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Abstract: Recent efforts have shown that training data is not secured through the generalization
and abstraction of algorithms. This vulnerability to the training data has been expressed through
membership inference attacks that seek to discover the use of specific records within the training
dataset of a model. Additionally, disparate membership inference attacks have been shown to
achieve better accuracy compared with their macro attack counterparts. These disparate membership
inference attacks use a pragmatic approach to attack individual, more vulnerable sub-sets of the
data, such as underrepresented classes. While previous work in this field has explored model
vulnerability to these attacks, this effort explores the vulnerability of datasets themselves to disparate
membership inference attacks. This is accomplished through the development of a vulnerability-
classification model that classifies datasets as vulnerable or secure to these attacks. To develop
this model, a vulnerability-classification dataset is developed from over 100 datasets—including
frequently cited datasets within the field. These datasets are described using a feature set of over
100 features and assigned labels developed from a combination of various modeling and attack
strategies. By averaging the attack accuracy over 13 different modeling and attack strategies, the
authors explore the vulnerabilities of the datasets themselves as opposed to a particular modeling or
attack effort. The in-class observational distance, width ratio, and the proportion of discrete features
are found to dominate the attributes defining dataset vulnerability to disparate membership inference
attacks. These features are explored in deeper detail and used to develop exploratory methods for
hardening these class-based sub-datasets against attacks showing preliminary mitigation success
with combinations of feature reduction and class-balancing strategies.
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1. Introduction

Data, and more importantly, relevant, unique, and hard-to-acquire data, have become
a valuable asset of the 21st century. Therefore, when these data provide some sort of
competitive edge, whether that be commercial or military, the ability to protect these
data from discovery becomes of the utmost importance. In addition, with the increase
in legislation to protect data rights, such as with the European Union’s General Data
Protection Regulation, this protection becomes a requirement [1]. However, the ability to
protect these data, even through the generalization and abstraction of machine-learning
algorithms, is at risk [2–16].

The use of AI and machine-learning solutions has increased greatly throughout in-
dustry and government; however, the understanding of the vulnerabilities and security
issues within these solutions has not kept up with this trend. Recently, research groups
have begun to demonstrate these weaknesses and to develop mitigation strategies. This
relatively new area of research is a concentration of cybersecurity referred to as artificial
intelligence (AI) security and focuses on the vulnerabilities of models and algorithms to
attack.
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Several key areas of attack within this field include model theft, data poisoning,
evasion, and model inversion attacks. Model theft attacks seek to replicate the function of
models and can lead to the loss of proprietary information, loss of revenue from deployed
models, and the ability for an adversary to better predict potential actions given that
they also have similar predictions as the victim. Data poisoning attacks inject malicious
data into training datasets to cause general model performance degradation or directed
misclassification or prediction to provide an adversarial advantage. General degradation
of performance can cause a loss of trust in the system, while directed misclassification or
prediction can provide calculated damage to larger organizational mission directives.

Evasion attacks, such as data poisoning attacks, seek to degrade model performance
or cause directed misclassification or prediction. However, instead of tainted training data,
evasion attacks utilize model inputs that seem normal to general inspection but prey on
model weaknesses for the disruption of input classification or prediction. Finally, model
inversion attacks seek to gather information on the training data used for the development
of the attacked model. This attack is divided into property inference attacks, introduced by
Ateniese et al., and membership inference attacks, introduced by Fredrickson et al. [7,16].

Property inference attacks seek an understanding of a training dataset’s statistical
information. An example of issues caused by this attack include the use of this information
to understand competitor training datasets and, thus, build better classifiers and potentially
violate intellectual property rights. Membership inference attacks seek to determine the
inclusion of specific records within the training dataset of a model and can result in
privacy-infringement issues, such as the discovery of personally identifiable information
(PII) and personal health information (PHI) as well as identification of proprietary or
confidential information.

This effort focuses on membership inference attacks and, in particular, explores dis-
parate membership inference attacks. Disparate membership inference attacks differ from
general membership inference attacks in that they focus on attacking individual classes
instead of the entire dataset as a whole. As discussed in more detail in Introduction: Previous
Work, recent efforts have shown increased attack success when targeting more vulnerable
subgroups instead of the entire dataset. These studies found minority subsets of data to be
more vulnerable to attack, even after models were trained with fairness constraints and
differential privacy, unless these were applied to an extent that sacrificed the accuracy of
the model.

This increased vulnerability to attack of minority subsets of datasets can prove trouble-
some for both privacy and competition. Typically, smaller subsets of data within a dataset
are less represented because they are harder to obtain. In the case of health classification
algorithms, these could be observations of patients with rare diseases. In the case of com-
mercial competition, these could be examples of rare findings within a manufacturing
or marketing dataset of key competitive advantages. In either of these cases, the discov-
ery of that information by an adversary can prove detrimental to the organizations and
individuals involved, whether through loss of privacy, profit, or competitive advantage.

1.1. Previous Work

The following section details the previous work understanding vulnerabilities of
minority subgroups of data to membership inference attack and vulnerabilities to disparate
membership inference attack. This work highlights the some of the vulnerabilities that these
subgroups face, shows improved attack performance when using pragmatic attacks, and
sets the stage for the discussion of the need for an understanding of dataset vulnerability
to these disparate membership inference attacks.

Long et al. utilized the disparate vulnerabilities in order to show a pragmatic approach
to membership inference, in which they were able to show increases in precision over
nondeterministic methods on the order of 44% for the MNIST dataset [17,18]. In particular,
they were able to show an increase in precision from 51.7% to 95.05% by targeting the more
vulnerable subgroups.
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Long selected vulnerable records by first estimating the number of neighbors of a
potential record within the sample space available to the adversary, and deemed those with
fewer neighbors as more vulnerable due to their potential to uniquely influence the target
algorithm. To determine the neighbors of a potentially vulnerable record, the group trained
shadow models to mimic the behavior of the target model. These shadow models were
then trained both with and without the target record in order to determine the influence of
that record on the shadow model.

The group utilized the intermediate outputs of the shadow models on the record,
which implies the record’s influence, as a new feature vector for the record. For classification
models without intermediate layers, the new feature vectors were created by concatenating
the model’s prediction vectors. The neighbor/not neighbor classification was evaluated
based on the cosine distance between their feature vectors in comparison to a neighbor-
threshold.

Tonni et al. provided a study on data and model dependencies of membership
inference attacks [19]. In agreement with the studies discussed above, they found that class
imbalance resulted in increased accuracy of membership inference attacks. They also found
an increase in accuracy of the attack with more feature imbalance, and a decrease in accuracy
with an increase in the entropy of the training dataset. The feature balance is the probability
ratio of one feature versus all the other feature values in Cj where Cj = {∪xi∈X xi · aj} 6=.
Therefore, for a dataset D(X, y), the set of distinct feature vectors for the features set A,
where a single feature is defined as aj ∈ A, is C = {∪xi∈X xi} 6=, and the probability ratio is
defined as

P[xi = c|c ∈ C]
P[xi 6= c|c ∈ C]

(1)

The entropy of the training dataset HD was measured by taking the mean entropy
over the n number of features,

HD =
1
n ∑

j
H[aj] (2)

where aj ∈ A are the features of the dataset D.
Truex et al. compiled a study that evaluated the importance of datasets, target models,

and federated learning in relationship to the success of a membership inference attack [20].
This work indicated that the uniqueness of the class boundary definition is a main con-
tributing factor to the vulnerability of an algorithm to membership inference attacks. The
number of classes was deemed important through its characterization of the number of
regions into which the input space Rm is divided, where m is the number of features.

With more classes, each region is smaller, and therefore each region will more tightly
surround the provided training instances, allowing for a more successful attack. The in-
class standard deviation provided insight into the similarity of feature vectors within the
dataset. The more similar a particular observation is to other observations, the less likely
it is to significantly impact the decision boundary and, therefore. be inferred through the
attack. Therefore, according to this study, the more complex the classification problem, the
more likely the success of a membership inference attack.

Yaghini et al. also demonstrated the vulnerability to membership inference as a result
of the size and distribution disparities of subgroups [21]. Further, they discovered that this
problem continues even when models are trained with fairness constraints and differential
privacy, unless these are applied to an extent that sacrifices the accuracy of the classifier.
In a similar vein, Bagdasaryan et al. proved that the reduction in accuracy as a result of
differential privacy measures disproportionately affects minority subgroup populations
within the dataset [22].

Chang et al. proved that attempts to increase fairness in algorithms increases the
privacy risk of those subgroups [23]. This is a result of the forcing of the models to
equally fit the under-privileged subgroups. This forced equalization of fitting results in
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a memorization of the training data from the unprivileged subgroups and, therefore, a
reduction in the privacy of these groups.

1.2. Contributions

The current work focuses on disparate membership inference attacks, which seek
to single out individual classes within the training dataset that may be more vulnerable
than others. In particular, this study separates itself from those listed above by exploring
the vulnerability of datasets to this type of attack instead of the models. This results in
the creation of a disparate vulnerability-classification dataset, a disparate vulnerability
classifier, and an exploration of potential mitigation strategies. Dataset owners can use this
information to determine the potential vulnerability of their datasets to this type of attack
and use that understanding to make any necessary changes to that dataset—using insight
from the provided mitigation exploration—or to determine any other security measures
that should be taken in terms of eventual model deployment, such as API access restriction.

The remainder of the article is laid out as follows. Section 2 discusses the methodology
associated with the development of a vulnerability-classification dataset, the attack process,
the creation of the vulnerability-classification model, labeling and feature engineering of
the vulnerability-classification dataset, and exploratory hardening. Section 3 discusses the
results of the vulnerability classification and the associated features. Section 4 provides the
results of the hardening exploration. Sections 5 and 6 provide detailed discussions on an
understanding of the vulnerabilities of datasets to disparate membership inference attack
and the exploratory hardening efforts, respectively. Finally, Section 7 provides a summary
of this work and details future efforts to continue the progression of this research.

2. Methodology

This section discusses the methodology utilized for the development of the dataset
used for the creation of the vulnerability-classification model, the methodology used to
create victim models and their attacks, as well as the methodology used to generate the
exploratory hardening procedures. The first subsection discusses the datasets that were
utilized in the creation of the vulnerability-classification dataset. As this article studies the
vulnerability of datasets to membership inference attack instead of model vulnerability,
a collection of various datasets modeled in different ways were utilized to create this
vulnerability-classification dataset.

The next subsection provides an overview of the membership inference attack process,
including the development and standardization of victim, shadow, and attack models.
Following is a discussion of the labeling ideology for determination of which datasets
should be labeled as vulnerable or secure. Section 2.4 discusses the engineering of features
to describe the evaluated datasets followed by a discussion on feature selection. Finally, the
development of the vulnerability-classification model and exploratory hardening efforts
are presented.

2.1. Data

In order to create the vulnerability metric, 105 different datasets from the UCI Machine
Learning Repository and Kaggle dataset repository were utilized [24–63]. In order to focus
on the datasets themselves and remove the effects of the utilized classification algorithms
and attack models, combinations of classification models and attack models were used for
each dataset as described in Table 1. More information on the attack method is provided in
Methodology: Membership Inference Attack.

All classification models created from the datasets—henceforth, referred to as victim
models given that these are the attacked models—were developed using the default settings
for each function as defined in the scikit-learn Python library [64]. Several metrics for the
attack and victim models were collected, including the accuracy, F1-score, precision, and
recall, and were then averaged over all 13 combinations of attacks to develop a singular
observation for each dataset. This averaging of metrics allowed for the capture of the
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dataset response to a variety of attacks and a separation of the vulnerability metric from
the type of victim/shadow/attack model combination utilized.

When combined with the features developed for the dataset (as discussed in Method-
ology: Feature Selection), this provided a vulnerability metric dataset of 118 features and
877 instances, since each class within a dataset is an individual observation. Of these
877 instances, 110 (12.5%) were held out as a test set while insuring that original datasets
remained entirely in the training or testing set in order to prevent data leakage.

Table 1. The models utilized for creation of the attack features of the vulnerability metric dataset.
Each dataset within the study underwent each of the combinations of victim model –> shadow models
–> attack model listed in the table.

Victim Model Shadow Models Attack Model

Neural Network Neural Network Neural Network

Neural Network Neural Network Random Forest

Random Forest Random Forest Random Forest

Random Forest Random Forest Neural Network

Logistic Regression Logistic Regression Logistic Regression

Logistic Regression Logistic Regression Neural Network

Logistic Regression Logistic Regression Random Forest

Support Vector Machine Support Vector Machine Support Vector Machine

Support Vector Machine Support Vector Machine Neural Network

Support Vector Machine Support Vector Machine Random Forest

Naive Bayes Naive Bayes Naive Bayes

Naive Bayes Naive Bayes Neural Network

Naive Bayes Naive Bayes Random Forest

Before selecting a dataset to include in the study, each dataset was inspected to ensure
minimal missing data. If a dataset included a feature with greater than 25% missing data,
that feature was removed. However, if it was determined that removal of too many features
was necessary for proper classification, the dataset was not included. If the number of
missing data entries was small enough to allow for dropping observations with missing
data while maintaining the dataset utility, this method was utilized to remove missing
data. If not, but the feature had less than 25% missing values, then the missing values were
imputed using the feature average.

All categorical variables were one-hot encoded. Any binary features remained as
such. Finally, prior to utilization, all datasets whose values were outside a zero-to-one
range were standardized using the default settings of the MinMaxScaler function within
the scikit-learn library. By maintaining consistency in data preparation across all utilized
datasets, control was maintained in the process. With the exception of scaling, the same
preprocessing steps were completed both before development of the victim model and
before the development of the dataset features for vulnerability classification as discussed
in Methodology: Development of Dataset Features.

It should also be noted that any dataset that was too small—less than roughly 100 ob-
servations in the macro dataset—was difficult to attack using the methodology discussed
later (depending on the number of classes in which the dataset was divided) and was
not used in the study. This was a result of the neural-net-attack methodology needing
to divide the dataset into subgroups for training attack models on individual classes as
described below.
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2.2. Membership Inference Attack

Membership inference attacks can be characterized based on adversarial knowledge
of the model being attacked. This knowledge can be white-box, gray-box, or black box—
listed in order of increasing difficulty. This study follows the same adversarial knowledge
conventions as Truex et al. [20]. White-box knowledge indicates that the adversary has
access to some portion or version of the real training data, gray-box indicates that the
adversary has some statistical information on the training data, and black-box indicates
that the adversary has nothing more than publicly available information on the training
data.

This study assumes white-box knowledge of the training data. By erring to an easier
attack by the adversary, the vulnerability-classification model developed will be based on
the most vulnerable type of dataset. Anything other than white-box knowledge will result
in a more secure dataset. Note that these definitions refer to the adversary’s training data
knowledge and not their access or understanding of developed victim models. This study
assumes black-box access to victim models, meaning that an adversary has access only to
the inputs and results vectors of those models. This assumption is justified through the
common use of black-box deployment for models when those models are open to access
outside the parent organization.

The membership inference attack utilized to develop the vulnerability metric follows
the shadow model methodology as developed by Shokri et al. and was chosen due to its
general acceptance as a valid membership inference attack methodology as well its ability
to successfully attack black-box models [65]. This attack begins with the development
of a shadow model training dataset, which was developed through the utilization of
some knowledge of the original training dataset—white-box knowledge of the training
data—providing an easier situation for the attacker and, thus, a more reliable vulnerability
metric.

In this effort, the shadow model training data was developed from a random extraction
of 60% to 80% from the original training dataset, dependent on the original size of the
dataset. This left 20% to 40% of the original data to be used as test data. For this study, one
half of the test data was used to train the victim model and labeled as Trained. The other
half of the test data was simply processed through the already trained model and labeled
as Not-Trained. In this way, a test dataset of observations labeled as Trained/Not-Trained
were developed to evaluate the performance of the attack model. Figure 1 provides a visual
description of the data split.

Continuing with Figure 1, the training dataset was then passed through the victim
model in order to obtain proper classification. No knowledge of the victim model was
required—instead, simply access for input and receipt of output probability vectors (a
black-box model) were needed. Next, one-half of this, now properly labeled, shadow model
training dataset was utilized to train an ensemble of shadow models that seeks to mimic
the characteristics of the victim model. Through the utilization of an ensemble of shadow
models made up of various model types and hyperparameter settings, the ensemble can
account for different possibilities of victim model architectures and behaviors. This shadow
model ensemble development is discussed in greater detail below.

Once the shadow models were developed, the one-half of the training dataset that was
utilized to train the shadow models, was labeled as Trained, and the half that was not used
was labeled as Not-Trained. The entire shadow model training dataset was then passed
through the shadow model ensemble in order to obtain an output probability vector. This
vector along with the label of Trained/Not-Trained and the original set of dataset features
were utilized as an attack model dataset in order to create a binary classification model
that can determine whether an observation was utilized in training of the victim model as
shown in Figure 2.
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Figure 1. Diagram illustrating the flow of data through the attack process. The original dataset is
divided into a training (60–80%) and testing dataset (20–40%). One half of the training data is used to
develop the shadow model ensemble and is labeled as Trained data given that it is used to train the
ensemble. The other half of the training data is labeled as Not-Trained data since it is not used to
develop the ensemble but is instead simply passed through the ensemble for the retrieval of output
vectors. These two halves are then recombined as a labeled Trained/Not-Trained dataset that is used
to train the attack model, which can classify if an observation was used to train the ensemble or not.
Finally, this attack model was tested on the victim model with the previous testing dataset—half of
which was used to train the victim model and labeled Trained data, and the other half of which was
simply passed through the victim model to obtain the output vectors.

Figure 2. Visual description of the shadow model ensemble and attack model development. The
dataset used to train shown in the upper half of the image was passed through the victim model
prior to this process in order to obtain proper labeling as described in Figure 1. The upper portion of
this image shows the split of the data so that 50% is for training the shadow model ensemble, and
the other 50% is not. These two halves were then recombined into the attack model training dataset.
The lower half of the image completes the series, showing the passing of the entire attack model
training dataset through the shadow model ensemble to acquire the output probability vector from
the ensemble. This finalized attack model dataset, consisting of the original dataset features, the
output probability vector from the shadow model ensemble, and the Trained/Not-Trained label, was
then used to train the attack model.

2.2.1. Development and Standardization of Victim Models

To maintain the concentration of the study on the vulnerability of the datasets them-
selves as opposed to the models, all victim models utilized in Table 1 were developed and
standardized in the same way. The datasets utilized consisted of solely numerical and/or
binary features, or if they contained categorical features, the categorical features were
one-hot encoded. Prior to classification algorithm training, the datasets were standardized
utilizing the default settings of the MinMaxScaler function of scikit-learn.

The following four classification algorithms were used, all from scikit-learn, and all
utilizing their default settings with exceptions as noted in parenthesis: RandomForest
(100 estimators and no preset depth), LogisticRegression (L2 penalty and lbfgs solver), SVC
(rbf kernel and gamma scale), and NaiveBayesGB (α = 1.0 and “True” priors). In addition, a
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neural network classifier was utilized, which was again kept standard to include a single
hidden layer with 128 nodes activated by a ReLu activation and a learning rate of 0.005.
Given that all datasets were divided into individual classes within this study, all output
layers were binary and were thus activated using a Sigmoid activation. Adam optimization
was utilized with a binary crossentropy loss function and a 0.005 learning rate. The neural
net classifier was implemented using the TensorFlow Python package.

2.2.2. Development and Standardization of Shadow Models

In their seminal work using the shadow model membership inference attack, Shokri
utilized neural networks for both the shadow model ensemble and the attack model [65].
In her work building on Shokri’s efforts, Truex found that the shadow model type and
attack model type had little effect on the success of the attack but showed promising results
through the use of decision trees [20]. However, in order to remove the effect of shadow and
attack model type selection from the vulnerability metric, this study utilized combinations
of shadow and attack models as described in Table 1. In addition, each shadow model has
several hyperparameters, which were chosen at random—visualized in Table 2—in order
to develop an ensemble of models that can mimic the victim model.

As mentioned previously and depicted in Figures 1 and 2, a portion (60–80%) of the
original dataset was set aside for attack model development. Of this, 50% was used to train
the shadow model ensemble and was subsequently labeled as Trained data to indicate
that it was used to train the ensemble. The ensemble consisted of 20 models, each with an
evenly weighted vote, and with a random selection of hyperparameters as described in
Table 2.

The type of model used in the ensemble was determined based on the given combina-
tion as shown in Table 1. Using many different models with various, randomly selected
hyperparameters in the ensemble provides for better capture of the intricacies of the victim
model, thereby, allowing for a better understanding of how that model may be incorpo-
rating the training data within its structure. For each dataset, 13 different combinations of
victim, shadow, and attack models were created and evaluated to provide emphasis on the
dataset instead of the model combination.

Table 2. Hyperparameter variation within the shadow model ensemble.

Model Type Hyperparameter Potential Values

Random Forest Number of Estimators 100, 500, 1000

Depth 10, 50, 100, None

Neural Net Number of Hidden Layers 1

Number of Nodes in Layer 64, 128, 256

Logistic Regression Penalty L1, L2

Solver newton-cg, sag, lbfgs, saga

SVM Kernel rbf, poly, sigmoid

Gamma scale, auto

Naive Bayes Alpha 1, 0

Priors True, False

2.2.3. Development and Standardization of the Attack Model

Figures 1 and 2 provide a visual description of the development of the attack model.
Following the development of the shadow model ensemble, the 50% of data that was used
to train the ensemble and labeled as Trained was recombined with the 50% of the data that
was withheld from the ensemble training and labeled Not-Trained. This new dataset was
then passed through the shadow model ensemble in order to obtain the output probability
vector. This new dataset consisting of the original dataset features, the Trained/Not-Trained
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label, and the output probability vector was subsequently utilized to train the attack model
with the Trained/Not-Trained label as the target variable and the remaining features as the
input. The specific model type was determined based on the combination being evaluated
as shown in Table 1.

To maintain experimental control over the attack to provide a more universal vulnera-
bility metric, the attack models were kept standard across all datasets as was done for the
victim model development. The neural net model utilized a single hidden layer of 64 nodes
and a binary output node. The hidden layer was activated using a ReLu activation and the
output layer by a sigmoid activation. The model was optimized using an Adam optimizer,
a binary cross-entropy loss function, and a learning rate of 0.0001.

The random forest model utilized 100 estimators, no predefined depth, and the remain-
der of the parameters set to the default settings from scikit-learn. The logistic regression
model made use of an L2-penalty, an lbfgs solver, and the remainder of the parameters set
to the default settings from scikit-learn. The support vector classifier model utilized an rbf
kernel, a gamma scale, and the remainder of the parameters set to the default settings from
scikit-learn. Finally, the Naive Bayes model was created using an α = 1.0, “True” priors,
and the remainder of the parameters set to the default settings from scikit-learn.

While the other attack models could be directly trained on the attack model dataset,
the use of the neural net model required a set of two models—one for each binary outcome
for the class-based sub-dataset. The neural net models are more capable of capturing the
subtleties of the Trained/Not-Trained observations when focused on a particular class and,
therefore, require a hard-coded class selection protocol in order to assign the observation to
the correct attack neural net based on the predicted class [65]. Given that this study divided
the individual classes of each dataset into individual sub-datasets for disparate attack
evaluation, the classes of a given subset consisted of the positive and negative Boolean
evaluation of membership within the given class.

2.3. Understanding of Labeling

To develop the vulnerability-classification model, the data needed to be labeled. Table 3
provides a statistical description of the average accuracy of attack found within the training
dataset of this study—averaged across the various combinations of attacks as defined in
Table 1. As the attack model was developed on an even class split of data—considering the
Trained/Not-Trained label division—and with a binary target, accuracy was deemed to be
the most relevant metric on which to develop the vulnerability label.

Table 3. Descriptive statistics of the attack accuracies found within the training set of the current
disparate attack study.

Statistic Disparate Attack

Mean 0.617

Standard Deviation 0.111

Minimum 0.324

25% Quartile 0.530

50% Quartile 0.582

75% Quartile 0.697

Maximum 0.915

Additionally, given the relatively narrow interquartile range of accuracy—stretching
from 0.530 to 0.697—as shown in Table 3, we decided that a binary vulnerable/secure label
would best suit the study with the threshold of vulnerability set to the mean of the average
attack accuracy. Using an attack accuracy of 62%, we established the guessing percentage
as 53%. The labels and training were all confined to the training set in order to maintain
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complete neutrality of the test set. The test set labels were based on the same threshold as
found in the training set in order to maintain consistency.

2.4. Development of Dataset Features

This study evaluated the vulnerability of datasets to disparate membership inference
attacks, requiring a dataframe consisting of observations made of class-based sub-datasets
and features describing those subsets. Therefore, 118 features were developed to describe
each dataset and class-based sub-dataset within the study. The features developed were
meant to capture as many statistical subtleties of the datasets as possible to explore what
properties of a dataset could lead to disparate membership inference attack vulnerability.
In addition to features developed by the team, inspiration for features were also derived
from work by Brazdil et al. [66].

Among others, the features developed and integrated include measures of depth,
width, entropy, correlation, skewness, kurtosis, mutual information, principal component
explanation, number of classes, observation distances, and proportions of categorical,
binary, and numerical features. Full descriptions of the developed and utilized features
can be found in Table A1 located in Appendix A. These features were applied to the
overall dataset and subsets of the macro dataset created for each class within the dataset as
indicated by the feature description. For example, if a particular dataset had ten classes,
then this study divided that dataset into ten separate datasets consisting of a binary label
for the class being evaluated and then applied the features to that dataset.

Several features within the training dataset contained disperse distributions, which
allowed for sub-samples of the dataset to fail Kolmogorov–Smirnov tests. However, given
that the nature of the vulnerability metric requires such a diverse population of datasets,
a methodology for standardizing these observations for modeling was required. We
discovered that this dispersion of distributions was caused through several datasets having
large outliers. The removal of these outliers could cause misleading results as these outliers
and features could provide insight into potential vulnerabilities.

Therefore, to avoid the saturating effect of these features, the data was scaled using
scikit-learn’s MinMaxScaler with its default settings. The scaling factor was generated using
the training dataset and then applied to both the training set prior to model development
and to the holdout test set prior to testing.

2.5. Feature Selection

As indicated below in Methodology: Vulnerability Classification, the resulting number
of observations within the training dataset was 767. In order to avoid a wide dataset and
potential overfitting or difficulty in classification, the feature set was reduced. Feature
selection was performed utilizing an ensemble methodology of Pearson Correlation, χ2, and
recursive feature selection was performed using logistic regression. Pearson Correlation
selection was implemented using Numpy’s corrcoef function between the features and
labels with default settings for each feature.

χ2 selection was implemented by first scaling the data using scikit-learn’s MinMaxS-
caler with default settings. Then, scikit-learn’s SelectKBest function with the χ2 score
function and other parameters set to default was fit to the data. Selections were returned
using the SelectKBest’s getsupport function. Recursive feature selection was implemented
using scikit-learn’s RFE, recursive feature elimination, function with a logistic regression
estimator, number of features to select set to ten, and with the step set to ten. The Boolean
result of keeping or removing the feature for each of these three methods was then placed
in a dataframe in descending order based on the number of ”keep“ votes attributed to the
feature.

This methodology was used to down-select the original 118 features to 15. These
15 features were then reduced to seven through an iterative modeling effort and are shown
in Table 4 in order of importance based on feature importance ranking of the feature
selection ensemble. This iterative modeling involved using the training data in various
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models with an array of hyperparameter settings in an effort to find the optimal mapping
of observations and labels. This model then optimized the number of features by starting
with the top 15 features and working down to the eventual seven features found as optimal
as discussed in more detail below.

Table 4. The top seven features selected by the feature selection methodology, listed in order of
importance based on the feature importance ranking of the feature selection ensemble.

Feature

Average of Label Minimum Distances
Variance of Label Minimum Distances

Variance of Label Mean Distances
Proportion of Binary Features

Average of Label Mean Distances
Average of Label Maximum Distances

Width Ratio After One Hot Encoding on Class Subsets

2.6. Vulnerability Classification

All methods up to this point were used to develop the vulnerability-classification
dataset. This dataset consisting of observations of class-based sub-datasets, features detail-
ing those subsets, and the labels associated with disparate membership inference attack
accuracies averaged over various combinations of victim/shadow/attack models was then
utilized to develop the vulnerability-classification model.

Several modeling methods were evaluated, including Random Forests, Logistic Re-
gression, Decision Trees, Naive Bayes, and ensemble methodologies, to develop the
vulnerability-classification model. These methods were evaluated with all top 15 fea-
tures, as well as the top 10 and top five features. Ultimately, an ensemble model of a
logistic regression model using a liblinear solver, a Naive Bayes model, and a random
forest classifier using a minimum of five samples per leaf and 200 estimators was found to
provide the best results.

Any hyperparameters not directly mentioned were set to the default scikit-learn
settings. This model was then used to down-select the features to the seven shown in
Table 4. The model was found utilizing leave-one-out cross validation (LOOCV) over the
training dataset and resulted in the training and testing results as shown in Table 5.

Table 5. Resulting metrics from the disparate vulnerability model development and testing for the
ensemble model and seven features as shown in Table 4.

Metric LOOCV Training Data Test Data

Precision of Vulnerable Class 0.819 0.819

Recall of Vulnerable Class 0.762 0.759

F1 of Vulnerable Clas 0.789 0.788

Accuracy 0.846 0.845

Given the small size of the vulnerability metric training dataset, ADASYN (Adaptive
Synthetic) data sampling was utilized to develop additional data observations [67]. The
synthetic data were developed within each training fold through the use of the default
settings of the ADASYN function in the imbalanced-learn library [68].

2.7. Hardening Exploration

Based on the results found in the vulnerability study and discussed in more detail
below, four different methods of hardening against membership inference attack were
chosen for exploration. These methods focused on the reduction of the width ratio, increase
of feature entropy, and reduction of disparities in class size. Unlike in a macro-level



J. Cybersecur. Priv. 2022, 2 893

vulnerability study, each dataset in this study consisted of only “one class” given that the
datasets were actually class-based sub-datasets as described above. However, this “one
class” was represented with a binary label of “represented by this class” or “not represented
by this class”, and therefore class size disparity still existed and was still considered within
the hardening process.

The first method was a feature reduction method, which removed features based on
correlation. Features that were more than 80% correlated with other features were removed.
The second was a feature reduction method based on manifold theory. Using isometric
mapping across a scale of increasing number of components up to a count equal to the
original number of features, an elbow plot was created to determine the optimal number of
components to maintain. This number of components was then used again in the isometric
mapping process to reduce the feature size of the dataframe. Isometric mapping was
applied using the default setting from the scikit-learn library for Python.

The third method was an oversampling method using a conditional tabular generative
adversarial network (CTGAN) [69]. CTGAN was chosen for oversampling to provide
an equal number of observations in classes through oversampling while maintaining the
same data structure. Other methods, such as ADASYN and SMOTE, rely more on linear
connections between observations, while CTGAN learns the original distribution of the
subset of data to be sampled. The CTGAN method was implemented using the default
settings with 100 epochs from the SDV library for Python.

The final approach was to use NearMiss version two undersampling implemented
through the the imblearn library for Python, with version two selected and “not minority”
as the sampling strategy. NearMiss version two was selected to provide an undersampling
strategy that maintains the original data structure. Based on the efforts of the original devel-
opers of the NearMiss strategy, version two provided the best results for the requirements
of this study [70].

3. Results of Vulnerability Classification

Shown below are the results of the vulnerability classification process, presented
through an understanding of the features utilized in the classification model. Interestingly,
macro-level dataset features were found to show higher importance in the determination of
individual class vulnerability than those developed and processed solely on the class-based
sub-datasets. Therefore, within the tables of descriptive statistics based on these macro
dataset features shown below, some values are found to be the same across vulnerable and
non-vulnerable splits because, within a given dataset, some classes may be vulnerable and
others safe. This section presents the results as found within the study. Further discussion
of these findings is provided in the Discussion section.

3.1. In-Label Distance Measures

In-label distance measures compute the distances between each observation within a
class. This metric follows from insight found in work, such as that by Truex and Yaghini
discussed above [20,21]. These measures first group observations by class and then deter-
mine the distances between each observation within the class using a city block, also known
as a Manhattan, distance measurement as shown in Equation (3). This distance metric was
utilized in agreement with Aggarwal et al. who found that this L1 norm metric provides
better results in high dimensional datasets [71].

d =
n

∑
i=1
|xi − yi (3)

As discussed in the Introduction and reiterated above, it is understood that sparse
class boundaries can lead to vulnerabilities within a class, and this is a driving factor for
disparate vulnerability. Therefore, it is reasonable that five of the seven top features are
related to in-label distance measures for the disparate attack vulnerability-classification
model.
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Table 6 provides a summary of the descriptive statistics for each of the included in-
label distance features. It can be seen that, for the average of the label minimum, mean,
and maximum distances, the distance is significantly higher for vulnerable datasets when
compared to their non-vulnerable counterparts. Furthermore, included as significant
features are the variance of the label minimum and mean distances, which were also
significantly higher for vulnerable datasets. The variance of label distance features and
the average of label minimum distances show the most divergence in the upper 50% of
the data.

Table 6. Descriptive statistics of the in-label distance measure features for the overall dataset, the
non-vulnerable observations, and the vulnerable observations.

Feature Descriptive Statistic Full Dataset Non-Vulnerable Vulnerable

Average of
Label

Minimum
Distances

Mean 19.85 0.62 48.80

Standard Deviation 41.13 5.41 52.95

Minimum 0.00 0.00 0.00

25% Quartile 0.00 0.00 0.00

50% Quartile 0.00 0.00 4.15

75% Quartile 2.00 0.07 111.35

Maximum 111.35 103.22 111.35

Variance of
Label

Minimum
Distances

Mean 260.81 5.76 644.85

Standard Deviation 552.29 91.81 711.89

Minimum 0.00 0.00 0.00

25% Quartile 0.00 0.00 0.00

50% Quartile 0.00 0.00 0.19

75% Quartile 0.01 0.00 1409.65

Maximum 1536.01 1536.01 1536.01

Variance of
Label Mean
Distances

Mean 293.26 9.08 721.16

Standard Deviation 621.88 121.66 801.77

Minimum 0.00 0.00 0.00

25% Quartile 0.47 0.22 1.11

50% Quartile 1.11 1.11 8.16

75% Quartile 8.16 1.11 1521.40

Maximum 2282.77 2282.77 2282.77

Average of
Label Mean
Distances

Mean 41.39 8.04 91.60

Standard Deviation 70.95 12.02 90.60

Minimum 0.26 0.26 0.65

25% Quartile 7.15 4.20 8.73

50% Quartile 8.73 8.73 10.81

75% Quartile 10.92 8.73 191.09

Maximum 191.51 191.51 191.51
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Table 6. Cont.

Feature Descriptive Statistic Full Dataset Non-Vulnerable Vulnerable

Average of
Label

Maximum
Distances

Mean 65.17 17.45 137.01

Standard Deviation 101.79 19.58 129.68

Minimum 2.14 2.14 2.31

25% Quartile 13.13 11.50 18.92

50% Quartile 18.92 18.92 23.77

75% Quartile 23.77 18.92 273.40

Maximum 325.20 325.20 325.20

3.2. Width Ratio

The width ratio of a dataset can provide insight into an overabundance of information.
The hypothesis being that the provision of many features in description of a limited set of
observations can facilitate an adversary’s inference of training data membership through
this overabundance of information. In this study, the width ratio was implemented as a
ratio of the number of features to the number of observations, meaning that a higher width
ratio indicates a wider dataset. The feature found to be the most prominent in this family of
width ratios was calculated after one-hot encoding of categorical variables and completed
on class-based data subsets. Table 7 shows that vulnerable datasets have significantly wider
datasets than their non-vulnerable counterparts—in agreement with the stated hypothesis.

Table 7. Descriptive statistics of the width ratio after one-hot encoding on the class-based data subset feature
for the overall dataset, the non-vulnerable observations, and the vulnerable observations.

Descriptive Statistic Full Dataset Non-Vulnerable Vulnerable

Mean 0.21 0.13 0.34

Standard Deviation 0.49 0.32 0.65

Minimum 0.00 0.00 0.01

25% Quartile 0.01 0.01 0.06

50% Quartile 0.05 0.02 0.24

75% Quartile 0.28 0.10 0.31

Maximum 5.36 4.32 5.36

3.3. Proportion of Binary Features

The proportion of binary features was included in the dataset feature set to understand
how different types of features and different ratios of feature types can affect dataset
vulnerability to membership inference attacks. Understanding how these types and ratios
of feature types relate to vulnerability can assist data owners in the development and setup
of their datasets dependent on security vs. utility needs. The proportion of binary features
provides the ratio of the number of binary features to the total number of features. Table 8
shows that vulnerable datasets have, on average, a higher number of binary features. In
addition, the largest diversion occurs in the upper 50% of the data.
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Table 8. Descriptive statistics of the proportion of binary features feature for the overall dataset, the
non-vulnerable observations, and the vulnerable observations.

Descriptive Statistic Full Dataset Non-Vulnerable Vulnerable

Mean 0.21 0.03 0.47

Standard Deviation 0.39 0.13 0.49

Minimum 0.00 0.00 0.00

25% Quartile 0.00 0.00 0.00

50% Quartile 0.00 0.00 0.13

75% Quartile 0.13 0.00 1.00

Maximum 1.00 1.00 1.00

4. Results of Hardening Exploration

Following the discoveries from the vulnerability study above, exploratory efforts to
harden the datasets based on these findings while maintaining utility were attempted. This
exploration allowed for both a first approach to dataset hardening methodologies against
disparate attacks and a deeper understanding of what methods work for different types
of datasets. As mentioned in the Results of Vulnerability Classification section, this section
provides the results as found in the study. Further explanation of these results is provided
in the Discussion section.

Table 9 provides information on the number of datasets hardened; the number of
class-based subsets within these datasets; the percent of subsets that were unchanged, made
more secure, and made more vulnerable; and information on the changes in the victim
model and attack accuracies. From this table, it can be seen that the two combinational
hardening methods and the feature reduction via manifold theory performed the best
in reducing the vulnerability to disparate membership inference attacks. Of these three,
the two combinational hardening methods provided better maintenance of the original
(victim) model utility, as evinced through the low/insignificant changes in the victim model
accuracy and F1 score on average.

Table 9. The results of hardening efforts showing the number of class-based subsets (along with
the original number of datasets prior to class-based breakdown) and the results of each hardening
method explored. These results include the number of subsets that remained the same, those that
became more secure, and those that became more vulnerable, along with the changes in the victim
model accuracy, F1 score, and attack accuracy on average.

Hardening Method

Class-Based
Subsets Hardened

(Original
Datasets) [#]

Subsets
Unchanged [%]

Subsets Which
Became More

Secure [%]

Subsets Which
Became More

Vulnerable [%]

Change in
Victim Model
Accuracy on

Average

Change in
Victim Model

F1 Score on
Average

Change in
Disparate

Attack
Accuracy on

Average

Feature Reduction
via Correlation 439 (97) 85.9 7.5 6.6 Insignificant Insignificant −0.01

Feature Reduction
via Manifold

Theory
355 (77) 82.5 16.1 1.4 −0.03 −0.04 −0.04

Class Balancing via
Oversampling 436 (96) 86.9 7.6 5.5 +0.02 +0.02 +0.01

Class Balancing via
Undersampling 621 (102) 87.1 4.8 8.1 +0.02 +0.02 +0.02

Correlation-Based
Feature Reduction

with Oversampling
239 (63) 81.6 13.0 5.4 Insignificant −0.01 −0.01

Manifold
Theory-Based

Feature Reduction
with Oversampling

208 (57) 79.8 19.2 1.0 −0.01 Insignificant −0.02
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5. Discussion of Vulnerabilities to Disparate Membership Inference Attack

This section discusses the findings associated with the vulnerability classification of
datasets to disparate membership inference attacks. As shown in Table 5, the developed
vulnerability-classification model can determine the vulnerability of a dataset to disparate
membership inference attacks with an accuracy of 84.5%. This model provides data owners
with the ability to evaluate their datasets’ vulnerability to privacy leakage via this attack.
Many datasets, including those with PII and PHI, such as medical datasets, and those that
contain proprietary or confidential information, such as commercial and military datasets,
can lead to individual, organizational, or national detrimental effects if their information
is leaked. Therefore, having an understanding of this vulnerability to potential record
discovery is of great importance to these data owners.

In addition to the vulnerability classification contribution, the features that make up
this model equally contribute in their provision of understanding of this vulnerability.
This section discusses these features and their importance to the understanding of this
vulnerability.

Five of the seven features selected through the vulnerability-classification modeling
effort were based on in-label observational distance measurements. This finding is in agree-
ment with previous understandings that minority and sparsely populated classes tend to
have higher vulnerability within a given dataset. Two main ideas are shown in the evalua-
tion of the in-label distance features. The first is that the average label minimum, mean,
and maximum distances are all greater for vulnerable datasets than for non-vulnerable
datasets. This shows that sparse class regions are more prone to attack than their denser
counterparts.

The second is that the variance of the minimum and mean distances—and for the
non-included variance of the maximum distance feature—is greater for vulnerable datasets.
These variances show the most diversity in the upper 50% of the data. Therefore, it can be
concluded that, in addition to the fact that more sparse class regions lead to more vulnerable
data subsets, a lack of even distribution of observations within the class region can also
lead to disparate vulnerability.

This is an important observation and contribution to the current understanding of vulnerability
to both macro-level and disparate membership inference attacks. The current literature indicates
the contribution of sparse class regions to attack vulnerability [19–21]. However, this finding
demonstrates that not only can a lack of supporting members lead to the vulnerability of those
subclasses but also a lack of uniformity in the density of observations within a particular class
boundary region can lead to vulnerability.

The width ratio of class-based sub-datasets after one-hot encoding was also found to
be an important feature in classifying disparate vulnerability. A wider dataset can result in
an over explanation of observations by providing more information than is necessary for
the feature-to-label mapping. This overabundance of information creates opportunities for
membership inference attack. The fact that this was a feature developed on the class sub-
sets as opposed to the macro dataset—resulting in wider datasets for those less populated
class-based subsets—agrees with previous understandings that under-represented portions
of a dataset, such as less populated classes, are more vulnerable to attack.

Finally, the proportion of binary features was found to be an important factor in
determining disparate vulnerability. While this feature was developed on the macro
dataset, dividing the dataset into class-based subsets would not change its value, given
that it is the proportion of binary features to the total number of features. When exploring
the reasoning of importance behind the inclusion of this feature, it is interesting to consider
the width ratio after one-hot encoding as discussed above. Binary features are, by nature,
“on” or “off”.

One-hot encoding of categorical features creates a set of binary features indicating
“on” or “off” for each element within the encoded categorical variable. Therefore, one-hot
encoding of categorical variables will increase the proportion of binary features within the
dataset, while the method for calculating the proportion of binary features was coded to
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not include the categorically one-hot encoded features. The idea that both of these “on/off”
features are included as important for determining vulnerability leads to an understanding
of how these discrete attributes can lead to vulnerability.

When considering that, within the literature on algorithmic and model vulnerability
as discussed in the Introduction: Previous Work, entropy and correlation themes were seen
as the most important, it can be speculated that features that include more entropy within
the observational attribute itself could be more secure. In other words, features that are
binary and one-hot encoded categorical features provide only two states in comparison to
the infinite number of states one may find when a feature can take on a continuous value,
such as between 0 and 1.

This, as described above for the uniformity of class regions, is an important contribution
to the current understanding of the vulnerability of datasets to not only disparate membership
inference attack but also membership inference attack in general—namely, that datasets with a
larger proportion of continuous variables as opposed to discrete variables are more secure against
membership inference attack due to the increase in entropy within those features.

6. Discussion of Hardening Exploration

This section discusses the results associated with the hardening exploration efforts.
While the impetus of the article focuses on the understanding of dataset vulnerability to
disparate membership inference attack, an exploration into hardening techniques based
on these discovered vulnerabilities can assist in this understanding while also offering an
introduction to mitigation strategies for the dataset owner.

These hardening explorations were developed based on the features found to con-
tribute to vulnerability, which can be summarized into an over-abundance of information
relating to the width-ratio feature, sparse and unevenly distributed class regions relating to
the in-label distance features, and a lack of entropy within individual feature realization
possibilities as found in the proportion of binary features and one-hot encoded categorical
variables. This study focused on the former two vulnerabilities through feature reduction
efforts based on correlation and manifold theory and through class-balance methods based
on oversampling via CTGAN and undersampling using NearMiss methodologies. In
addition, combinations of feature reduction and oversampling methods were also explored
given their more promising results to evaluate if further hardening could be accomplished.

Feature reduction based in manifold theory provided better results than using correla-
tion thresholds. Given that manifold theory finds a lower dimensional representation of
the information contained within the feature set, this reduction to a more base layer could
provide a perturbation effect on the membership inference attack attempt. In addition, by
condensing the feature set, this hardening method could have changed the uniformity of
in-region observational distribution to be more uniform and thus provided protection in
this manner.

However, end-users may find hardening via manifold theory to be less appealing
due to the increased difficulty in understanding and explanation of the results of the
classification exercise given the decreased definition of what is contained within a particular
feature of importance within their ultimate algorithm.

Oversampling provided for a larger increase in the percent of secured datasets and a
lower percent in the number of datasets, which increased in vulnerability as compared to
undersampling, while both methods attempted to balance classes, oversampling increased
the fortification of existing observations. Therefore, it is reasonable that this increase in
supporting members—and thus entropy—would reduce the ability of an attack to discern
if an observation was or was not a part of the original training dataset. However, the
oversampling method did not provide the level of improvement seen in the manifold
theory-based feature reduction method. Given that the oversampling technique utilized
maintained the original distributions, there would still be a similar non-uniformity of the in-
class region distribution of observations, therefore, leaving this vulnerability-contributing
factor unresolved.
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However, the best results were found with a combination of the two best-performing
methods of feature reduction and class balancing efforts—a manifold theory-based feature
reduction with CTGAN oversampling. This provided an effectively insignificant change
in the victim model performance while reducing the disparate attack accuracy by 0.02 on
average. A total of 19% of class subsets were made more secure, and only 1% were more
vulnerable. This elevated protection can be attributed to the perturbing effect and increase
of uniformity of the in-class region observational distribution of the manifold-theory-based
feature reduction as well as the increase of supporting observations and entropy of the
oversampling method.

7. Summary and Future Efforts

This study provides an in-depth look at the vulnerability of datasets themselves to
disparate membership inference attacks—those that focus on attacking individual classes
as opposed to the overall dataset—contributing an addition to the current literature that
focuses on model vulnerability. This understanding was accomplished through the creation
of a vulnerability-classification model based on over 100 datasets—including frequently
cited datasets within the AI security literature. The vulnerability-classification dataset used
to create this classification model consisted of 118 features and a set of victim, shadow,
and attack model accuracies, all used to describe and understand the vulnerability of these
datasets to disparate membership inference attacks.

The resulting ensemble model, consisting of a logistic regression model, Naive Bayes
model, and a random forest model, obtained a testing accuracy of 84.5% in classifying
datasets as vulnerable or secure to these disparate membership inference attacks. Of the
seven features used in the classification model, five were based on in-label observational
distance measurements. This heavy reliance on observational distances within class regions
is consistent with other findings in the literature, which state that minority and sparsely
populated classes tend to increase vulnerability.

In addition to the vulnerability-classification model, this study also provided an
increased understanding of the vulnerability of datasets to these attacks. First, it was shown
that the uniformity of the in-class region distribution is an important factor in dataset
vulnerability. Those datasets with a less uniform distribution of in-class observational
distances were proven to be more vulnerable to attack. Second, it was shown that an
increased proportion of binary features can result in an increase in vulnerability.

This finding was established through the width ratio after one-hot encoding and the
proportion of binary features exclusive of categorical one-hot encoded features (both of
which indicated an increase in vulnerability with the increase of either the width of the
dataset after one-hot encoding) or the increase in the proportion of binary features, while
wider datasets in general can contribute to an overabundance of information and, therefore,
an adversarial advantage for membership inference. Of particular interest was the inclusion
of the post-one-hot encoding aspect. One-hot encoding results in a binary feature indicating
a categorical response and is a common preprocessing step for datasets.

Given understandings of entropic contributions to membership inference vulnerability
and previous findings of low entropy features causing an increase in vulnerability, we
concluded that these binary features, due to their low inherent entropy, result in an increase
in attack success. Non-binary features can take on an infinite number of values and, thus,
provide more entropy-influenced security compared with two-state binary features.

To further understand these vulnerabilities and to provide exploratory mitigation
strategies, we investigated preliminary hardening strategies based on the vulnerabilities
discovered in the vulnerability classification process. In particular, feature reduction
methods were used to treat an overabundance of information and intelligent over- and
undersampling methods were used to treat class-region sparsity and imbalances. The
best-performing method proved to be a manifold theory-based feature reduction combined
with a CTGAN-based oversampling strategy.
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This hardening process resulted in a reduction in disparate attack accuracy of 0.02 on
average and an effectively insignificant change in the victim model performance. Using
this method, 19% of class-based sub-datasets were made more secure, and only 1% were
more vulnerable.

We concluded that manifold theory-based feature reduction provided improved results
over correlation-based feature reduction due to the perturbing effects resulting from the
consolidation of the feature set into a lower dimension as well as the potential densification
and increased uniformity of in-class observational distances due to the re-mapping of labels
to this new, reduced feature set. CTGAN oversampling’s increased success over NearMiss
version two undersampling was attributed to the increase in fortifying observations in
contrast to a general reduction in majority class size, as well as through an increase in the
entropy of affected features and classes through the increase of observations.

This work provides data owners with the ability to classify their datasets’ vulnerability
to disparate membership inference attacks. In addition, this provides an understanding
of this vulnerability and provides exploratory mitigation methods. Most notably, this is
the first work to exclusively study dataset vulnerability to these attacks as opposed to
model vulnerability. Through this effort, additional investigations, such as the in-class
uniformity of observational distance and binary vs. continuous feature contributions to
vulnerability were provided for a broader understanding of membership inference attacks.
Future development efforts should be focused on understanding how hardening at the
class level affects hardening at the macro level, as well as deeper investigations into other
hardening methods, which may provide even better results.

Author Contributions: Conceptualization, H.D.M.; methodology, H.D.M.; software, H.D.M. and
A.S.; validation, H.D.M., A.S. and W.S.; formal analysis, H.D.M.; investigation, H.D.M.; resources,
H.D.M. and W.S.; data curation, H.D.M. and A.S.; writing—original draft preparation, H.D.M.;
writing—review and editing, H.D.M., A.S. and W.S.; visualization, H.D.M.; supervision, H.D.M. and
W.S.; project administration, H.D.M. and W.S.; funding acquisition, H.D.M. and W.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://zenodo.org/badge/latestdoi/577513463, accessed on 5 Octo-
ber 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Table A1. Dataset feature definitions. Features that were applied to both the macro and class-based
subsets are defined with “(Macro and Disparate)”. Those without this designation were applied only
to the macro dataset.

Feature Description

Number of Observations (Macro and
Disparate) The quantity of observations within the original dataset.

Class Entropy Entropy as defined through the number of observations in each class.

Number of Classes The number of classes.

Number of Features The number of features in the original dataset.

Number of Features After One Hot
Encoding

The number of features after the dataset has been processed using one-hot encoding on
categorical features.

Proportion of Categorical Features The proportion of categorical features in respect to the original number of features.

Proportion of Binary Features The proportion of binary features in respect to the original number of features.

https://zenodo.org/badge/latestdoi/577513463
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Table A1. Cont.

Feature Description

Proportion of Numerical Features The proportion of numerical features in respect to the original number of features.

Variance of the Entropy of Features
(Macro and Disparate) An entropy is calculated for each feature. This is the variance of that array.

Maximum of the Entropy of Features
(Macro and Disparate) An entropy is calculated for each feature. This is the maximum value of that array.

Minimum of the Entropy of Features
(Macro and Disparate) An entropy is calculated for each feature. This is the minimum value of that array.

Mean of the Entropy of Features (Macro
and Disparate) An entropy is calculated for each feature. This is the mean of that array.

Maximum of the Numerical Feature
Range (Macro and Disparate) The maximum range of values of the numerical features.

Minimum of the Numerical Feature
Range (Macro and Disparate) The minimum range of values of the numerical features.

Global Maximum of the Numerical
Feature Range (Macro and Disparate)

The global maximum range of values of the numerical features as defined by the largest
numerical value minus the smallest numerical value across all numerical features.

Global Minimum of the Numerical
Feature Range (Macro and Disparate)

The global minimum range of values of the numerical features as defined by the smallest,
upper numerical value minus the largest, lower numerical value across all numerical

feature ranges.

Mean of Mean Label Distances The distances of observations within each label were calculated using cityblock distances
and then averaged within that label. This feature is the mean of those averages.

Variance of Mean Label Distances The distances of observations within each label were calculated using cityblock distances
and then averaged within that label. This feature is the variance of those averages.

Mean of Mean Label Minimum
Distances

The distances of observations within each label were calculated using cityblock distances.
This feature is the mean of the minimum of distances for each label.

Variance of Mean Label Minimum
Distances

The distances of observations within each label were calculated using cityblock distances.
This feature is the variance of the minimum of distances for each label.

Mean of Mean Label Maximum
Distances

The distances of observations within each label were calculated using cityblock distances.
This feature is the mean of the maximum of distances for each label.

Variance of Mean Label Maximum
Distances

The distances of observations within each label were calculated using cityblock distances.
This feature is the variance of the maximum of distances for each label.

Mean of Feature–Feature Correlation
(Macro and Disparate) This feature is the mean of feature to feature correlation values.

Maximum of Feature–Feature
Correlation (Macro and Disparate) This feature is the maximum value of feature to feature correlation values.

Minimum of Feature–Feature
Correlation (Macro and Disparate) This feature is the minimum value of feature to feature correlation values.

Mean of Variance of Feature–Feature
Correlation (Macro and Disparate) This feature is the mean of the variance of feature to feature correlation values.

Variance of the Mean of
Feature–Feature Correlation (Macro

and Disparate)
This feature is the variance of the means of feature to feature correlation values.

Number of PCAs Required to Explain
75% Variance

The number of principal components required to explain 75% of the variance of the
dataset.

Cond num 2norm (Macro and
Disparate) Condition number of 2-norm.

Width Ratio (Macro and Disparate) The ratio of the number of observations of the original dataset to the number of features
of the original dataset.
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Table A1. Cont.

Feature Description

Width Ratio of One Hot Encoding
(Macro and Disparate)

The number of observations of the original dataset to the number of features after
one-hot encoding the categorical variables.

Maximum Number of Categories
(Macro and Disparate)

The maximum number of categories that any categorical feature in the original dataset
contained.

Minimum Number of Categories
(Macro and Disparate)

The minimum number of categories that any categorical feature in the original dataset
contained.

Mean Number of Categories (Macro
and Disparate) The average number of categories for each categorical feature in the original dataset.

Variance of Number of Categories
(Macro and Disparate)

The variance of the number of categories for each categorical feature in the original
dataset.

Mean Feature–Feature Correlation
Grouped by Label The mean of the feature to feature correlation when grouped by label.

Maximum Feature–Feature Correlation
Grouped by Label The maximum of the feature to feature correlation when grouped by label.

Minimum Feature–Feature Correlation
Grouped by Label The minimum of the feature to feature correlation when grouped by label.

Mean of the Variance of
Feature–Feature Correlation Grouped

by Label
The average of the variance of feature to feature correlations when grouped by label.

Variance of the Means of
Feature–Feature Correlation Grouped

by Label
The variance of the means of the feature to feature correlations when grouped by label.

Canonical Correlation (Macro and
Disparate) Canonical correlation.

Maximum Feature Skewness (Macro
and Disparate) The maximum skewness of the features in the dataset.

Minimum Feature Skewness (Macro
and Disparate) The minimum skewness of the features in the dataset.

Mean Feature Skewness (Macro and
Disparate) The mean skewness of the features in the dataset.

Variance Feature Skewness (Macro and
Disparate) The variance skewness of the features in the dataset.

Maximum Feature Kurtosis (Macro and
Disparate) The maximum kurtosis of the features in the dataset.

Minimum Feature Kurtosis (Macro and
Disparate) The minimum kurtosis of the features in the dataset.

Mean Feature Kurtosis (Macro and
Disparate) The mean kurtosis of the features in the dataset.

Variance Feature Kurtosis (Macro and
Disparate) The variance kurtosis of the features in the dataset.

Standard Deviation Ratio of Features
(Macro and Disparate)

The geometric mean ratio of standard deviations of the individual populations to the
pooled standard deviation.

Maximum Standard Deviation Ratio of
Features by Label

The maximum of the standard deviation ratios of features as described above but
grouped by label.

Minimum Standard Deviation Ratio of
Features by Label

The minimum of the standard deviation ratios of features as described above but
grouped by label.
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Table A1. Cont.

Feature Description

Mean of the Standard Deviation Ratio
of Features by Label

The mean of the standard deviation ratios of features as described above but grouped by
label.

Variance of the Standard Deviation
Ratio of Features by Label

The variance of the standard deviation ratios of features as described above but grouped
by label.

Mean Mutual Information of Features
(Macro and Disparate) The mean mutual information of features.

Maximum Mutual Information of
Features (Macro and Disparate) The maximum mutual information of features.

Minimum Mutual Information of
Features (Macro and Disparate) The minimum mutual information of features.

Variance of the Mutual Information of
Features (Macro and Disparate) The variance of the mutual information of features.

Mean Mutual Information of Features
Grouped by Label The mean mutual information of features grouped by label.

Maximum Mutual Information of
Features Grouped by Label The maximum mutual information of features grouped by label.

Minimum Mutual Information of
Features Grouped by Label The minimum mutual information of features grouped by label.

Variance of the Mutual Information of
Features Grouped by Label The variance of the mutual information of features grouped by label.

Equivalent Number of Attributes Entropy of class divided by the mean mutual information of class and attributes.
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