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Abstract: Tsunami hazard analysis is an essential step for designing buildings and infrastructure
and for safeguarding people and assets in coastal areas. Coastal communities on Vancouver Island
are under threat from the Cascadia megathrust earthquakes and tsunamis. Due to the deterministic
nature of current megathrust earthquake scenarios, probabilistic tsunami hazard analysis has not been
conducted for the coast of Vancouver Island. To address this research gap, this study presents a new
probabilistic tsunami hazard model for Vancouver Island from the Cascadia megathrust subduction
events. To account for uncertainties of the possible rupture scenarios more comprehensively, time-
dependent earthquake occurrence modeling and stochastic rupture modeling are integrated. The
time-dependent earthquake model can capture a multi-modal distribution of inter-arrival time data
on the Cascadia megathrust events. On the other hand, the stochastic rupture model can consider
variable fault geometry, position, and earthquake slip distribution within the subduction zone.
The results indicate that the consideration of different inter-arrival time distributions can result in
noticeable differences in terms of site-specific tsunami hazard curves and uniform tsunami hazard
curves at different return period levels. At present, the use of the one-component renewal model
tends to overestimate the tsunami hazard values compared to the three-component Gaussian mixture
model. With the increase in the elapsed time since the last event and the duration of tsunami hazard
assessment, the differences tend to be smaller. Inspecting the regional variability of the tsunami
hazards, specific segments of the Vancouver Island coast are likely to experience higher tsunami
hazards due to the directed tsunami waves from the main subduction zone and due to the local
underwater topography.

Keywords: probabilistic tsunami hazard analysis; stochastic rupture models; time-dependent
earthquake occurrence; Cascadia subduction zone; Vancouver Island

1. Introduction

In the Pacific Northwest, the Cascadia subduction zone is widely recognized as a high-
potential source for megathrust subduction earthquakes and tsunamis [1]. The driving
mechanism is the subduction of the Juan de Fuca, Gorda, and Explorer Plates underneath
the North American Plate, and the subduction zone spans from Vancouver Island to
northern California. The most recent historical event occurred in January 1700, with an
estimated moment magnitude (M) of 9 [2]. Since the identification of this potential source,
various geological and geophysical pieces of evidence have been collected to characterize
the recurrence and rupture patterns of the Cascadia megathrust events [3-6]. Coastal
communities in the Pacific Northwest require reliable earthquake and tsunami hazard
assessments to enhance disaster preparedness and resilience [7].

Focusing upon Vancouver Island of British Columbia, Canada, several studies have
been conducted to quantify the potential tsunami hazards due to the Cascadia megath-
rust events [8-11]. A recent study by [12] considered three rupture types of the Cascadia
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megathrust events, i.e., buried rupture, splay-fault rupture, and trench-breaching rupture,
to evaluate the tsunami hazards for coastal locations around Vancouver Island. On the other
hand, five tsunami scenarios that were developed by [13], having earthquake magnitudes
between 8.7 and 9.3, were considered by [14] to evaluate tsunami hazards. The above-
mentioned studies for Vancouver Island are scenario-based (deterministic) tsunami hazard
assessments, lacking the consideration of a variety of possible earthquake rupture scenarios
and their corresponding occurrence probabilities. To address this limitation, a comprehen-
sive set of 5000 stochastic rupture models having the moment magnitudes between 8.1 and
9.1 (i.e., 500 models per 0.1 magnitude bin) was developed by [15], considering different
rupture patterns for the Cascadia subduction earthquakes.

The next logical step for quantifying regional tsunami hazards on Vancouver Island
is to conduct probabilistic tsunami hazard analysis (PTHA), which typically requires an
earthquake occurrence model, earthquake rupture model, tsunami propagation model, and
logic tree model for epistemic uncertain models and parameters [16,17]. To date, PTHA
investigations for Vancouver Island have been hindered by the scenario-based nature of the
existing tsunami hazard studies. The deficiency is that earthquake occurrence modeling
of the Cascadia megathrust events has not been integrated with scenario-based tsunami
hazard assessments. Thereby, the probabilities of earthquake occurrence are not assigned to
these scenarios directly. To characterize earthquake occurrence of the Cascadia megathrust
events, earthquake histories can be constructed from onshore subsidence records [3] and
offshore marine turbidite records [6]. On average, full rupture of the Cascadia subduction
zone is expected to occur every 530 years (19 events over 10,000 years), although notable
clustering patterns and seismic gaps have been recognized in the geological history data [6].
Therefore, a time-dependent earthquake occurrence model, such as the Brownian Passage
Time distribution [18] and Weibull distribution [19], may be more suitable for the Cascadia
megathrust events. Regarding the use of geological earthquake event data, proper treatment
of uncertainty of these data is necessary as the event dates are often estimated through
radiocarbon analyses of sediment samples and geological cores [20,21].

This study presents regional PTHA of Vancouver Island due to the Cascadia megath-
rust ruptures as a novel contribution to the literature. The PTHA approach is based on
time-dependent earthquake occurrence modeling [22] and stochastic rupture modeling [15].
This is the first PTHA study for the Canadian coast of the Cascadia region with com-
prehensive consideration of numerous potential seismic tsunami sources and constitutes
an important step towards fully probabilistic tsunami hazard and risk assessments for
coastal communities on Vancouver Island. The earthquake occurrence model considers
a standard renewal process by characterizing the inter-arrival time between successive
events using the Weibull distribution in comparison with the time-independent Poisson
model. Moreover, by accounting for the uncertainty of the geological data and inaccuracy
of dating techniques, Monte Carlo resampling is implemented to determine the sampling
distribution of the inter-arrival time for the Cascadia megathrust events [21]. Subsequently,
a three-component Gaussian mixture distribution is used to characterize the resampled data.
For the earthquake rupture model, stochastic source modeling is adopted. Considering
the full-margin ruptures of the Cascadia subduction zone (which extends to the northern
segment), 2000 stochastic rupture models having the moment magnitudes between 8.7
and 9.1 are employed, and tsunami propagation simulations are conducted at the regional
scale. The focus on the full-margin rupture scenarios is justified because tsunamis caused
by central and southern margins of the Cascadia subduction zone (but not extending to
the northern segment) are unlikely to generate significant tsunamis along the Canadian
coast due to their tsunami radiation patterns [15]. The stochastic rupture models account
for variable fault rupture geometry (e.g., length, width, and position) and heterogenous
earthquake slip distributions. By taking the maximum wave amplitude as a tsunami inten-
sity measure, PTHA results are presented as tsunami hazard curves for specific locations
and as uniform tsunami hazard profiles for nearshore locations along Vancouver Island. By
considering several variations of the earthquake occurrence model (e.g., inter-arrival time
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distribution and magnitude distribution), sensitivity analysis is carried out to identify the
influential models and parameters on PTHA results and to discuss the implications of these
model assumptions. Section 2 introduces the tectonic characteristics of the Cascadia sub-
duction region and the geological data on the full-margin megathrust ruptures. Section 3
presents a probabilistic tsunami hazard model for the Cascadia megathrust ruptures and
explains its components, including the earthquake occurrence model, stochastic tsunami
simulations, and computational procedures. Section 4 discusses regional tsunami hazard
assessment results for coastal locations along the Vancouver Island coast, followed by the
main conclusions of this study (Section 5).

2. Cascadia Subduction Zone
2.1. Tectonic Characteristics

The Cascadia subduction zone is one of the major sources of seismic and tsunami
hazards for the Pacific coast of British Columbia, Canada. The Cascadia zone involves
the eastward subduction of the oceanic plates beneath the continental plate. The oceanic
plates move northeast with respect to the continental plate with relative velocities of
30 to 40 mm/year [23] (Figure 1a). The active crustal process of the Cascadia region exhibits
gradual inter-seismic uplift and sudden coseismic subsidence along the Northwest coast.

(b)

50 mm/year
~
~ \ 50°N
Juan de’Fuca \
Plate ‘l North )
American |  Relative
= Plate ~ plate
Blanco . motion 49°N - P1: Yuquot
fracture ™~ & e P2: Tofino
£ON8 9 | P3: Ucluelet
3 P4: Bamfield
”

Pacific Plate

519N -

Y Relative plate
motion vector

P5: Port Renfrew
P6: Metchosin

O Offshore locations

Mendocino 48°N
fracture

zone
s

L L L L

130°W 128°W 126°W 124°W 122°W

128°W  127°W  126°W  125°W  124°W  123°W  122°W

Figure 1. (a) Relative plate motion vectors of the Juan de Fuca, Gorda, and Explorer Plates with
respect to the North American Plate in the Cascadia subduction zone. The relative plate motion
between the oceanic and continental plates is based on [23]. (b) Locations of the wave recording sites
along the Vancouver Island coast.

Evidence of earthquake-induced subsidence includes hollowed tree trunks in tidal
marshes and tree rings exhibiting sudden death [3]. Collecting evidence of coseismic
subsidence along the Cascadia coast is useful for constraining the spatial extent of the
fault rupture and helps estimate the magnitudes of past megathrust earthquakes (i.e.,
rupture length and earthquake magnitude are correlated). Tsunami deposits preserved in
environments that do not typically have considerable sedimental inflow can be used to
estimate tsunami run-ups from past events.

Moreover, the earthquake slip of the rupture zone can be inferred from historical
tsunami heights. Fault slip can be constrained using the coseismic vertical displacements
observed in past events. The last significant earthquake along the Cascadia subduction zone
occurred in 1700 with M9 [2,3], which ruptured the entire subduction margin. Evidence for
the 1700 tsunami comes in the form of First Nation’s myths in North America and written
documents that recorded the damage and flooding in Japan. The sedimentary records of
this event can be seen in the form of turbidity deposits, buried soils, and marsh data [3,6].
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The ground subsidence observations for the 1700 event and the pre-1700 events are shown
in Figure 2 [24].
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Figure 2. Ground subsidence observations based on various previous studies [24]: (a) 1700 event and
(b) pre-1700 events.

2.2. Earthquake History Data Based on Offshore Turbidite Records

The Cascadia subduction region extends from Vancouver Island to Mendocino fracture
zone (Figure 1a). Synchronously triggered turbidity deposits along the continental margin,
where multiple submarine channel-canyon systems are distributed, provide a recurrence
history of past megathrust events over the latest 10,000 years [6]. During major storms,
earthquakes, and tsunamis, turbidity currents can be triggered by river-carried sandy and
silty sediments sliding down the continental shelf. From branching tributaries, turbidity
currents merge into the main channel and form a large turbidite. By contrast, small-to-
moderate storms and far-field tsunamis are unlikely to induce synchronized turbidity
currents along the entire continental margin of the Cascadia subduction zone.

To develop a catalog of megathrust subduction earthquakes in Cascadia, Goldfinger
et al. [6] carried out extensive coring surveys spanning the entire margin of the Casca-
dia subduction zone and analyzed collected samples using marine radiocarbon dating
and stratigraphic correlation techniques. Due to the synchronous occurrence of turbidite
currents along the northern half of the Cascadia coast, the northern Cascadia events are
best explained by paleo-seismic events, and corresponding paleo-seismic events can be
found in the southern half of the Cascadia coast (i.e., these were full-margin Cascadia
events). For the southern Cascadia subduction zone, most of the turbidite samples are
well-corresponded and correlated with the spatial extent of shorter onshore paleo-seismic
records, while there are uncorrelated turbidites that were likely to be depositional products
after smaller earthquakes, local storms, or far-field tsunamis. The northern portion of the
Cascadia subduction zone ruptured less frequently with recurrence periods of 500 to 530
years and has a strong spatial correlation with the southern half (determined based on the
estimated radiocarbon dates of different geological cores along the subduction margin),
thus leading to a synchronized full or near-full rupture which could result in M9-class
megathrust events. The southern portion of the Cascadia subduction zone, in addition to
the whole-region ruptures, experienced additional smaller earthquakes (M8-class events)
according to the turbidite records with recurrence periods of 240 to 320 years. Nineteen
well-dated turbidite events were identified and were thought to be triggered by the north-
ern (i.e., full or near full margin) Cascadia ruptures (denoted by T1 to T18 plus T17a that
was considered as a separate full-margin rupture from T17) [6]. Note that T1 corresponds to
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the most recent 1700 event, whereas T18 corresponds to the oldest event in 9795 calibrated
years before the present.

2.3. Resampled Turbidite-Based Earthquake History Data
Kulkarni et al. [21] adopted the full-margin rupture data by [6] to develop an earthquake
clustering model for the Cascadia subduction zone, and the data are shown in Figure 3a.
The data consist of 83 turbidite ages for the 19 events (i.e., T1 to T18, including T2 and
T17a). Different events have different numbers of age data (for instance, T3 has eight age
data). Each of the turbidite pieces of data comes with three age estimates, i.e., best, +2 sigma
bound, and —2 sigma bound. The probability distribution of the individual age data can
be represented by the triangular distribution with the best estimate as the mode and the
two-sigma bounds as the upper and lower limits [21]. Kulkarni et al. [21] observed several
gaps between subsequent full-rupture events and were motivated to develop an earthquake
occurrence model that distinguishes inter-cluster data and gap data using a hierarchical
clustering method. Among the 19 turbidite events, T2 was eventually excluded from the
analysis because this event was not consistently recorded in buried soil/marsh data on land,
implying that T2 might have been caused by non-seismic sources. After excluding T2 from
the dataset, they obtained the 17 inter-arrival time data from the 18 age data.
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Figure 3. (a) Cascadia age data by [6]. (b) Histogram of the inter-arrival time data from

5000 resampled earthquake history data, following the same approach taken by [21]. The simu-
lated earthquake catalogs that contain negative inter-arrival times are excluded.

Due to nonnegligible uncertainty of the Cascadia age data from [6], Kulkarni et al. [21]
conducted 20 Monte Carlo resampling of the Cascadia age data and used it for their
hierarchical clustering analysis. The procedure of the resampling is summarized as follows:

1. Set the number of Monte Carlo resampling.

2. For each turbidite event, choose one of the pieces of data randomly with equal chance
(i.e., all listed data in [21] are regarded as equally reliable).

3. Sample the age of the turbidite data chosen in Step 2 from the triangle distribution,
which is determined by the best and +/— 2 sigma bounds.

4. Repeat Steps 2 and 3 for all turbidite data (i.e., T1 to T18). The inter-arrival time data
can be obtained for each catalog.

5. Repeat Steps 2 to 4 for the resampling number specified in Step 1.

Because the radiocarbon-dated ages involve large uncertainty and some of the adja-
cent turbidite events are only separated by a few hundred years, the above-mentioned
resampling procedure can result in the reversed order of the simulated events. When the
simulated Cascadia age catalog has negative inter-arrival time data, the simulated trial
is discarded. Note that in [21], simulated Cascadia age catalogs that have inter-arrival
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time data longer than 100 years only were considered because the shortest inter-arrival
time in the original Cascadia age catalog was about 100 years (Figure 3a). This resampling
method results in a high rejection rate of the simulated catalogs (approximately 62% of the
simulated catalogs are abandoned). Since the threshold of 100 years is arbitrary, and this
high rejection rate could cause bias in statistical modeling, all positive inter-arrival time
data are adopted instead of data being greater than 100 years. In this case, the rejection rate
is approximately 20%. The considerations of a larger resampling size (=5000) and a less sub-
jective rejection criterion of the simulated turbidite age data lead to robust characteristics
of the simulated Cascadia event time data.

Figure 3b shows a histogram of the Cascadia inter-arrival time distribution from
5000 resampling simulations. Each simulated catalog consists of 18 events, and 17 inter-
arrival time data can be calculated. The simulated inter-arrival time data exhibit heavy
tails on both upper and lower ends, compared with the normal distribution. The longer
inter-arrival time data are associated with long gaps, whereas the shorter inter-arrival time
data are related to short-time clustering. Figure 3b shows the right skewness of the inter-
arrival time data, which is influenced by the long gaps between clustered sets of events.
The mean and standard deviation of the simulated inter-arrival time data are 561 years
and 272 years, respectively, and thus the coefficient of variation is calculated as 0.485. The
resampled inter-arrival time data can be used to determine the goodness-of-the-fit for
different earthquake occurrence models (Section 3.1).

3. Probabilistic Tsunami Hazard Model for the Cascadia Subduction Earthquakes

Tsunami hazard analysis is an essential step for designing buildings and infrastructure
and for safeguarding people and assets in coastal areas. It determines relevant tsunami
intensity measures at a nearshore location that need to be considered for calculating tsunami
loads acting on coastal structures. In the last two decades, probabilistic methods have been
introduced in tsunami structural design codes and guidelines as alternatives to conventional
deterministic methods. The necessity of probabilistic approaches was motivated by the
catastrophic tsunami events in the Indian Ocean and Japan. Historical data alone were
not sufficient to define possible extreme scenarios, such as the 2004 and 2011 tsunami
events [25]. Instead, PTHA offers a systematic way to consider uncertainties associated
with tsunami sources, occurrence probability, tsunami generation, wave propagation, and
inundation of land areas. It is essential to recognize that PTHA is not a solution, instead, it is
a framework to be explicit about what we know and do not know. PTHA also incorporates
uncertainties related to tsunami hazard assessments transparently, and sensitivity analysis
can be performed to examine the influence of adopted assumptions.

Figure 4 depicts a general computational flow of PTHA, and its main model compo-
nents are explained in the following. The methodology is implemented in Monte Carlo
simulations, thereby numerous stochastic event catalogs are generated. The PTHA model
only considers the full-margin rupture pattern of the Cascadia subduction zone because
the southern-margin and central-margin rupture patterns generate significantly smaller
tsunamis along the Canadian coast due to the directivity of the generated waves [15]. Ignor-
ing the southern-margin and central-margin rupture cases results in the underestimation of
tsunami hazard. However, the extent of the underestimation is relatively small due to the
above-mentioned radiation characteristics of tsunami waves. The earthquake recurrence is
based on a time-dependent renewal process [22] and can incorporate the elapsed time since
the last event in defining the probability distribution of the inter-arrival time for the first
event in each stochastic event catalog (Section 3.1). The magnitude model also needs to be
specified (Section 3.2). For the earthquake source modeling, the adopted approach is based
on stochastic rupture models for the Cascadia megathrust events [15]. The consideration of
stochastic rupture models is advantageous to incorporate the uncertainty associated with
earthquake rupture processes in terms of fault plane geometry, fault plane position, and
heterogenous earthquake distribution (Section 3.3.1). The stochastic rupture approach is
capable of capturing the uncertainty of the earthquake rupture processes more widely than
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the conventional approaches that employ the uniform earthquake slip distribution together
with a logic tree model [26,27]. Subsequently, a tsunami propagation model for the Casca-
dia region is set up to simulate tsunami waves at various nearshore locations at shallow
depths (Section 3.3.2). Okada [28] equations and Tanioka and Satake [29] formulae are
then used to compute the ground displacements due to a fault rupture, whereas nonlinear
shallow water equations are solved using the finite-difference method [30]. In Section 3.4,
the computational aspects of integrating different model components are explained.
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- Kinematic rupture - Nonlinear shallow water - Sensitivity analysis
equations

Figure 4. Computational steps for probabilistic tsunami hazard analysis.

3.1. Earthquake Occurrence Model
3.1.1. One-Component Renewal Model

A renewal process offers a flexible mathematical method for characterizing the earth-
quake recurrence from major subduction zones. The process is characterized by the inter-
arrival time distribution and the elapsed time since the last event. By adopting differ-
ent inter-arrival time distributions, variable recurrence behavior can be introduced into
PTHA [22]. For the simplest case, the exponential distribution can be adopted for modeling
the inter-arrival times between successive events, noting that the model parameter is the
mean recurrence period. For the case of the exponential distribution, the hazard rate
function, which describes the rate of earthquake occurrence for a given time by reflect-
ing the effect of the elapsed time since the last event, becomes constant, representing a
memory-less property of the time-independent Poisson process. More common types for
the inter-arrival time distribution of major earthquakes include the normal distribution,
lognormal distribution, Brownian Passage Time distribution [18], and Weibull distribu-
tion [19]. These one-component renewal models typically have two model parameters to
define the inter-arrival time distribution function: Mean recurrence period and coefficient
of variation. When the coefficient of variation is relatively small (e.g., less than 0.5), the
renewal model exhibits quasi-periodic recurrence characteristics of the major events.

To illustrate a standard one-component renewal model, in Figure 5a, the fitted inter-
arrival time models for the normal and Weibull distributions are compared with the
histogram of the resampled inter-arrival time data for the Cascadia megathrust events
(Section 2.3). The Weibull distribution is selected because it is the most preferred one-
component renewal model among those tested according to the computed values of the
Akaike Information Criterion (AIC):

AIC = 2N, —2InL 1)
where N, is the number of model parameters, and InL is the loglikelihood value of the
model. The model fitting is carried out using the maximum likelihood method, and for
the same data, a model with a smaller AIC value is superior. Due to the unsymmetrical
characteristics of the resampled inter-arrival time data, the fit of the normal distribution is
not particularly good. The Weibull distribution fits better with the resampled inter-arrival
time data, but there are still notable misfits at the modal peak (underestimation) and
both sides of the peak (overestimation). Although the exponential distribution (i.e., time-
independent Poisson process, see the red line in Figure 5a) is simple and popular, the
shape of the distribution is not adequate to capture the characteristics of the resampled
inter-arrival time data.
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3.1.2. Gaussian Mixture Model

To improve the fit of the analytical function to the resampled inter-arrival time data, a
Gaussian mixture model is considered, comprising multiple Gaussian components. The
Gaussian mixture model for K components can be expressed by:

F0) = Y N (2l ) @)

where 71} is the mixing proportion of the k-th component and its summation over all K
components equals 1. The k-th mixing proportion represents the probability of observing
data that come from the k-th Gaussian component. N (x|, 2x) is the Gaussian density
function of the k-th component and is given by:

1 1
Nl ) = o sapre s o3 B ) ) ®

For the D-dimensional data, y and Xy, are the mean vector and covariance matrix of
the k-th component. In this study, D = 1 since only a single variable is concerned, and the
notation for the covariance X in Equations (2) and (3) can be replaced with o}2.
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The parameters of the Gaussian mixture model can be estimated using the Expectation-
Maximization (EM) algorithm [31]. The EM algorithm attempts to maximize the loglikeli-
hood function of the Gaussian mixture model for given data in two steps with iterations.
For the specified value of K, initial values for component means, covariance matrices, and
mixing proportions are generated through a k-means++ technique. In the Expectation
step, the algorithm computes posterior probabilities of component memberships for each
data point. Subsequently, in the Maximization step, with the component membership
posterior probabilities, component means, covariance matrices, and mixing proportions
are estimated based on the maximum likelihood method. The Expectation-Maximization
steps are iterated until the convergence is achieved. Since the success of the EM algorithm
depends on the data complexity and initial values and the solution may converge to a local
minimum, multiple runs of the EM algorithm are made, and the results with the highest
loglikelihood value are adopted as the final estimate.

In this study, the Gaussian mixture model is fitted to the simulated inter-arrival time
data by considering K = 3. Note that K = 1 corresponds to the one-component normal
distribution case shown in Figure 5a. The Gaussian mixture model with K = 3 is superior to
that with K = 2 according to the AIC values (AIC = 1,185,057 versus 1,186,767). The results
of the three-component Gaussian mixture model fit are shown in Figure 5b. The three
components correspond to clusters with mean recurrence periods of 503, 905, and 117 years
and standard deviations of 139, 224, and 95 years. The second component corresponds to
the long gaps with a mixing proportion of 0.24, whereas the third component corresponds
to the short-term clustering with a mixing proportion of 0.114 (Figure 5b). Overall, the
three-component Gaussian mixture model captures the resampled inter-arrival time data
well (as also revealed in the AIC value).

To apply the developed three-component Gaussian mixture model as the inter-arrival
time distribution in time-dependent PTHA, the elapsed time since the last event needs to
be taken into account. For this purpose, the mixing proportions of the three components
are updated. More specifically, the probability that the inter-arrival time is longer than
the elapsed time is calculated for each component, and then multiply this probability
by the original mixing proportion of the component. Once the same calculations are
performed for all three components, the updated mixing proportions are computed by
normalizing these quantities to 1.0. For the elapsed time Ty of 323 years, the updated
three-component Gaussian mixture model is shown in Figure 5c. The updated mixing
proportions are indicated inside the brackets in the figure legend. At the present time,
the relative likelihood of the third component (i.e., short-term clustering) is very small
compared to the other two components.

3.2. Earthquake Magnitude Model

The earthquake magnitude distribution is important for tsunami hazard assessments.
The magnitudes of the Cascadia subduction events are primarily dependent on the rupture
patterns and corresponding rupture areas (i.e., segmented versus whole ruptures). In
this study, two magnitude models are considered. The first one is the Gutenberg—Richter
model with a b-value of 1. The second one is based on the characteristic magnitude model
with a uniform distribution (for the characteristic portion only). The above-mentioned
two magnitude models can be considered as two end-member models for the magnitude
distribution. Since the whole rupture scenarios are concerned, the minimum and maximum
magnitudes are set to 8.7 and 9.1 for both magnitude models. The occurrence probabilities
of the full-margin megathrust Cascadia events are controlled by the earthquake occurrence
models (Sections 3.1.1 and 3.1.2). The two magnitude models are shown in Figure 6, noting
that the magnitude range is discretized into four bins with 0.1 magnitude width. The
characteristic uniform magnitude model assigns larger weights to the M9.0-9.1 bin. Hence,
the tsunami hazard is expected to be greater when the characteristic uniform magnitude
model is adopted instead of the Gutenberg—Richter model.
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Figure 6. (a) Conditional magnitude probability distribution based on the Gutenberg—Richter rela-
tionship with b = 1. (b) Conditional magnitude probability distribution based on the characteristic
uniform model.

3.3. Stochastic Tsunami Simulations

To consider a wide range of possible earthquake rupture scenarios and patterns for
the Cascadia megathrust earthquakes and to quantify the uncertainty of tsunami hazard
estimates for the Canadian coast, stochastic rupture models for the full-margin megathrust
Cascadia events are generated [15]. The number of synthesized stochastic rupture models
is 2000, and they have earthquake magnitudes between 8.7 and 9.1. The stochastic tsunami
simulations involve a sequence of modeling and numerical analyses: (i) Selection of a
fault plane model, (ii) use of statistical scaling relationships for earthquake source param-
eters, (iii) random earthquake slip generation, (iv) ground displacement estimation, and
(v) tsunami inundation simulation. In this section, key features of the stochastic rupture
models for the Cascadia megathrust earthquakes are described. Full details of the source
models can be found in [15]. Figure 7 illustrates the main computational steps of stochastic
tsunami hazard simulations for the Cascadia megathrust earthquakes.

3.3.1. Stochastic Source Models

The fault plane geometry for the Cascadia megathrust earthquakes is based on the
Slab2 model [32]. It represents a complex curved feature of the Cascadia megathrust
interface with variable strike and dip angles. This fault plane is approximated by a set
of 7452 sub-faults, reaching depths of 30 km and each having a size of 5.6 km along the
strike and 3.8 km along the dip direction (Figure 7a). Because the stochastic source method
primarily works with a rectangular 2D surface, the irregular 3D sub-faults are mapped to
an overall 2D fault plane, consisting of 201 x 51 sub-fault cells. Since some portions of the
2D sub-faults are not associated with the 3D sub-faults, these unmatched sub-faults are
masked when generating 2D stochastic source models. This mapping process is illustrated
in Figure 7a.

To synthesize an earthquake slip distribution over the 2D sub-faults, a scenario magni-
tude is specified within a 0.1 magnitude bin [15], and a magnitude value is sampled from
the uniform distribution. For the simulated magnitude value, eight earthquake source
parameters, i.e., fault length L, fault width W, mean slip D,, maximum slip Dy, Box-Cox
parameter Apc, along-strike correlation length CLy,, along-dip correlation length CLy, and
Hurst number H, are generated from the statistical scaling relationships by [33]. These
parameters are represented by the multi-variate lognormal distribution with a correlation
structure. In this step, several checks of the sampled source parameters are carried out
by ensuring that the ratios of correlation lengths to fault dimensions are consistent with
empirical ranges of 0.15-0.6 for the strike direction and 0.15-0.45 for the dip direction.
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Eventually, the simulated values of L, W, and D, must fall within the target magnitude
range. Figure 7b shows the simulated fault area (i.e., L X W) and mean slip D, for 5000
stochastic source models having moment magnitudes between 8.1 and 9.1 [15]. Once a
suitable fault geometry is determined, the fault plane is placed randomly within the overall
fault plane (i.e., 201-by-51 rectangular matrix).
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Figure 7. Stochastic tsunami simulations for the Cascadia megathrust earthquakes: (a) fault model,
(b) scaling relationships for earthquake source parameters, and (c) stochastic rupture model and
tsunami simulations.

For a given fault plane geometry, a heterogeneous earthquake slip distribution is
synthesized. A candidate slip distribution is first simulated from an anisotropic 2D von
Karman wavenumber spectrum with its amplitude spectrum being parametrized by the
three parameters CL;, CLy, and H and its phase being randomly distributed between 0 and
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27 [34]. The simulated slip distribution is modified via Box-Cox power transformation
to achieve a desirable right-skewed feature of the marginal slip distribution [33]. At this
stage, the edge tapers are implemented on the northern, southern, and eastern boundaries
of the stochastic earthquake source models to avoid abrupt changes in the earthquake
slip values near the along-dip edges of the fault model. Subsequently, slip values of
the sub-faults that are within the masked sub-faults are set to zero, and all eligible slip
values are scaled to match the mean slip. To ensure that the simulated earthquake slip
distribution has realistic characteristics for the target Cascadia megathrust earthquakes,
several constraints on the simulated slip distribution are implemented. For instance, an
asperity zone (i.e., earthquake slip concentration within the specified area of the fault plane)
is defined by reflecting different rupture patterns identified in the paleo-seismic data [6].
Major asperities are also constrained to occur in the shallow part of the subduction interface
to broadly coincide with the outer wedge of the accretionary prism. When the candidate slip
distribution does not meet all criteria, this realization is discarded, and another earthquake
rupture model is generated. This process is repeated until an acceptable model is obtained.

Finally, by repeating the above-mentioned procedure for earthquake rupture mod-
eling 500 times for each of the ten magnitude bins between M8.1 and M9.1, a set of 5000
earthquake rupture models was generated [15]. Among these stochastic rupture models,
2000 models with earthquake magnitudes between M8.7 and M9.1 are used in this study.
Three realizations of the M8.9-9.0 scenario are shown in Figure 7c. Different stochastic
rupture models can exhibit variations in fault plane geometry, position within the overall
Cascadia megathrust fault plane, and earthquake slip distribution.

3.3.2. Tsunami Propagation Simulation

To effectively perform numerous tsunami simulations for different spatial domains
and at specified spatial resolutions, bathymetry and elevation data are merged to develop
nesting grid datasets. Deep water bathymetry data are collected from the GEBCO (Gen-
eral Bathymetric Chart of the Oceans) dataset (=450-m resolution), while shallow water
bathymetry data around Vancouver Island are obtained from the CHS (Canadian Hydro-
graphic Service) dataset (10-m resolution). For land areas, the CDEM (Canadian Digital
Elevation Model) data (~20-m resolution) are used. The merged bathymetry-elevation
data are then arranged into nested grid systems (810-m and 270-m). The vertical reference
datum is at the mean sea level.

For a given earthquake rupture model, a vertical dislocation profile of seawater due to
an earthquake rupture is computed using Okada [28] equations. To account for the effects
of horizontal movements of seafloor slopes on the vertical dislocation of seawater, a method
proposed by [29] is implemented, which is important for the ground deformation of the
outer wedge that has greater slope angles than other parts of the bathymetry in the Cascadia
subduction zone. To alleviate the abrupt changes of the vertical dislocation of seawater, a
spatial smoothing filter of 9-by-9 cells (810-m grids) is employed. The earthquake rupture
model is implemented as a kinematic source with variable rupture propagation velocity
and rise time. The rise time prediction model by [35] is adopted in this study. Moreover,
the effects of coseismic ground deformation are considered by adjusting the elevation data
prior to the tsunami simulation run.

The tsunami modeling is carried out using a well-tested TUNAMI code [30] that solves
the nonlinear shallow water equations using a leap-frog staggered-grid finite difference
scheme and is capable of generating offshore tsunami propagation and onshore run-up.
For all computational cells, the bottom friction and surface roughness are represented
by a uniform value of Manning’s coefficient equal to 0.025 m~1/3 s, which is often used
for agricultural land and ocean/water [36]. The run-up calculation is based on a moving
boundary approach [36], where a dry/wet condition of a computational cell is determined
based on total water depth relative to its elevation. Illustrations of three regional tsunami
simulations of the M8.9-9.0 scenario are shown in Figure 7c, exhibiting the significant
effects of the earthquake rupture characteristics on the generated tsunami waves. Each
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tsunami simulation is performed for a 3-h duration, which is sufficient to model the most
critical phase of tsunami waves for the Cascadia tsunami scenarios. The wave recording
locations are set up along the Vancouver Island coast (Figure 1b). The locations have
water depths of approximately 10 m. For these nearshore locations, the grid resolution
of 270 m is suitable, resulting in the required time-stepping interval of 1.0 s to satisfy the
Courant-Friedrichs-Lewy condition.

3.4. Computational Procedure

PTHA is carried out based on Monte Carlo simulations, and this procedure is graphi-
cally shown in Figure 8. The three main components of PTHA are the earthquake occurrence
model (Section 3.1), the magnitude model (Section 3.2), and the stochastic tsunami simu-
lations (Section 3.3). In the earthquake occurrence model (Figure 8a), simulations of the
first event and the subsequent events need to be distinguished to account for the effects
of the elapsed time since the last major event Tg. In the magnitude model (Figure 8b),
different magnitude distributions can be considered. In the stochastic tsunami simulations
(Figure 8c), the conditional probability distributions of the maximum tsunami wave am-
plitude at a site of interest can be derived by analyzing the tsunami simulation results for
all stochastic rupture models corresponding to the discretized earthquake magnitude bin.
The maximum tsunami amplitude is defined as the peak wave height above the baseline
vertical datum (i.e., mean sea level).

(a) Earthquake Occurrence Model ( (b) i Model ) © Con::l""?nal Pr‘:’babll‘l\ty Dll.fl:"bu"o" of
( ( laximum Wave Amplitude )
Richter (truncated model
First event Modified probability density ( For each location, sample from the conditional probability distribution of
25 function of inter-arrival time for » 04 the maximm wave amplitude for a given magnitude
) the first event H
Probability that i 3 °
’e"veit‘;‘c‘/cwfe;m i Probability density function ]
' \ of inter-arrival time 2 02 09
il the current time i ]
between events g
e § 2 0.8
=t s s 5
0 caseT  Case2is Time g 07
0.0
P —
Time of the T Current | End time of 87 88 89 9.0 9.1 5 06
last event time ' duration T, Probability density function Moment magnitude i
afinter=arrival time for Characteristic (uniform) model g 08
Second (subsequent) the second event 0.4 & o4
event tiar £ Ucluelet
2 55 cluelet
et £ — MB7-8.8
b=t * b s P—
(2 ; 3 02 02 M8.8-8.9
t Case 2 Time S o1 —— M8.9-9.0
2 — M9.0-9.1
Al tine, gf © oo *%00 50 100 150 200
duration Tp 87 88 89 90 91
Moment magnitude Wave ampltude {m)
C (d) Stochastic Event Catalog > (e) PTHA Outputs D)
Tp-year
i 102
T way amplitude
Catalog 1 7 T WA, = war,
(m=2) i ta 8
my myy 5 —_
21 -3
T T 5 \\\\
Catalog 2 WA, = way, s
(=1 t > \\
myy H Ucluelet
8 GR model
g 104 Te = 323 years
5 Tp =1year
Wave 2
amplitude Wans g Exponential
wa ane Weibull
M T Time Gaussian mixture
Catalog N s Why = wars 105
(nv=3) 0 tn e T, 0 2 4 6 8 10

e M g .
Maximum wave amplitude (m)

Figure 8. Computational procedures for probabilistic tsunami hazard analysis: (a) Earthquake occur-
rence model, (b) magnitude model, (c) conditional probability distributions of the maximum wave
amplitude for different magnitude ranges, (d) stochastic event catalogs together with event times,
earthquake magnitudes, and maximum wave amplitudes, and (e) PTHA outputs, such as tsunami
hazard curves at a location of interest (e.g., Ucluelet) with different inter-arrival time distributions.

Through Monte Carlo simulations, stochastic event catalogs, each of which has a
duration of T years, are generated. For instance, in the i-th catalog, 1; events may occur
(note: For a relatively short duration of Tp, there are many stochastic catalogs that do not
have any tsunami events). For each event, a moment magnitude value is sampled from
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the considered magnitude model, and then the maximum tsunami amplitude at the site of
interest can be sampled from the corresponding conditional probability distribution of the
maximum tsunami wave amplitude (Figure 8d). Subsequently, by taking the maximum
tsunami wave amplitude over Tp years, the Tp-year maxima of the tsunami hazard measure
can be obtained. By analyzing the Tp-year maxima data from N stochastic catalogs, the
Tp-year probability of exceedance can be assigned to each of the Tp-year maxima data.
Eventually, the pairs of the Tp-year maxima data and the Tp-year probability of exceedance
can be displayed as a tsunami hazard curve (Figure 8e). By repeating the same analysis
but considering different model components and parameters, multiple tsunami hazard
curves that represent alternative assumptions can be obtained. This is a form of sensitivity
analysis. In the above-mentioned procedure, a logic tree model can be integrated into
the simulation-based PTHA procedure (e.g., by considering equal weights for the two
magnitude models) to incorporate the effects of epistemic uncertain models and parameters
into the tsunami hazard assessments.

4. Regional Tsunami Hazard Assessment for Vancouver Island Due to the Cascadia
Subduction Earthquakes

4.1. Analysis Set-Up

This section presents the results of regional PTHA for offshore locations along the
Vancouver Island coast. Six locations are selected to show site-specific PTHA results
(Section 4.2). In addition, to show uniform tsunami hazard curves at a regional scale, 109
locations are focused upon, whose depths are approximately 10 m between 7 and 13 m
(Section 4.3). The above-mentioned locations are indicated in Figure 1b.

The PTHA is conducted on a site-specific basis. As the base case, the elapsed time
since the last event is set to T = 323 years (present situation), and the duration of the
assessment is set to Tp = 1 year. To evaluate the influence of different values of T and Tp,
they are varied to: Tg = 353 years and 383 years and T = 50 years. For the inter-arrival time
distribution, three models are considered: Exponential distribution (i.e., time-independent
Poisson process), Weibull distribution (i.e., best one-component renewal model), and three-
component Gaussian mixture model (see Figure 5). For the magnitude model, both the
Gutenberg—Richter model (i.e., truncated exponential distribution) and the characteristic
uniform model are considered (Figure 6). The uncertainty of the earthquake rupture
process is reflected in the conditional probability distribution of the offshore maximum
wave amplitude for each magnitude bin (Figures 7 and 8c). The PTHA results are presented
in the form of a site-specific tsunami hazard curve (i.e., plot of the maximum tsunami
amplitude against the Tp-year probability of occurrence) and a uniform tsunami hazard
curve (i.e., plot of the maximum tsunami amplitudes for multiple offshore locations at
a specified Tp-year probability of occurrence level). The simulation number is set to
50 million times when T = 1 year and 1 million times when Tp = 50 years (i.e., the total
number of years is kept the same).

4.2. Site-Specific Tsunami Hazard Curves

Figure 9 shows tsunami hazard curves for six locations indicated in Figure 1b by
considering three inter-arrival time distributions with Ty = 323 years and Tp = 1 year.
The magnitude model is the Gutenberg—Richter relationship (Figure 6a). Among the six
locations, the tsunami hazards can be ordered from high to low as Ucluelet, Bamfield, Tofino,
Yuquot, Port Renfrew, and Metchosin, noting that tsunami hazard levels for Bamfield and
Tofino are similar. Both Ucluelet and Bamfield are strongly affected by offshore underwater
topography that creates more concentrated tsunami waves along submarine canyons (e.g.,
Barkley Canyon) (note: The selected location for Bamfield is slightly closer to the land and
is less exposed to the Pacific Ocean, see Figure 1b). This can be seen in Figure 7c. Tofino
also has a high tsunami hazard due to its direct exposure to the Pacific Ocean. Although
Yuquot is exposed to the Pacific Ocean, its tsunami hazard level is less than Tofino because
it is located at the northern end of the Cascadia subduction zone. The tsunami hazard
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levels of Port Renfrew and Metchosin are less than the preceding four locations because
they are located along the Juan de Fuca Strait. In other words, the relative tsunami hazards
can be understood from the physical oceanographic conditions of the locations with respect

to the Cascadia subduction zone.
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Figure 9. Tsunami hazard curves by considering three inter-arrival time distributions with
Tg =323 years and Tp =1 year: (a) Yuquot, (b) Tofino, (c) Ucluelet, (d) Bamfield, (e) Port Renfrew, and
(f) Metchosin. The magnitude model is based on the Gutenberg—Richter distribution.
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For a given location, the relative positions of the three tsunami hazard curves based
on the exponential, Weibull, and Gaussian mixture distributions are consistent. For
Tg = 323 years, the cases with the Weibull distribution and the exponential distribution
produce higher tsunami hazards than the case with the Gaussian mixture model (note: The
first two cases are similar, but the exponential distribution produces slightly larger tsunami
hazard estimates). This can be understood by inspecting the probability distributions of the
simulated inter-arrival time for the three distributions. These are shown in Figure 10a for
the Weibull distribution and Figure 10c for the Gaussian mixture distribution, respectively.
Note that the inter-arrival time 0 corresponds to the chosen value of T (=323 years). The
exponential probability distribution (which does not depend on Tg) is also shown in the
figure panel and can be used as a reference for the time-independent tsunami hazard
case. When the inter-arrival time is less than one year (i.e., Tp = 1 year), the probability
density value for the Weibull distribution is slightly larger than the exponential distribution
(but the values are close), whereas the probability density value for the Gaussian mixture
distribution is noticeably smaller than the exponential distribution.
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Figure 10. Updated inter-arrival time distributions: (a) Weibull distribution with Tg = 323 years,
(b) Weibull distribution with Tg = 383 years, (c¢) Three-component Gaussian mixture distribution
with Tg = 323 years, and (d) Three-component Gaussian mixture distribution with Ty = 383 years.
The red curve (i.e., time-independent Poisson process) is the same in every figure panel.

To investigate the effects of Tg and Tp as well as magnitude distributions on the
tsunami hazard curves, Tofino is focused upon. The observations made below are also
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applicable to the five other locations. Figure 11 shows tsunami hazard curves for Tofino by
considering three inter-arrival time distributions but with different values of Ty and Tp and
different magnitude distributions. The comparison of Figure 11a,b indicates that the consid-
eration of the characteristic uniform distribution results in higher tsunami hazard curves,
as expected. This is because the uniform model assigns higher relative weights to large-
magnitude events, and when the magnitudes are greater, the tsunami wave amplitudes
tend to be greater (Figure 8c).
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Figure 11. Tsunami hazard curves for Tofino by considering three inter-arrival time distributions:
(a) Tg = 323 years, Tp = 1 year and Gutenberg—Richter model, (b) T = 323 years, Tp = 1 year and
uniform model, (c) Tg = 353 years, Tp = 1 year and Gutenberg-Richter model, and (d) T = 383 years,
Tp =1 year and Gutenberg—Richter model. The blue curve (i.e., time-independent Poisson process) is
the same in every figure panel (for the same magnitude model).

The comparison of Figure 11a,c,d demonstrates the effects of T for a fixed value
of Tp = 1 year. With the increase of Tf, the updated inter-arrival time distributions of
the Weibull and Gaussian mixture models become higher for the inter-arrival time of less
than one year. The inter-arrival time distributions for the Weibull and Gaussian mixture
models for Ty = 383 years are shown in Figure 10b,d, respectively. The same increasing
trends can be observed in the corresponding tsunami hazard curves shown in Figure 11c,d.
When Tg = 353 years, the case with the Weibull distribution produces a larger tsunami
hazard curve (by a slight margin) than the exponential distribution, while the tsunami
hazard curve for the Gaussian mixture model is still below the exponential distribution
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(Figure 11c). Considering a situation further into the future (Tg = 383 years), the case with
the Weibull distribution is noticeably larger than the exponential distribution, whereas
the case with the Gaussian mixture distribution becomes close (but slightly less than) the
exponential distribution.

Opverall, considering that the Gaussian mixture distribution is the most consistent with
the underlying inter-arrival times of the Cascadia megathrust events, the overestimation of
the tsunami hazard at the present time when the simpler one-component renewal model or
the Poisson model can be as large as 1 m at a given annual probability of exceedance level
for the case of Tofino (e.g., taking the horizontal differences of the tsunami hazard curves).

Moreover, the effects of T on the tsunami hazard curves for Tofino are investigated in
Figure 12, with respect to the varied T values. More specifically, Figure 11a,c,d corresponds
to Figure 12a—c, respectively. When Tp, is longer than one year, the area under the inter-
arrival time distribution should be compared for different inter-arrival time distributions.
Inspecting Figure 11, when Tg = 323 years, the exponential distribution still produces
the larger probability values (thus producing larger tsunami hazards). However, when
Tg = 383 years, the areas under the time-dependent earthquake occurrence models become
greater than the area under the time-independent earthquake occurrence model. Therefore,
in Figure 12¢, both time-dependent tsunami hazard curves exceed the time-independent
tsunami hazard curve, which is different from the results shown in Figure 11d.
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Figure 12. Tsunami hazard curves for Tofino by considering three inter-arrival time distributions
with Tp = 50 years: (a) Tg = 323 years, (b) Tg = 353 years, and (c) Tg = 383 years. The magnitude
model is based on the Gutenberg—Richter distribution.
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4.3. Regional Uniform Tsunami Hazard Curves

To investigate how the probabilistic tsunami estimates vary along the Vancouver
Island coast, uniform tsunami hazard curves are derived from the PTHA results. The
site locations for these uniform tsunami hazard curves are shown in Figure 1b. For the
assessments, four return period levels, i.e., Tr = 1000, 2500, 5000, and 10,000 years, are
considered. Figure 13 shows such uniform tsunami hazard curves by considering three
inter-arrival time distributions with Ty = 323 years and Tp = 1 year. Consistently across the
four return period levels, the maximum tsunami amplitudes are high in the latitude range
between 48.6° and 49.6°. This range approximately corresponds to the coastal line from
the south of Yuquot to the north of Port Renfrew. There are several peaks in the uniform
tsunami hazard curves, where the focusing effects are induced by the local submarine
valleys (Figure 7c). As expected, the tsunami hazard estimates increase with the return
period, and their maximum values can exceed 15 m for extreme situations. This indicates
that the shoaling effects can further amplify these offshore tsunami wave amplitudes. The
detailed run-up and inundation effects must be quantified using high-resolution digital
elevation data, which is beyond the scope of this study.
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Figure 13. Uniform tsunami hazard curves at 109 offshore locations by considering three inter-arrival
time distributions with Tg = 323 years and Tp = 1 year: (a) Tr = 1000 years, (b) Tr = 2500 years,
(c) Tr = 5000 years, and (d) T = 10,000 years.

Moreover, to show similar results but for different values of Tg and Tp, uniform
tsunami hazard curves based on Tg = 383 years and Tp = 50 years are shown in Figure 14.
Since the equivalent return period values are considered in Figures 13 and 14, the results are
similar. A noticeable difference is that when a longer elapsed time since the last event (i.e., a
remote future situation) and the longer time horizon for the tsunami hazard assessment, the
time-dependent earthquake occurrence models produce greater tsunami hazard estimates
compared with the time-independent earthquake occurrence model. Consequently, for the
considered case, the differences of the three inter-arrival time distributions become smaller
compared with the base (present) case shown in Figure 13. Overall, uniform tsunami
hazard curves at nearshore sites provide useful information on relative tsunami hazards
along the coastal line and can be used to identify the hot spots that are affected by the local
topography and submarine channel systems.
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Figure 14. Uniform tsunami hazard curves at 109 offshore locations by considering three inter-arrival
time distributions with Ty = 383 years and Tp = 50 years: (a) Tr = 1000 years, (b) Tr = 2500 years,
(c) Tr = 5000 years, and (d) T = 10,000 years.

5. Conclusions

This study developed the probabilistic tsunami hazard model using stochastic ruptures
of the Cascadia megathrust earthquakes. This work is the first of its kind for the locations
along the Vancouver Island coast and constitutes the essential step to conduct more detailed
probabilistic tsunami inundation hazard and tsunami risk assessments for coastal commu-
nities on Vancouver Island. The adopted stochastic rupture modeling approach enabled
more comprehensive considerations of possible Cascadia megathrust rupture scenarios
in terms of fault geometry, position, and earthquake slip distribution within the overall
subduction zone. The developed model also facilitated the consideration of time-dependent
earthquake occurrence models by considering suitable inter-arrival time distributions for
the Cascadia megathrust events. In particular, the use of the three-component Gaussian
mixture distribution was suggested based on the resampled Cascadia subduction age data
that reflect underlying uncertainties of the geological data.

The numerical examples of the developed probabilistic tsunami hazard model to
the six specific sites and 109 offshore locations at approximately 10 m depths indicate
that the consideration of different inter-arrival time distributions can result in noticeable
differences in terms of site-specific tsunami hazard curves and uniform tsunami hazard
curves at different return period levels. At present, the use of the one-component renewal
model tends to overestimate the tsunami hazard values compared to the three-component
Gaussian mixture model. With the increase in the elapsed time since the last event and the
duration of tsunami hazard assessment (within the parameter variations considered in this
study), the differences tend to be smaller. Inspecting the regional variability of the tsunami
hazards, specific parts of the Vancouver Island coast are likely to experience higher tsunami
hazards due to the directed tsunami waves from the main subduction zone and due to the
local underwater topography (i.e., wave focusing through local submarine valleys).

There are several limitations to the presented approach and the obtained results.
Firstly, the tsunami sources are limited to megathrust events, while the moderate earth-
quakes rupturing the southern and central segments of the Cascadia subduction zone (but
not extending to the northern segment off Vancouver Island) were not included in the
assessments. Note that the exclusion of the southern and central rupture scenarios can
be justified on the basis of tsunami radiation patterns for these scenarios. Secondly, the
tsunami hazard simulations were performed at a regional scale using the 270-m grids.
This grid resolution is too crude to evaluate the tsunami run-up and inundation on land.
Although brute-force computations of high-resolution tsunami simulations are possible,
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from practical viewpoints, more efficient stochastic tsunami simulation approaches are
required to reduce the computational burdens in the future. These improvements will
open a new avenue to perform fully probabilistic tsunami inundation risk assessments for
coastal communities. Thirdly, although this study presented sensitivity analysis results
due to different earthquake occurrence and magnitude models, a fully developed logic tree
model will be necessary to capture the effects of epistemic uncertainty on the final tsunami
hazard estimates.
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