent parameter of the GL theory.

The order parameter profile (ϕ) and the ground state eigenvector ( ψ) are proportional,
i.e.,

ϕ = aψ ,

where the scale factor, a, is determined by a free energy minimization procedure.
The GL theory predicts that the exponential localization of the order parameter, taking

place in peculiar structures, is related to an enhancement in the network critical tempera-
ture. Actually, when the order parameter is localized, ε0 assumes negative values, implying
an increase in the critical temperature of the network with respect to that of a single discon-
nected island. Regarding the applicability of the GL formulation, it is known that while
the GL approach aligns closely with a BCS treatment near the transition temperature, its
utility extends beyond this narrow range as an effective theory [59–62]. Employing a GL
formulation beyond its validity regime provides a qualitatively accurate theoretical frame-
work, albeit with expected quantitative discrepancies. In this context, our theory serves as
an effective model, with the caveat that a microscopic approach would be necessary for
further scrutiny. In line with this effective theory perspective, we assume the uniformity of
the order parameter within each island (which is a rather reasonable assumption in view of
the micrometric size of the superconducting islands), allowing a single order parameter
value to represent the whole island. The observed order parameter inhomogeneity along
the network stems from the Josephson coupling between adjacent islands, which modi-
fies the nucleation conditions of the superconducting order parameter within any given
island, contrasting sharply with the conditions experienced by isolated islands. These basic
arguments represent the key points of the present investigation.

The paper is structured as follows. In Section 2, we apply the GL approach to a linear
array of junctions serving as a reference system, while in Section 3, we apply the model to
a double-comb structure. In Section 4, we link the order parameter profile, predicted by the
theoretical model, to the Josephson critical currents and report the experimental results obtained
on the Josephson junction arrays. In Section 5, conclusions and perspectives are given.

2. Linear Arrays

In this Section, we consider the properties of a plain array, which is used to introduce
the theoretical model and the relevant notation in a plain context. Thus, let us consider
a linear chain of N superconducting islands. The system is depicted in Figure 1, where
squares represent the superconducting islands, while the straight gray crossed lines stand
for “ideal” connections between the islands due to the Josephson coupling. In terms of
network topology, each island, except those at the endpoints, is connected to two neighbors.
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Figure 1. Schematic picture of a linear chain. Black squares represent superconducting islands, while
gray lines represent Josephson junctions that realize the Josephson coupling between islands. The
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more details.

The eigenproblem induced by the Hamiltonian matrix of such a granular system can
be written in the form:

2Dψn − D(ψn+1 + ψn−1) = Eψn , (1)

where n is the island’s index, E is the energy eigenvalue, and 2D represents the onsite
energy, while D is related to the Josephson coupling between two neighbor islands. The
eigenfunctions of the problem are ψ

(m)
n ∝ sin

(
πm

N+1 n
)
, while the ground state, which is

related to the order parameter profile at the phase transition, is obtained by setting the
quantum number to m = 1.

The transition temperature of this network can be estimated through the ground
state eigenvalue, ε0, of the eigenproblem given in Equation (1). Thus, the network critical
temperature, Tc, is (see [59] for details):

Tc = Tc

{
1 − 2D

αTc

[
1 − cos

(
π

N + 1

)]}
. (2)

Tc is lower than Tc and depends on the system size. In the limit of a linear chain containing
an infinite number of islands ( N → ∞ ), one observes that Tc → Tc . Interestingly, by including
the nonlinear terms in the theory, it is possible to demonstrate that the order parameter profile
shows a tendency to become uniform along the array as the temperature is lowered below the
critical temperature. Thus, one concludes that in a linear array, the Josephson critical currents of
all the biased junctions coincide under the usual measuring conditions.

3. Double-Comb Networks

A double-comb network (see Figure 2), the main object of the present analysis, consists
of a “horizontal” array called a backbone (the dark gray branch in Figure 2) connected
to “vertical” arrays called fingers (the light gray branches in Figure 2). Each array, which
is part of the system, is formed by a linear chain of superconducting islands connected
by Josephson junctions. A single island located on the backbone is connected to four
islands, two of which are also located on the backbone, and the other two are located on
the fingers. The islands located on the fingers instead present only two connections. In the
following analysis, we will assume a system not affected by structural disorder, i.e., made
of a collection of identical islands and junctions.
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Figure 2. Schematic picture of a double-comb array. Black squares represent superconducting islands,
while gray crossed lines represent Josephson junctions, which are responsible for the Josephson
coupling between islands.

The connectivity between islands represents the key point of the following analysis.
The connectivity, however, does not change if the graph shown in Figure 2 is deformed into
the shape of that presented in Figure 3, because the Hamiltonian matrix remains unaffected
by the transformation. In view of the previous statements, the deformation preserves the
physical properties of the network (i.e., the superconducting properties), while allowing
for a more convenient labeling of the system islands.
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This paper analyzes the double-comb network in three different cases, depending
on the number of islands forming the backbone and the fingers. Hereafter, we name the
backbone’s order parameter fn and the fingers’ order parameters x(n)m and y(n)m , where the
subscript index n represents the n-th site of the backbone, while the subscript index m
represents the m-th site of the fingers.

3.1. Double Comb (Bf)

The first case, which we name “Bf”, is a double comb with an infinite number of islands
on its backbone (n ∈ (−∞, ∞)) and a finite number of islands on its fingers (m ∈ [1, M]).
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Following Ref. [59], the extremal condition for the order parameter can be written as follows:
2D fn − D

(
fn+1 + fn−1 + x(n)1 + y(n)1

)
= EB f fn ,

2Dx(n)m − D
(

x(n)m+1 + x(n)m−1

)
= EB f x(n)m ,

2Dy(n)m − D
(

y(n)m+1 + y(n)m−1

)
= EB f y(n)m .

(3)

Since we expect a localized solution along the fingers, an expectation confirmed by
the numerical analysis, we use the following ansatz for the order parameter profile:

x(n)m = Ae−λm + Beλm ,
y(n)m = Ae−λm + Beλm ,

fn = eikn,

(4)

where λ is a positive quantity, k is a wave number, and the unknown parameters A and B
are determined by using the boundary conditions: x(n)0 = fn = y(n)0 and x(n)M+1 = 0 = y(n)M+1.
Network critical temperature is obtained by searching for the smallest eigenvalue of the
Hamiltonian matrix, which depends on the number of islands, M, contained along the
fingers. Finite-size effects are negligible for M ≥ 6, so, by setting M = 6, the network
critical temperature is well approximated by the following relation:

T Bf
c ≈ Tc

[
1 + 0.41

2D
αTc

]
. (5)

Moreover, the order parameter profile (see Figure 4 for a graphic view) at the phase
transition temperature is given by:

fn = eikn
∣∣∣
k=0

= 1 ,

x(n)m = y(n)m = fn

[
eλm − e7λ sinh(λm)

sinh(7λ)

]∣∣∣
λ≈0.8813

.
(6)
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Figure 4. The order parameter profile at the phase transition temperature for a double-comb “Bf”-type
structure (an infinite number of islands for the backbone and a finite number of islands on the fingers),
as obtained from Equation (6). One can see that the profile is constant along the backbone direction
(left), while it decreases exponentially along the fingers’ direction (right).

3.2. Double Comb (bF)

The second case, which we name “bF”, is a double comb with a finite number of
islands on its backbone (n ∈ [1, N]) and an infinite number of islands along its fingers
(m ∈ [1, ∞) ).
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Proceeding as in Section 3.1, the extremal condition for the order parameter profile
can be written as follows:

2D fn − D
(

fn+1 + fn−1 + x(n)1 + y(n)1

)
= EbF fn ,

2Dx(n)m − D
(

x(n)m+1 + x(n)m−1

)
= EbF x(n)m ,

2Dy(n)m − D
(

y(n)m+1 + y(n)m−1

)
= EbFy(n)m .

(7)

We are looking for a localized solution along the fingers, and thus we use the following
ansatz for the order parameter profile:

x(n)m = fnρm ,
y(n)m = fnρm ,

fn = C eikn + Geikn,

(8)

where ρ < 1 is a positive parameter, while the boundary conditions x(n)0 = fn = y(n)0 and
f0 = fN+1 = 0 are used to fix the unknown quantities C and G. One can calculate the
critical temperature of the network by finding the minimum eigenvalue of the Hamiltonian
matrix, so that

T bF
c = Tc

[
1 − 2D

αTc

(
1 −

√
cos2

(
π

N + 1

)
+ 1

)]
. (9)

Moreover, the order parameter profile at the phase transition takes the following form
(see Figure 5 for a graphical view):

fn = A sin
(

πn
N+1

)
,

x(n)m = fn

[
−cos

(
π

N+1
)
+
√

cos2
(

π
N+1

)
+ 1
]m

,

y(n)m = fn

[
−cos

(
π

N+1
)
+
√

cos2
(

π
N+1

)
+ 1
]m

.

(10)
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“bF” type (finite number of islands on the backbone and infinite number of islands for the finger), as
obtained from Equation (10). The profile is sinusoidal along the backbone direction (left), while it
decreases exponentially along the fingers’ direction (right).

3.3. Double Comb (BF)

The third case, which we name “BF”, is a double comb with an infinite number of
islands on its backbone (n ∈ (−∞, ∞)) and an infinite number of islands on its fingers
(m ∈ [1, ∞) ).

The extremal condition for the order parameter can be written as follows:
2D fn − D

(
fn+1 + fn−1 + x(n)1 + y(n)1

)
= EBF fn,

2Dx(n)m − D
(

x(n)m+1 + x(n)m−1

)
= EBFx(n)m ,

2Dy(n)m − D
(

y(n)m+1 + y(n)m−1

)
= EBFy(n)m .

(11)
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Searching for a localized solution along the fingers, we use the following ansatz for
the order parameter profile:

x(n)m = fnρm ,
y(n)m = fnρm

fn = eikn,

, (12)

where ρ < 1 is a positive parameter to be determined by using the boundary conditions
x(n)0 = fn = y(n)0 . According to Ref. [59], we calculate the critical temperature of the network
by means of the smallest eigenvalue of the Hamiltonian matrix or, in an equivalent way, by
taking the limit N → ∞ of T bF

c ; accordingly:

T BF
c = Tc

[
1 +

2D
αTc

(√
2 − 1

)]
, (13)

while the order parameter profile takes the following form (see Figure 6 for a graphical view):

fn = eikn
∣∣∣
k=0

= 1 ∀n ,

x(n)m = fnρm =
(√

2 − 1
)m

,

y(n)m = fnρm =
(√

2 − 1
)m

.

(14)
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Figure 6. The order parameter profile at the phase transition temperature for a double-comb array
of the “BF” type (infinite number of islands for the backbone and infinite number of islands for the
fingers), as obtained from Equation (14). One can see that the profile is constant along backbone
direction (left), while it decreases exponentially along the fingers’ direction (right). Note that the
profile on the fingers is essentially identical to that of the “bF” case shown in Figure 5.

4. Josephson Critical Currents Enhancement: Theory versus Experiments

So far, we have demonstrated that inhomogeneous superconductivity can be obtained
and controlled in tree-like structures of superconducting islands coupled by Josephson weak
links. In inhomogeneous superconductors, the network transition temperature is related to the
spectral gap, while the space-dependent order parameter of the GL theory is related to the local
value of the Cooper pair density. The above observation determines a rather subtle scenario.
On one hand, the network transition temperature is proportional to the spectral gap, which is
detectable by direct inspection of the current–voltage characteristics of a Josephson junction
array. On the other hand, the local values of the order parameter have a direct influence on
the Josephson critical currents. In particular, amplification phenomena of the Josephson critical
currents are expected when the network topology constrains the Cooper pairs to be concentrated
along the supercurrent path. In this way, differently from what is expected for homogeneous
superconductors (with no space modulation of the order parameter), the Josephson critical
currents and the spectral gap are related in a nontrivial manner.

In order to probe inhomogeneous superconductivity features, we show the relation
between the Josephson critical current and the order parameter profile. Let us start by
recalling the expression for the energy, HJ , of a Josephson junction. It is a phase-dependent
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quantity which can be obtained by taking into account the constitutive equations of the
Josephson effect. Thus, the Josephson junction energy can be written as follows:

HJ = −ϕ0 Ic

2π
cos(θ) , (15)

where ϕ0 = h
2e is the magnetic flux quantum, h is the Planck constant, θ is the phase

difference between the superconducting order parameters of the electrodes forming the
junction, and Ic represents the critical current.

Within a GL theory, the contribution to the free energy related to the coupling between
two superconducting regions, described by the macroscopic order parameters ψ1 and ψ2, is
given by −D

(
ψ∗

1 ψ2 + c.c.
)
, where “c.c.” stands for complex conjugate. Thus, within a GL

approach the Josephson junction energy takes the form:

HJ = −2D|ψ1||ψ2| cos(θ) . (16)

A direct comparison between Equations (15) and (16) immediately implies that

Ic =
4πD

ϕ0
|ψ1||ψ2| . (17)

Equation (17) shows that an enhancement in the Josephson critical current can be
obtained in superconducting networks whose topology is able to induce a concentration of
Cooper pairs along the supercurrent direction. This is exactly the case of the double-comb
network, where the Cooper pairs are expected to be concentrated along the backbone array.

In order to perform an experimental test of the theoretical results, we measured the
current–voltage characteristics of double-comb arrays, whose fabrication details have
already been reported in Refs. [54,57]. Here, it is just worth mentioning that the double-
comb arrays studied in this paper contain all-niobium junctions fabricated according to a
trilayer technology [65–68]. A data acquisition system allowed us to record and analyze in a
systematic way the current–voltage characteristics. The experimental technique consists of
comparing the current–voltage characteristics of linear arrays embedded within a tree-like
structure (e.g., the backbone array connected to the fingers) with those of a linear array
(disconnected from the fingers but geometrically identical to the embedded array) used as
a reference system.

Here, we focus on the statistical distribution of the Josephson critical currents forming
the backbone of a double-comb array. The measured double-comb arrays contain a finite
number of fingers departing from the backbone (100), while the finger arrays have a finite
number of junctions on both sides of the backbone (50). Since the order parameter at the
phase transition temperature shows a rapid decay along the finger direction (see Figure 5),
we assume that our arrays belong to the “bF” class described in Section 3, i.e., arrays with a
finite number of islands on the backbone and an infinite number of islands on the fingers.

The first and most striking piece of evidence of the difference between the Josephson
critical current distributions on the backbone array embedded in the graph topology
and its geometrical equivalent, namely its “reference” array, is shown in Figure 7. The
data depicted in Figure 7 are derived from the current–voltage characteristics outlined in
Ref. [64]. We partitioned the current axis into “bins,” specifically 0.3 µA for the backbone
array and 0.2 µA for the reference array. Subsequently, we tallied the number of points
with critical currents falling within each designated bin. The inverse of this count provides
us with the density function.

One can see that the critical currents of the reference array form a more peaked
distribution with respect to that of the backbone. This result follows what we expect since
the effect of the fingers is to condition the critical currents along the whole backbone,
generating a wider spread of current values.
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Figure 7. Experimental distribution of the Josephson critical currents of an “embedded” backbone
(BB) array (solid squares and continuous line) and those of its geometrically equivalent or reference
(Ref) array (solid circles and dashed line (Gaussian function)). One can see the noticeable difference
in the distribution in the current interval where we map the density function. The data are taken
from Ref. [64].

In Figure 7, the line through the data of the reference array is a Gaussian function, while
that between the data of the backbone follows from a statistical distribution originating
from function fn of Equation (10). Figure 7 well demonstrates that the specific connectivity
strongly influences the distribution of currents on the backbone array and a good enough
agreement between the distribution arising from the GL and the backbone array data. It is
worth noting that, in order to perform the fit (lines) to the data, the linear transformation,
n(IC) =

N+1
b−a (Ic − a), was applied to the argument of the function fn of Equation (10) (and

to the Gaussian function argument) in order to go from the Ic current bins to the position
variable on the horizontal axis. Here, a and b are, respectively, the minimum and maximum
values of the current interval. The physical meaning of the black curve providing a smooth
interpolation of the experimental data is that the count of the Josephson critical currents of
the array is higher around the center of the current interval (5–8 µA), given by the lowest
and highest currents of the array.

Now, using the linear transformation, Ic = a + DF (b − a)2, applied to the values
shown in Figure 7 (DF is the density function) and setting the argument of the function
fn of Equation (10) in terms of position (n, junction number), we obtain, for the backbone
array, the corresponding curve in Figure 8a. Here again we see that a rather smooth fit is
obtained and that the maximum of the current is obtained around the center of the array, as
we should expect from the theoretical predictions.

It is worth noting that the distribution was symmetrical, as expected from function fn
of Equation (10) and Figure 5, but even when attempting a fit with a Gaussian density, one
obtains a reasonable agreement, as one can see in Figure 8a (the dashed curve). Nevertheless,
in Figure 8b, one can see that the progressive mean of the discrepancy between the data
and the “sinusoidal” fit based on function fn of Equation (10) stays, for all points, below
10%, whereas the progressive mean of the discrepancy obtained with the Gaussian fit is
always above 10%, reaching a maximum of 40%. In Figure 8a, we used the progressive
mean of the discrepancies in order to smooth out the dependencies; the lines in Figure 8b
just guide the eyes.
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Figure 8. (a) Experimental distribution of the Josephson critical currents between the islands of the
backbone (BB) array for data from Ref. [64]. The continuous line is what we obtain by squaring function
fn in Equation (10) and by adding a constant value mimicking the effect of background superconductivity.
The dashed line is what one could expect from a Gaussian distribution. (b) A comparison of the
discrepancies between experimental data and theory obtained for the experimental data and the two
curves shown in (a). The dashed line and solid circles show the Gaussian distribution, while the solid
squares and solid curve show the distribution originating from function fn in Equation (10).

It is worth noting that, for the data in Figures 7 and 8, we bias the arrays in series in
a four-probe configuration and have access to the voltage developed across them only at
the end of the series connection, and therefore it is not possible to attribute a specific current
to a specific junction between the islands. We have assumed earlier [63,64] that the junctions
carrying the highest Josephson critical currents are those located toward the center of the array.
Now Figures 7 and 8 show that this assumption was reasonable since a specific functional
form gives a quite good account of the behavior of the experimental data.

5. Conclusions

Over the past two decades, evidence that the Josephson critical currents and the gap
energy (and thus the transition temperatures) in graph-shaped arrays of superconducting is-
lands are conditioned by the network topology has been reported in several papers [53–58].
In the present study, we have demonstrated that a Ginzburg–Landau approach applied
to double-comb arrays of junctions shows good agreement with the experimental data.
Interestingly, the GL approach, in accordance with models based on a BEC scenario, pre-
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dicts Cooper pair condensation driven by network connectivity. From an experimental
viewpoint, the substantial differences observed between the arrays embedded in the comb
structures and their geometrical equivalents (i.e., the reference arrays) provide stunning
evidence of the role played by the network topology in superconductivity and, in general,
in solid-state structures. The present paper has given an account, based on GL formalism, of
the presumed earlier assumption concerning charge carriers’ spatial distribution in graph
arrays [63,64]. In particular, the observed effects are suggestive of a nontrivial interplay
between the macroscopic long-range quantum coherence and the network topology. Such
effects are captured by any level of theoretical description, from a GL formulation [59–62]
to more microscopic treatments [69,70], so they certainly deserve further experimental and
theoretical investigations.
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