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Abstract: Sustainable urban mobility is an imperative concern in contemporary cities, and shared
micromobility systems, such as docked bike-sharing, dockless bike-sharing, and dockless e-scooter-
sharing, are recognized as essential contributors to sustainable behaviors in cities, both complement-
ing and enhancing public transport options. Most of the literature on this subject predominantly
focuses on individual assessments of these systems, overlooking the comparative analysis necessary
for a comprehensive understanding. This study aims to bridge this gap by conducting a spatiotem-
poral analysis of two different shared micromobility modes of transportation, docked bike-sharing
systems and dockless e-scooter-sharing systems operating in the municipality of Lisbon. The analysis
is further segmented into arrivals and departures on weekdays and weekends. Additionally, this
study explores the impact of sociodemographic factors, the population’s commuting modes, and
points of interest (POIs) on the demand for both docked bike-sharing and dockless e-scooter-sharing.
Multiscale Geographically Weighted Regression (MGWR) models are employed to estimate the
influence of these factors on system usage in different parishes in Lisbon. Comparative analysis
reveals that the temporal distribution of trips is similar for both docked bike-sharing and dockless
e-scooter-sharing systems on weekdays and weekends. However, differences in spatial distribution
between the two systems were observed. The MGWR results indicate that the number of individuals
commuting by bike in each parish has a positive effect on docked bike-sharing, while it exerts a
negative influence on dockless e-scooter-sharing. Also, the number of commercial points of interest
(POIs) for weekday arrivals positively affects the usage of both systems. This study contributes to a
deeper understanding of shared micromobility patterns in urban environments and can aid cities
in developing effective strategies that not only promote and increase the utilization of these shared
micromobility systems but also contribute to sustainable urban mobility.

Keywords: sustainable transport; urban mobility; shared micromobility; spatiotemporal; docked
bike-sharing; dockless e-scooter-sharing

1. Introduction

The modern urban landscape is undergoing a profound transformation in the way
that people move within cities, with shared micromobility systems such as bicycles, electric
bicycles, and e-scooters playing an increasingly prominent role in daily transportation.
This paradigm shift is driven by a growing awareness of the environmental and human
health consequences of traditional road transport in urban areas, including congestion, air
pollution, and sedentary lifestyles.

In response to these challenges, cities around the world are increasingly steering
towards the adoption of more sustainable urban transport systems. This shift is marked by
a concerted effort to reduce the dominance of conventional, fossil fuel-dependent vehicles
and promote eco-friendly alternatives, with a particular emphasis on shared micromobility
options [1,2]. Shared micromobility modes of transportation have played a fundamental
role in promoting sustainable urban mobility in several ways. These vehicles, often fully
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or partially human-powered, significantly reduce carbon emissions when compared to
internal combustion engine vehicles [3]. Their compact size not only alleviates traffic
congestion but also makes them the ideal choice for last-mile connectivity, effectively
reducing the need for private car trips.

Shared micromobility services are increasingly diverse, encompassing a range of
options such as docked and dockless bikes/e-bikes, as well as dockless e-scooters. This
variety offers users the flexibility to choose the mode of transportation that best suits their
needs and preferences. However, in the context of urban planning and transportation
management, it is of paramount importance for cities and service providers to gain a
deep understanding of why and how users adopt each of these services across different
spatial and temporal dimensions [4]. By comprehending travel patterns and user behavior,
cities and companies can more effectively respond to the evolving needs of their citizens
and customers, optimize infrastructure, and make shared micromobility services more
efficient, thereby contributing to the development of more sustainable and accessible
urban environments.

The analysis of spatiotemporal usage patterns within shared micromobility services
provides valuable insights into the ways that these systems are integrated into the urban
environment, offering crucial data to inform public policy decisions that aim to enhance
accessibility, equity, safety, and sustainability. The introduction of diverse shared micromo-
bility modes within a city not only broadens the transportation options for users but also
poses challenges for city planners who must ensure that the necessary infrastructure is in
place to support the efficient operation of each mode [5]. In this context, understanding the
temporal and spatial usage patterns among different shared micromobility modes within
the same urban environment is important. This comprehension is essential to guarantee
the safe and efficient coexistence of several shared micromobility options, paving the way
for a more comprehensive, responsive, and sustainable urban transportation ecosystem.

In the existing body of literature, the realm of shared micromobility services has been
quite well explored, yet comparative studies on spatiotemporal analyses remain limited.
These studies are crucial in comprehending the nuanced factors influencing the use patterns
of various shared micromobility modes within urban settings. This study seeks to address
this gap, with a particular focus on the city of Lisbon, Portugal. This study will carry out a
comparative analysis between docked bike-sharing and dockless e-scooter-sharing, two
distinct but increasingly prevalent modes within the shared micromobility field.

This study stands in the wake of existing studies in investigating the spatiotemporal
usage patterns of shared micromobility modes. In addition to exploring these patterns,
this study is also poised to analyze the influence of sociodemographic factors, population
commuting modes, and specific points of interest on user demand. In this case, the ge-
ographic setting chosen was the city of Lisbon. The primary contribution of this study
is the identification and comparison of spatial and temporal analyses between docked
bike-sharing and dockless e-scooter-sharing usage patterns in the municipality of Lisbon.
To this end, data were collected from two shared micromobility services, namely GIRA, a
docked bike-sharing system, and LINK, a dockless electric scooter-sharing system. This
study unfolds in two distinct phases, focusing first on an individual temporal and spatial
analysis of each system. The temporal analysis involves the evaluation of the number of
trips per day of the week for both docked bike-sharing and dockless e-scooter-sharing. This
analysis provides essential information on the patterns of each system, shedding light on
when and how frequently they are used. The spatial analysis, in addition to evaluating the
spatial distribution of the average trips per day of the week, applies regression models,
including Ordinary Least Squares (OLS), Geographically Weighted Regression (GWR), and
Multiscale Geographically Weighted Regression (MGWR), to explore the contextual vari-
ables that influence the use of these shared micromobility systems. The central focus of the
spatial statistical analysis falls on the MGWR regression model, enabling a comprehensive
evaluation of significant contextual variables and their impact on shared micromobility
service utilization. Key indicators, including the model’s coefficient, are examined to gauge
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the extent to which each variable shapes the usage patterns of these services. The com-
parative analysis of these two systems aims to uncover both similarities and disparities in
their usage patterns, facilitating a deeper understanding of the variables that shape their
adoption and utilization within the city of Lisbon.

To perform this study, the following research questions (RQ) were addressed for the
two different shared micromobility services:

(RQ1) What is the temporal distribution of trips and how do they vary over the course of
a day?

(RQ2) What is the spatial distribution of trips? Are there significant differences around the
municipality of Lisbon?

(RQ3) Is there a significant difference in the temporal activity patterns between the two
shared micromobility modes?

(RQ4) Are there spatial differences in the usage patterns between the two shared micromo-
bility modes?

The results of this study will not only improve understanding of the usage patterns of
the two different services operating in Lisbon, which can support companies that provide
these services, but also contribute significantly to urban planning initiatives.

The remainder of this study is organized as follows. Section 2 presents a critical
literature review, highlighting key theoretical and empirical contributions to the field and
identifying gaps in the literature that this work seeks to address. Section 3 describes the
methodology, including a description of the data collection procedures and data analysis
methods. Section 4 presents the results of the comparative analyses and discusses the
implications of these results for the research questions and objectives. Finally, Section 5
presents the conclusions of this study, summarizing the main findings.

2. Literature Review
2.1. Shared Micromobility

Shared micromobility services such as shared bikes, shared e-bikes, and share e-
scooters, has become a more relevant commuting alternative in many cities around the
world [6]. However, these modes of transportation are not new, as the first generation
of bike-sharing systems appeared in 1965 (Amsterdam) [7]. The emergence of shared
micromobility services aims to facilitate the problem of the first and last mile, offering more
flexible access to public transport and thus contributing to changes in mobility patterns,
particularly a reduction in the use of private cars [8]. Reductions in traffic, fuel consumption,
and air pollution are some of the other benefits that shared micromobility services bring to
cities in order to contribute to a more sustainable mobility [9–12].

Currently, shared micromobility services are mainly divided into two different types,
station-based (docked) and dockless sharing systems [13]. Station-based systems have
fixed docking stations, and users need to know in advance if there is an available dock
near their destination, while dockless systems enable users to go directly and park in their
respective destinations, leaving the micro-vehicles almost anywhere [2,14,15]. Both docked
and dockless systems have been the subject of several studies. The following sections
describe which factors influence the usage patterns of three different shared micromobility
options, docked bikes, dockless bikes, and dockless e-scooters.

2.2. Docked Bike-Sharing System

Bike-sharing has gained a significative prominence around the world in the past
decades [7]. Besides being a convenient, low-cost, and easily accessible mode of transporta-
tion, bike-sharing contributes to decreasing traffic congestion and air pollution, promoting
physical activities, and supporting multimodal transport connections [16–19]. Currently,
bike-sharing systems are present in 1590 cities around the world. By August 2022, there
were 1914 bike-sharing schemes operating with 8,967,122 bikes around the world [20]. The
first bike-sharing system, known as White Bikes, appeared in Amsterdam in 1965 [21].
This system provided bicycles (not station-based, unlocked, and free of charge) to be used
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around the city. The system soon failed due to the lack of maintenance of the bicycles and
vandalism from users [22]. To attempt to address these issues, Copenhagen, Denmark (1995)
launched its first large-scale second-generation bike-sharing system, called Bycyken [23].
This system introduced docking stations through the implementation of a coin-deposit
lock [23]. Despite these systems being more dependable and more resistant to theft than
before, these situations were not completely overcome. Due to the anonymity of the user,
bike-sharing operators continued to face vandalism and the theft of bikes without being
able to hold anyone accountable [24]. Regarding that, a third generation of bike-sharing
emerged with tracking information, improved docking stations (pickup and drop-off),
electronic booking, and automated payment [22,23]. Although the first generation of bike-
sharing was not successful, it was a major step towards introducing new mobility modes
in cities and promoting a reduction in the use of private cars. Thanks to advancements
in technology, the shortcomings of the previous systems have been overcome in the third
generation [23]. However, continued upgrades have given rise to a fourth generation,
with the advantage of being dockless, more conducive to integrating with other modes of
transportation, and more supportive of multi-modal transportation systems [23,25].

The study of docked bike-sharing encompasses a multifaceted analysis of these sys-
tems, exploring various aspects, including user demographics and motivations, envi-
ronmental impacts, and the key determinants that shape the usage patterns of docked
bike-sharing services [6,26]. Considering demographic factors, users of docked bike-sharing
services are typically younger males, well-educated, and mostly middle-income [6,26–28].
In contrast, Buck et al. [29] concluded that docked bike-sharing users are more likely to be
female and have lower incomes. Regarding trip purposes, commuting to or from work dom-
inates docked bike-sharing usage, although there are many factors such as the time of day,
day of the week, and meteorological conditions that can influence these choices [26,28,30].
Considering the existing literature, the most common factors that influence the docked
bike-sharing user demand are temporal, socio-demographics, weather, preference, and
land use factors [31].

2.3. Dockless E-Scooter-Sharing System

Shared e-scooters are the most recent micromobility mode expanding across the
world [32]. Shared e-scooters systems have the particularity of being dockless, and are
therefore seen as more flexible, as the user can pick up and drop off the vehicle at any
location within a designated service area, without the need for a physical docking sta-
tion [21,33,34]. Since their introduction in 2017, shared electric scooter systems have
experienced significant growth [35]. Only one year after their introduction, e-scooter trips
overtook shared bike trips in the US [3]. The shared e-scooter system has been demonstrat-
ing a great contribution to helping relieve urban mobility issues [35]. Evidence from a study
conducted by Mitra and Hess [36] shows that the majority of participants would replace
their current walk and transit trips with an e-scooter trip if possible, providing benefits
for the environment and health-consciousness. However, the use of this mode of shared
micromobility has divided opinions, as critics argue that e-scooter trips are replacing trips
that would otherwise be made by more sustainable modes of transport, such as walking
and cycling [37]. Sanders et al. [38] conducted a pilot study to understand the impacts
of shared e-scooter use on physical activity. The study’s results indicated that e-scooters
disproportionately replace walking and bicycling, which causes evident negative impacts
on users’ frequency of physical activity. The positive impact of e-scooters on urban mobility
depends on how they are used and integrated into the transportation system. If e-scooters
are used as a complement to other sustainable modes of transportation, they can help
improve mobility and reduce emissions. However, if they are used in place of walking or
as a primary mode of transportation, they can become unsustainable [39].

Many studies have examined distinct aspects of users and the usage of shared e-
scooters. Similar to docked bike-sharing, shared e-scooter users are more likely to be young,
male, and highly educated [40–42]. Caspi et al. [33] found that student populations are
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a major source of shared e-scooter trips, which is in line with the geographical analysis
that shows two areas with higher usage: downtown Austin and the University of Texas.
Similarly, Bai and Jiao [43] concluded that downtown and university campus areas were
both high e-scooter usage clusters. On the other hand, some studies suggest that shared
e-scooters are not used as a commute mode due to the substantially higher number of
trips on weekends compared to weekdays [44,45]. From spatial analysis, it was found that
land-use diversity positively affects the use of e-scooters, as there were more possible points
of interest for users to ride from/to in a given area [43,46]. Foissaud et al. [47] examined the
spatiotemporal patterns of e-scooter trips in four European cities: Paris, Malaga, Bordeaux,
and Hamburg. They concluded that, in all four EU cities, the peak hour is in the afternoon
and, additionally, Fridays and Saturdays are the peak weekdays. Noland [45] also found
that shared e-scooter usage is substantially higher on Saturday. Shared e-scooters are
viewed as convenient, fast, and a potential contribution to urban transportation equity [48].

2.4. Comparative Analyses between Different Shared Micromobility Modes

Most of the literature analyzes a single shared micromobility mode of transportation
and only a few comparative studies of two modes exists [15,49,50]. McKenzie [15] compared
the spatiotemporal activity patterns of dockless e-scooters with those of docked bikes in
Washington, D.C, since the. docked bike-sharing service data were divided into members
and casual riders. The author found that the e-scooter trips revealed a mid-day peak on
both weekdays and weekends, resembling the activity patterns of casual riders of docked
bike-shares. The membership bike-share, on the other hand, reflected standard commuting
patterns with morning and evening peaks. The land-use trip analysis showed that the
e-scooter trips mostly originated and terminated in public/recreation areas. In contrast, the
bike trips were predominantly identified as commuting to and from work. Zhu et al. [50]
compared the performances of bike-sharing and scooter-sharing in Singapore. They found
that shared e-scooters have a spatially compact and quantitatively denser distribution
compared with shared bikes, and that their high demand is associated with places such
as attractions, metros, and the residential. Also Younes et al. [49] compared temporal
determinants of a dockless scooter-share and station-based bike-share in Washington DC.
They found that their analysis of docked bike members showed clear weekday morning
and evening activity peaks, while casual users of docked bikes and e-scooter users only
showed a weekday evening activity peak. Dockless e-scooter users were less sensitive to
weather changes than docked bike-sharing users, and the authors explain these results with
the flexibility of leaving the scooter in any permitted area.

2.5. Reseacrh Gap

One noticeable study gap in the field of urban transportation and shared micromobility
services pertains to the limited availability of comparative studies specifically focusing on
two distinct systems within the same urban environment, such as docked bike-sharing and
dockless e-scooter-sharing services in the city of Lisbon. While numerous studies have
explored the individual dynamics of these services separately, there remains a dearth of
comprehensive studies that directly compare their spatiotemporal usage patterns within
the same geographical context. Addressing this study gap can provide insights into the
coexistence of diverse micromobility options, informing urban planners, policymakers,
and service providers in the development of more efficient, sustainable, and user-centered
transportation solutions in cities like Lisbon.

3. Methodology

This section provides an overview of the study area and data sources, featuring a
presentation of the implemented methodology.
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3.1. Study Area

Lisbon is the capital of Portugal and the Lisbon Metropolitan Area. Covering an
area of 100.05 km2, it has a resident population of 545,796 inhabitants, being the largest
city in the country [51]. The city´s unique topography, characterized by hills and narrow
streets, presents distinct challenges and opportunities for transportation planning. Lisbon´s
urban mobility ecosystem incorporates various modes of transport, with public transit
systems, including bus, train, metro, and waterway transport, providing the bases of the
daily commuting of the residents (https://www.lisboa.pt/cidade/mobilidade/meios/
transportes-publicos (accessed on 2 June 2023)). As part of a growing global trend towards
sustainable and convenient urban transportation options, shared micromobility services,
such as bike-sharing and electric scooter-sharing, were introduced in Lisbon in 2017 and
2018, respectively [52,53].

The study area of this study focuses on the Municipality of Lisbon, which is subdi-
vided into 24 parishes, including Ajuda, Alcântara, Alvalade, Areeiro, Arroios, Areeiro,
Beato, Belém, Benfica, Campo de Ourique, Campolide, Carnide, Estrela, Lumiar, Marvila,
Misericórdia, Olivais, Parque das Nações, Penha de França, Santa Clara, Santa Maria Maior,
Santo António, São Domingos de Benfica, and São Vicente. Figure 1 shows the map of
study area.
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This paper focused on shared micromobility usage patterns in the municipality of
the city of Lisbon, specifically examining how two distinct shared micromobility services,
namely GIRA—Bicicletas de Lisboa (a docked bike-sharing system) and LINK (a dock-
less electric scooter-sharing system), are used. GIRA is a public bike-sharing system of
Lisbon, Portugal, which was launched in 2017. GIRA has over 1400 bicycles available for
rental at over 140 stations throughout 19 parishes of the city, including Alcântara, Alvalade,
Areeiro, Arroios, Avenidas Novas, Belém, Benfica, Campo de Ourique, Campolide, Carnide,
Estrela, Lumiar, Misericórdia, Olivais, Parque das Nações, Santa Maria Maior, Santo
António, São Domingos de Benfica, and São Vicente. Figure 2 shows the active stations of
GIRA—Bicicletas de Lisboa.

Regarding the dockless system, LINK is an e-scooter-sharing program operated by
Superpedestrian, a popular transportation robotics company that provides on-demand
electric scooters for short trips in cities across the United States and Europe. The LINK
e-scooter-sharing program was founded in 2018 and has since expanded to more than
50 cities worldwide, and arrived in Lisbon in 2021, now operating around all over the city.

https://www.lisboa.pt/cidade/mobilidade/meios/transportes-publicos
https://www.lisboa.pt/cidade/mobilidade/meios/transportes-publicos
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3.2. Data

Numerous types of data sources were used in this paper, all of which are derived from
open data. These sources included trips from a docked bike-sharing system and trips from
a dockless electric scooter-sharing system, which constitute the dependent variables in this
paper. As independent variables, we employed the number of points of interest, the number
of local accommodations, sociodemographic data, and data related to commuting modes.

Docked bike-sharing (GIRA—Bicicletas de Lisboa) data from the Lisboa Aberta website
(https://lisboaaberta.cm-lisboa.pt/index.php/pt/) (accessed on 2 June 2023) includes
information about stations with a 20 min temporal resolution, covering the period from
17 October 2022 to 31 March 2023. Due to the 20 min temporal resolution and inclusion of
data from inactive stations, it was necessary to reformat the data before the analysis. Data
on the stations that were in repair status were removed. The available dataset records the
occupancy of docks at each station, allowing the tracking of bike arrivals and departures at
20 min intervals. The 20 min temporal resolution introduces the possibility of inaccuracies
in recording precise bike counts if multiple entries or exits occur within the same interval.
Subsequently, the data were divided into two distinct datasets—Arrivals (201,598 trips)
and Departures (203,834 trips). To attribute the number of trips to specific parishes, the
geographical locations of individual stations were employed for analysis.

For dockless e-scooter-sharing (LINK), the data were collected from MobilityData/gbfs,
an open-source dataset repository hosted on GitHub (https://github.com/MobilityData/
gbfs) (accessed on 2 June 2023). The General Bikeshare Feed Specification (GBFS) was used,
covering the period from 17 October 2022 to 31 March 2023. Dealing with a 5 min temporal
resolution API for the GBFS data, data inconsistencies can still occur and, therefore, a
review and reformation of the dataset was conducted before the analysis. Some of the
records referred to e-scooters that were disabled, and those records were removed. Since
the analysis was only conducted in the municipality of Lisbon, trips that were outside this
scope were also removed. The available data only record the information of e-scooters
when they are not in use, from which it is possible to identify where trips start and where
trips end. In addition, these data had the condition of using the Resetting Vehicle ID
generating strategy—in which the vehicle ID of a corresponding e-scooter randomizes after
every trip but is otherwise static [54]. Following this, due to the absence of information
about the route, having, rather, the start and end of the trips, the data were divided into
two distinct datasets: Arrivals (148,785 trips) and Departures (136,335 trips). In order to
obtain the number of trips by parish, the geographical location of each trip was used.

Tables 1 and 2 show the data attributes of the docked bike-sharing and dockless
e-scooter-sharing.

https://lisboaaberta.cm-lisboa.pt/index.php/pt/
https://github.com/MobilityData/gbfs
https://github.com/MobilityData/gbfs
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Table 1. Docked bike-sharing data attributes.

Attribute Description

desigcomercial bike station name
numbikes number of bikes in docks
numdocks number docks
position bike station latitude and longitude
entity_ts timestamp (20 min)
status status of the dock (active or repair)

Table 2. Dockless e-scooter-sharing data attributes.

Attribute Description

last_updated POSIX timestamp indicating the last time the data in was updated
ttl Seconds before the data in this feed will be updated again
bike_id Unique identifier of an e-scooter
lat Latitude of the e-scooter location
lon Longitude of the e-scooter location
is_reserved Is the e-scooter currently reserved for someone else
is_disabled Is the e-scooter currently disabled (broken)

The points of interest (POIs) data come from Lisboa Aberta (https://lisboaaberta.
cm-lisboa.pt/) (accessed on 2 June 2023) and include the number of outdoor POIs such
as gardens and playgrounds; the number of commercial POIs like shopping center and
markets; the number of cultural POIs—galleries, museums, and libraries; the number
of education POIs such as kindergartens, public and private schools, and universities;
the number of leisure POIs was used and included the Lisbon casino and viewpoints;
the number of health POIs such as health centers, private clinics, and public and private
hospitals; a the number of service POIs (cemeteries, conservatories, embassies); security
POIs (police stations); emergency POIs (fire stations); and transport POIs such as metro
stations, train stations, river interfaces, and lifts (tourist attraction) were used. It was
necessary to generate new features from the existing ones to reduce the number of variables
in the dataset while still preserving the relevant information. Two new features were
created, “No. Entertainment POIs” that aggregates data from outdoor and leisure POIs
and “No. Government & Public sector POIs” that aggregates data from transport, health,
service, security, and emergency POIs.

Local accommodation data was obtained from the Registo Nacional de Turismo (https:
//rnt.turismodeportugal.pt/) (accessed on 2 June 2023) and include information about
specific local accommodations that are registered on the platform. For this study, only
information about local accommodations registered in 2021 was collected. This information
provided the number of local accommodations that exist in each parish in the municipality
of Lisbon.

The sociodemographic data used for this study were obtained from CENSOS 2021
(https://censos.ine.pt/) (accessed on 2 June 2023), published by INE—Instituto Nacional
de Estatística (https://www.ine.pt/) (accessed on 2 June 2023) and freely accessible. For
sociodemographic data, indicators such as gender (number of males and females), age
(including population between 0 and 65+ years old), education level (% of population with
a certain level of education), employability (number of employed and unemployed), and
monthly income (average monthly rent amount) were used.

Regarding the commuting variables, data were also extracted from INE—Instituto
Nacional de Estatística. The main commuting mode was used and provided us with the
number of individuals that commute on foot, by car as a driver or as a passenger, by bus,
by company/school transportation, by metro, by train, by motorcycle, by bike, by boat,
and by other modes of transportation. It was necessary to aggregate some features so that
we could work with a more manageable set of features. To the column “commuting by

https://lisboaaberta.cm-lisboa.pt/
https://lisboaaberta.cm-lisboa.pt/
https://rnt.turismodeportugal.pt/
https://rnt.turismodeportugal.pt/
https://censos.ine.pt/
https://www.ine.pt/
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other modes of transportation” were added data on commuting by bus, company/school
transportation, metro, train, motorcycle, and boat.

Table 3 presents the description of the dependent and independent variables.

Table 3. Definition of dependent and independent variables.

Type Variables Description

Docked bike-sharing trips
(arrivals)

Docked bike-sharing trips on weekdays
Docked bike-sharing trips on weekends

Average docked bike-sharing trips per parish on
weekdays
Average docked bike-sharing trips per parish on
weekends

Docked bike-sharing trips
(departures)

Docked bike-sharing trips on weekdays
Docked bike-sharing trips on weekends

Average docked bike-sharing trips per parish on
weekdays
Average docked bike-sharing trips per parish on
weekends

Dockless e-scooter-sharing
trips (arrivals)

Dockless e-scooter-sharing trips on
weekdays
Dockless e-scooter-sharing trips on
weekends

Average Dockless e-scooter-sharing trips per parish
on weekdays
Average Dockless e-scooter-sharing trips per parish
on weekends

Dockless e-scooter-sharing
trips (departures)

Dockless e-scooter-sharing trips on
weekdays
Dockless e-scooter-sharing trips on
weekends

Average Dockless e-scooter-sharing trips per parish
on weekdays
Average Dockless e-scooter-sharing trips per parish
on weekends

Points of Interest (POIs) and
Local Accommodation
variables

No. Commercial POIs
No. Cultural POIs
No. Education POIs
No. Entertainment POIs
No. Government & Public sector POIs
No. Local accommodation

Number of Commercial POIs in each parish
Number of Cultural POIs in each parish
Number of Education POIs in each parish
Number of Entertainment POIs in each parish
Number of Government & Public sector POIs in each
parish
Number of local accommodations in each parish

Sociodemographic variables

Monthly income
No. of Female
No. of Male
Population between 0 and 14 years old
Population between 15 and 24 years old
Population between 25 and 64 years old
Population between 65 years old and over
Population employed
Population unemployed
Population with at least high school
education
Population with at least the third cycle of
basic education completed
Population with higher education

Average monthly rent amount per parish
Number of Female individuals in each parish
Number of Male individuals in each parish
Number of individuals between 0 and 14 years old
in each parish
Number of individuals between 15 and 24 years old
in each parish
Number of individuals between 25 and 64 years old
in each parish
Number of individuals between 65 years old and
over in each parish
Number of individuals employed in each parish
Number of individuals unemployed in each parish
Percentage of population with higher education in
each parish
Percentage of population with at least the third cycle
of basic education completed in each parish
Percentage of population with at least high school
education in each parish

Commuting variables

Commuting by bike
Commuting by car
Commuting by other modes of
transportation
Commuting on foot

Number of individuals of each parish that commutes
by bike
Number of individuals of each parish that commutes
by car
Number of individuals of each parish that commutes
by other modes of transportation
Number of individuals of each parish that commutes
on foot
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3.3. Methods

One of the objectives of this study is to explore the contextual variables that con-
tribute to the utilization of shared micromobility systems. Multicollinearity and spatial
autocorrelation are briefly introduced to elucidate the interrelationships among various
contextual variables. Subsequently, three methods (OLS, GWR, and GTWR) are outlined
for comparative analysis.

3.3.1. Multicollinearity

Multicollinearity is a statistical phenomenon that occurs when two or more indepen-
dent variables within a model reveal a strong linear relationship. This can give rise to
several issues that impact the interpretation of regression coefficients, potentially introduc-
ing bias into the results [55]. To mitigate this occurrence, we adopt the variance inflation
factor (VIF), which is a simple way to discard multicollinearity in a regression analysis [56].
For this study, variables with VIF values greater than 10 were assumed to be correlated
variables and were removed from the models.

3.3.2. Spatial Autocorrelation

Spatial autocorrelation refers to the characteristic where values of a variable at a
specific geographic location are not independent but demonstrate a degree of similarity
or correlation with values at nearby locations [57]. To evaluate spatial autocorrelation,
in this study, we employed Moran’s I, which is one of the most prevalent statistical tests
to assess the spatial variability of variables. It plays a fundamental role in quantifying
the degree of spatial autocorrelation within datasets, shedding light on how variables are
distributed across geographic space [58]. The range of Moran’s I falls between −1 and 1,
in which values nearing 1 signify positive spatial autocorrelation, indicating that similar
variable values tend to cluster in proximity; values nearing −1 indicate negative spatial
autocorrelation, suggesting the dispersion of dissimilar variable values; and values close
to 0 denote the absence of substantial spatial autocorrelation, implying a random spatial
distribution of variables [59].

3.3.3. Regression Models

Regression models, such as ordinary least squares (OLS) and geographical weighted
regression (GWR), can be employed to explore the relationships between the usage patterns,
demand, or performance of docked bike-sharing systems and dockless e-scooter systems
and a wide range of influential variables, including factors related to infrastructure and
user demographics [16,60]. OLS regression stands as a fundamental statistical technique,
particularly known for its simplicity in modelling linear relationships between variables,
since it does not consider the spatial variability introduced by non-stationarity in spa-
tial locations [61]. GWR is a spatial regression technique that extends OLS regression by
allowing the relationships between variables to vary across space [62]. However, GWR
regression operates under the assumption of a single kernel, effectively modelling spatial
relationships at a fixed scale. In the context of micromobility, this service exhibits a sig-
nificant spatiotemporal variation in user demand patterns, influenced by factors such as
the location, time of day, day of the week, and other contextual variables, and the other
models, such as multiscale geographically weighted regression (MGWR), are often used for
these types of analysis [60]. MGWR has the ability to incorporate spatiotemporal variation,
adapt to different scales, capture local relationships, handle non-stationarity, and improve
model fits to makes them a more suitable choice for spatiotemporal analyses of shared
micromobility services [61]. When evaluating OLS, GWR, and MGWR models, several key
values should be considered such as R-squared (R2) that indicate how well the models
explain the variance in the dependent variable (higher values generally suggest a better fit)
and corrected Akaike Information Criterion (AICc), a model selection criteria that balance
the goodness of fit and model complexity (lower values suggest a better trade-off and
can help in selecting the most appropriate model). In this study, we implemented OLS,
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GWR, and MGWR models for both weekdays and weekends, analyzing both the docked
bike-sharing system and the dockless e-scooter-sharing system. We utilized a combination
of R2 and AICc metrics to assess and select the most suitable model for our analysis.

The implementation of OLS, GWR, and MGWR models in shared micromobility
analyses allows accounting for spatial heterogeneity, spatial autocorrelation, and multiscale
variations. Before applying these models, it is essential to consider several aspects related to
the selection variables such as multicollinearity, which was discussed earlier. Furthermore,
the p-value is another valuable tool for variable selection in regression analysis. Usually,
variables with a low p-value (typically below a significance level of 0.05) are considered
more likely to have a meaningful impact on the dependent variable. However, in this
study, we chose to increase the threshold for the p-value to 0.08 when performing variable
selection in our regression analysis. This decision was motivated by the need to retain a
more comprehensive set of variables in our model that were theoretically relevant to this
study. Adopting a strict p-value threshold of 0.05 would have resulted in the exclusion of
many variables that, although not reaching conventional levels of statistical significance,
still held practical and theoretical relevance within this study’s context. Therefore, we
opted for a more flexible threshold to ensure that our model captured a broader range of
factors that could influence our results.

4. Results

In this section, we present the comprehensive analysis and findings obtained from
our study, aimed at addressing the research questions outlined in the previous sections.
To answer RQ1 and RQ2, separate temporal and spatial distribution analyses of the trips
of each shared micromobility service were first performed. Subsequently, a comparative
analysis between the two micromobility services was conducted to address RQ3 and RQ4.

4.1. Spatiotemporal Docked Bike-Sharing Usage Patterns

As previously mentioned, the docked bike-sharing system used for this analysis only
operates in 19 parishes in the municipality of Lisbon and, therefore, only trips belonging to
these ones were analysed. The data from the docked bike-sharing system cover the period
from 17 October 2022 to 31 March 2023.

4.1.1. Temporal Distribution Patterns

Temporal usage patterns of the trips were analysed for both arrivals and departures,
by the hour of the day and day of the week as shown in Figures 3 and 4.

Arrivals

During a period of 5 months, 201,598 arrivals were registered in the municipality of
Lisbon. Throughout the weekdays, a consistent pattern emerges in bike usage, character-
ized by distinct peaks observed at the same hours. These peaks manifest between 8:00 h
and 9:00 h, 13:00 h and 14:00 h, and 18:00 h and 19:00 h. However, over the weekend, a
shift occurs, marked by a surge in bike usage around 11:00 h on Saturdays and 12:00 h on
Sundays. Additionally, during weekends, another rise in bicycle usage happened around
15:00 h, extending through the late afternoon hours (from 19:00 h to 20:00 h). This analysis
underscores discernible variations in usage patterns between weekdays and weekends. To
rigorously assess the degrees of similarity between days of the week, a cosine similarity
(CosSim) measure was applied, aiding in statistically evaluating the resemblance between
these distinct temporal segments.

The results from the statistical analysis of the cosine similarity reveal compelling in-
sights. Across all combinations of days, the CosSim values consistently indicate substantial
resemblance, registering values greater than 0.9. Curiously, a higher degree of similarity is
particularly evident between Tuesdays and Wednesdays (0.997952) when compared to the
remaining days of the week. In contrast, the lowest degree of resemblance predominantly
surfaces between weekdays and weekends. These findings illuminate significant trends in
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temporal usage patterns, underlining the notable consistency in behavior within the week
while emphasizing distinct usage disparities between weekdays and weekends.
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Departures

Regarding departures, during a period of 5 months, 203,834 trips were registered in
the municipality of Lisbon. As can be observed in Figure 4, the departures present similar
peaks in usage to arrivals, which would be expected. This expectation arises from the
assumption that users are likely to complete their trips within a reasonable timeframe, and,
thus, the patterns of departure and arrival should align to some extent. On weekdays, there
is a significant increase in bike usage observed at 8:00 h compared to other hours of the day.
However, at 13:00 h and in the period between 17:00 and 18:00 h, an increase in the number
of trips was also observed.

Regarding cosine similarity, we found that all combinations of days produced relatively
high CosSin values (above 0.9), with a greater similarity between Wednesday and Thursday
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(0.998119) compared to the remaining days of the week. Parallel to the arrivals, the use of
the docked bike-sharing system is less similar between weekdays and weekends.

The cosine similarity values for all combinations are given in Table A1 (arrivals) and
Table A2 (departures) of Appendix A.

4.1.2. Spatial Distribution Patterns

This section presents the spatial distribution of the average number of arrivals and
departures per parish, distinguishing between weekdays and weekends. Since the docked
bike-sharing system only operates in 19 parishes in the municipality of Lisbon, these
parishes are presented in the sections below as “No system available”.

Arrivals

Figure 5a,b shows the average number of trips per parish (weekday and weekend),
respectively, where it can be seen that the parishes of Alvalade, Avenidas Novas, and
Parque das Nações are the ones with the highest average number of trips both during the
week and the weekend, with the number of trips being higher on weekdays.
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Departures

Regarding departures, Figure 6a,b displays the average number of trips per parish
(weekdays and weekends). It can be observed that, similar to arrivals, the parishes of
Alvalade, Avenidas Novas, and Parque das Nações show the highest average number of
trips, both during the week and on weekends. Moreover, the number of trips is higher
on weekdays.
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4.2. Spatiotemporal E-Scooter-Sharing Usage Patterns

The data from e-scooter-sharing system cover the period from 17 October 2022 to 31
March 2023, which resulted in a total of 148,785 arrivals and 136,335 departures.

4.2.1. Temporal Distribution Patterns

The trips were analyzed based on arrivals and departures, and by the time of the day
and day of the week as shown in Figures 7 and 8. Additionally, similar to what was done
for the docked bike-sharing system, here the cosine similarity was calculated to understand
the degree of resemblance between the days of the week.
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Arrivals

During a period of 5 months, 148,785 arrivals were registered in the municipality of
Lisbon for dockless e-scooter systems. As can be observed in Figure 7, an evident peak
is observed between 13:00 h and 14:00 h both during the weekdays and on the weekend.
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The same is visible during the period from 17:00 h to 18:00 h. During weekday mornings
(8:00–9:00 h), a more pronounced peak in usage is observed than on the weekend.

Regarding cosine similarity, we found that all days of the week combinations produced
CosSin values above 0.9, thus suggesting that all days have a high degree of similarity.
However, there is a greater similarity between Monday and Friday (0.997658) in relation
to the other days of the week, with less-similar use occurring mainly between weekdays
and weekends.

Departures

For departures of e-scooter-sharing systems during a period of 5 months, 136,335 trips
were registered. As illustrated in Figure 8, the use patterns of e-scooters during weekdays
become evident from around 9:00 h, characterized by gradual increases and decreases in
the number of trips between approximately 12:00 h and 19:00 h. On weekends, a distinct
pattern emerges with e-scooter usage becoming evident from 11:00 h onwards. Interestingly,
the variations throughout the day on weekends manifest a resemblance to those observed
on weekdays.

As with the previous temporal analyses, the cosine similarity was also computed
for departures within the dockless e-scooter-sharing system. From this analysis, it be-
comes evident that all combinations of days produced relatively high cosine similarity
values (above 0.9), indicating a significant degree of similarity. Notably, the highest re-
semblance is observed between Mondays and Fridays (0.999013) compared to the other
days of the week. Furthermore, the smallest similarity is found between weekdays and
weekends, underlining the distinctive usage patterns that emerge during these different
temporal segments.

The cosine similarity values for all combinations are given in Table A3 (arrivals) and
Table A4 (departures) of Appendix A.

4.2.2. Spatial Distribution Patterns

This section presents the spatial distribution of the average number of arrivals and
departures per parish, distinguishing between weekdays and weekends. Note that, in the
case of departures on weekends, there is no recorded average number of trips for the parish
of Santa Clara. Consequently, it is denoted as “Parish without trips”.

Arrivals

Figure 9a,b represents the average number of trips per parish (weekday and weekend).
It can be observed that the parishes of Belém, Santa Maria Maior, Santo António, Avenidas
Novas, Estrela, Misericórdia, Arroios, and Parque das Nações present the highest averages
of trip numbers, both during the week and on weekends. Curiously, the number of trips is
higher on weekends.

Departures

Figure 10a,b also illustrates the average number of trips per parish (weekday and
weekend). Similar to the arrivals, these figures showed that the parishes of Belém, Santa
Maria Maior, Santo António, Avenidas Novas, Estrela, Misericórdia, Arroios, and Parque
das Nações have the highest average trip numbers, both during the weekdays and on
weekends, with the number of trips being higher on weekends. Additionally, note that, for
departures on weekends, the parish of Santa Clara does not display an average number of
trips and, for departures on weekdays, this parish is one of those with the lowest average
number of trips.



Smart Cities 2024, 7 895

Smart Cities 2024, 7 895 
 

 

Figure 8. Dockless e-scooter-sharing trips distribution over the course of the day (departures). 

As with the previous temporal analyses, the cosine similarity was also computed for 
departures within the dockless e-scooter-sharing system. From this analysis, it becomes 
evident that all combinations of days produced relatively high cosine similarity values 
(above 0.9), indicating a significant degree of similarity. Notably, the highest resemblance is 
observed between Mondays and Fridays (0.999013) compared to the other days of the week. 
Furthermore, the smallest similarity is found between weekdays and weekends, 
underlining the distinctive usage patterns that emerge during these different temporal 
segments. 

The cosine similarity values for all combinations are given in Tables A3 (arrivals) and 
A4 (departures) of Appendix A. 

4.2.2. Spatial Distribution Patterns 
This section presents the spatial distribution of the average number of arrivals and 

departures per parish, distinguishing between weekdays and weekends. Note that, in the 
case of departures on weekends, there is no recorded average number of trips for the 
parish of Santa Clara. Consequently, it is denoted as “Parish without trips”. 

Arrivals 
Figure 9a,b represents the average number of trips per parish (weekday and 

weekend). It can be observed that the parishes of Belém, Santa Maria Maior, Santo 
António, Avenidas Novas, Estrela, Misericórdia, Arroios, and Parque das Nações present 
the highest averages of trip numbers, both during the week and on weekends. Curiously, 
the number of trips is higher on weekends. 

  
(a) (b) 

Figure 9. Dockless e-scooter-sharing spatial distribution of average trips, (a) arrivals on weekdays 
and (b) arrivals on weekend. 

  

Figure 9. Dockless e-scooter-sharing spatial distribution of average trips, (a) arrivals on weekdays
and (b) arrivals on weekend.

Smart Cities 2024, 7 896 
 

Departures 
Figure 10a,b also illustrates the average number of trips per parish (weekday and 

weekend). Similar to the arrivals, these figures showed that the parishes of Belém, Santa 
Maria Maior, Santo António, Avenidas Novas, Estrela, Misericórdia, Arroios, and Parque 
das Nações have the highest average trip numbers, both during the weekdays and on 
weekends, with the number of trips being higher on weekends. Additionally, note that, 
for departures on weekends, the parish of Santa Clara does not display an average number 
of trips and, for departures on weekdays, this parish is one of those with the lowest 
average number of trips. 

  
(a) (b) 

Figure 10. Dockless e-scooter-sharing spatial distribution of average trips, (a) departures on 
weekdays and (b) departures on weekend. 

4.3. OLS, GWR and MGWR Models 
4.3.1. Model Comparison 

Before presenting the results of the regression models, it is important to note that, 
prior to this, the VIFs of the independent variables were calculated to avoid 
multicollinearity among the variables. Variables with a VIF greater than 10 were 
eliminated as they were considered non-significant. The VIF values are given in Tables A5 
and A6 in Appendix A, for both the docked and dockless systems. Additionally, for 
significant variables, the Moran’s I statistic was employed to determine if the variables are 
spatially associated [19]. The results of the Moran’s I test are given in Table A7 in 
Appendix A. 

After the test of the multicollinearity and spatial autocorrelation, we present and 
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despite all three regression models yielding the same R-squared result, the higher AICc 
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4.3. OLS, GWR and MGWR Models
4.3.1. Model Comparison

Before presenting the results of the regression models, it is important to note that, prior
to this, the VIFs of the independent variables were calculated to avoid multicollinearity
among the variables. Variables with a VIF greater than 10 were eliminated as they were
considered non-significant. The VIF values are given in Tables A5 and A6 in Appendix A,
for both the docked and dockless systems. Additionally, for significant variables, the
Moran’s I statistic was employed to determine if the variables are spatially associated [19].
The results of the Moran’s I test are given in Table A7 in Appendix A.

After the test of the multicollinearity and spatial autocorrelation, we present and
compare the results of our analysis using three distinct regression models: ordinary least
squares (OLS), geographically weighted regression (GWR), and multiscale geographically
weighted regression (MGWR). The last two mentioned have been employed to examine the
spatial relationships between both docked bike-sharing trips and e-scooter-sharing trips as
well as significant variables of this study.

For docked bike-sharing models, for both arrivals and departures on weekdays, as
shown in Table 4, the R2 values increase in MGWR comparative to the OLS and GWR
models, and the AICc values are reduced in MGWR comparative to the OLS and GWR
models, which was an expected result. However, on weekends, for both arrivals and
departures, the R2 values remain the same for the three regression models, OLS, GWR, and
MGWR, with AICc presenting higher values for both GWR and MGWR in comparison to



Smart Cities 2024, 7 896

the OLS regression model. These results can be explained by the fact that the regression
models were applied with one independent variable which was the only one that was
significant (p-value < 0.08) in the case of weekends (arrivals and departures). Given that
the OLS model outperformed the GWR and MGWR models in terms of AICc despite
all three regression models yielding the same R-squared result, the higher AICc value of
the OLS model can be attributed to its simplicity. OLS, being a basic linear regression
technique, assumes a constant relationship across all observations, which aligns well with
the single-variable context. GWR and MGWR introduce spatial complexity that may not
significantly improve the model fit when there is limited spatial variation to capture. Also,
for the docked bike-sharing system, it can be observed that the R2 is higher on weekdays
compared to weekends, for both arrivals and departures, indicating that the model more
effectively explains spatial variability during weekdays than on weekends.

Table 4. Comparison results of OLS, GWR, and MGWR for docked bike-sharing system.

Arrivals Departures

Docked Bike-Sharing

Weekday Weekend Weekday Weekend

AICc R2 AICc R2 AICc R2 AICc R2

OLS 34.747 0.756 39.479 0.636 34.554 0.758 41.434 0.596

GWR 31.060 0.871 39.508 0.636 31.244 0.868 41.461 0.596

MGWR 27.653 0.883 39.508 0.636 27.967 0.880 41.461 0.596

The dockless e-scooter-sharing models’ results are given in Table 5, and it can be
verified that, for both arrivals and departures on weekdays, the AICc values are higher in
MGWR compared to the OLS and GRW models, which would not be an expected result.
Nevertheless, the R2 values increase in MGWR compared to the OLS and GWR models.
Regarding weekends, for both arrivals and departures, we obtain more expected results
in which the R2 value increases and the AICc value decreases in MGWR compared to
OLS and GWR. In contrast to the values observed in the docked bike-sharing system, for
the dockless e-scooter-sharing system, the R2 values are generally higher on weekends,
indicating that the model more effectively explains spatial variability during weekends
compared to weekdays. However, an exception was noted in the MGWR model for arrivals
on weekdays, where the R2 value is higher. This inconsistency might be a consequence of
spatial complexity that was not adequately captured by the model.

Table 5. Comparison results of OLS, GWR, and MGWR for dockless e-scooter-sharing system.

Arrivals Departures

Dockless e-Scooter-Sharing

Weekday Weekend Weekday Weekend

AICc R2 AICc R2 AICc R2 AICc R2

OLS 32.198 0.889 24.019 0.895 32.649 0.850 18.675 0.915

GWR 32.251 0.890 23.627 0.907 32.692 0.851 18.612 0.920

MGWR 34.320 0.965 22.310 0.915 32.700 0.851 17.460 0.929

Given these results from the regression models, we decided to only consider the
MGWR model in the rest of this study. The estimations of the MGWR model for docked
bike-sharing and for e-scooter-sharing are given in Tables A8 and A9 in Appendix A.
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4.3.2. Spatial Features of Variables Coefficients

One crucial aspect of the MGWR model lies in its beta estimated coefficients, which
elucidate the spatial relationships between the dependent and independent variables. In
this context, our initial focus was on assessing spatial variations in significant variables
related to both the docked bike-sharing system and e-scooter-sharing system. This analysis
involved examining the standard deviations (STD) derived from the MGWR model, which
provided valuable insights into the extent of the spatial heterogeneity within the relation-
ships between the dependent and independent variables. Subsequently, we proceeded to
investigate the strength of these spatial relationships by examining the beta coefficients,
shedding light on how these variables interacted with the dynamics of the two shared
micromobility services across the different parishes. In addiction we analyzed the local
p-value, a statistical measure that assesses the significance of each independent variable’s
contribution to the model’s performance in each parish. For the docked bike-sharing sys-
tem, only the variable commercial POIs showed a spatial variation on weekdays for both
arrivals and departures, as shown in Figure 11a,b, respectively.
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das Nações exhibited a negative correlation. In other words, the presence of commercial 
points of interest might have a diminishing effect on bike-sharing usage. In contrast, 
parishes such as Alcântara, Benfica, São Domingos de Benfica, Alvalade, and Areeiro 
demonstrated a stronger positive correlation, emphasizing that commercial POIs play a 
more substantial role in docked bike-sharing usage in these areas. Lastly, parishes 
including Estrela, Misericórdia, Santa Maria Maior, São Vicente, Campo de Ourique, 
Santo António, Arroios, Campolide, and Avenidas Novas showed the highest positive 
correlations. In the case of the parishes of Belém, Carnide, Lumiar, and Olivais, despite 
the presence of beta coefficients, these parishes exhibit a local p-value greater than 0.05 for 
the variable commercial POIs. This indicates that, although there may be a directional 
relationship between the commercial POIs variable and the usage of docked bike-sharing 
in these areas, this relationship is not statistically significant. Therefore, the impact of 
commercial points of interest on docked bike-sharing usage in these parishes is not 
reliably observed or supported by statistical evidence. These results illustrate the 
relationship between commercial POIs and bike-sharing behavior, emphasizing how 
these points of interest shape usage patterns across different areas within the docked bike-
sharing system. 
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Figure 11. Docked bike-sharing MGWR beta coefficient of commercial POIs|X–local p-value > 0.05;
(a) arrivals—weekdays and (b) departures—weekdays.

Figure 11a,b offered a comprehensive perspective on how the prevalence of commercial
POIs correlates with docked bike-sharing patterns in each parish of the municipality of
Lisbon. Through the evaluation of Figure 11a,b, it was observed that there were no
disparities between the arrival and departure patterns, that is, the influence of commercial
points of interest on bike-sharing usage showed a similar spatial distribution for both
the arrivals and departures. Concerning the effect that commercial POIs have on the
use of the docked bike-sharing system in each parish, it was demonstrated that Parque
das Nações exhibited a negative correlation. In other words, the presence of commercial
points of interest might have a diminishing effect on bike-sharing usage. In contrast,
parishes such as Alcântara, Benfica, São Domingos de Benfica, Alvalade, and Areeiro
demonstrated a stronger positive correlation, emphasizing that commercial POIs play a
more substantial role in docked bike-sharing usage in these areas. Lastly, parishes including
Estrela, Misericórdia, Santa Maria Maior, São Vicente, Campo de Ourique, Santo António,
Arroios, Campolide, and Avenidas Novas showed the highest positive correlations. In
the case of the parishes of Belém, Carnide, Lumiar, and Olivais, despite the presence of
beta coefficients, these parishes exhibit a local p-value greater than 0.05 for the variable
commercial POIs. This indicates that, although there may be a directional relationship
between the commercial POIs variable and the usage of docked bike-sharing in these
areas, this relationship is not statistically significant. Therefore, the impact of commercial
points of interest on docked bike-sharing usage in these parishes is not reliably observed
or supported by statistical evidence. These results illustrate the relationship between
commercial POIs and bike-sharing behavior, emphasizing how these points of interest
shape usage patterns across different areas within the docked bike-sharing system.
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Regarding the dockless e-scooter-sharing system, a spatial relationship is presented be-
tween the number of trips and two significant variables, government and public sector POIs,
for arrivals (weekday and weekend) and departures (weekend), and local accommodation
(weekday) as shown in Figures 12a–c and 13, respectively.
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Figure 12. Dockless e-scooter-sharing MGWR beta coefficient of government and public sector 
POIs|X–local p-value > 0.05; (a) arrivals—weekdays, (b) arrivals—weekend, and (c) departures—
weekend. 
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Domingos de Benfica, Avenidas Novas, Santo António, Arroios, Santa Maria Maior, São 
Vicente, and Penha de França continue to demonstrate positive correlations, indicating a 
widespread influence of government and public sector POIs on e-scooter mobility. 
Curiously, some parishes, including Misericórdia, Beato, Areeiro, Alvalade, and Marvila, 
reveal positive correlations as well, albeit with diverging degrees. In the case of the 
parishes of Carnide, Lumiar, Olivais, Parque das Nações, and Santa Clara, they all exhibit 
a local p-value greater than 0.05 for the variable government and public sector POIs 
indicating that, although there may be a directional relationship between the government 
and public sector POIs variable and the usage of dockless e-scooter-sharing in these areas, 
this relationship lacks statistical significance. Figure 12b (arrivals weekend) reveals a 
similar pattern to the first result, with parishes such as Belém, Ajuda, Alcântara, Campo 
de Ourique, Estrela, and Benfica displaying positive correlations with government and 
public sector POIs. Interestingly, the negative correlations observed in Figure 12a appear 
to be reduced in Figure 12b, demonstrating a shift in the spatial dynamics of e-scooter 
arrivals during weekends. In Figure 12c, focused on spatial distribution of government 
and public sector POIs for departures on weekends, we find consistent patterns of 
influence associated with government and public sector points of interest. However, it is 
important to reinforce that there are no total average e-scooter trips for the parish of Santa 
Clara. Parishes such as Belém and Ajuda maintain their strong positive correlations, 

Figure 12. Dockless e-scooter-sharing MGWR beta coefficient of government and public sector POIs|X–
local p-value > 0.05; (a) arrivals—weekdays, (b) arrivals—weekend, and (c) departures—weekend.

Smart Cities 2024, 7 900 
 

reaffirming the enduring impact of these points on e-scooter departures. Similarly, other 
parishes continue to present positive correlations, although with slightly varying 
magnitudes. Also, the disappearance of negative correlations in Figure 12c suggests a 
consistent trend of positive influence exerted by government and public sector points of 
interest during weekends. The observed difference in the influence of government and 
public sector POIs on e-scooter system usage between weekends and weekdays may be 
attributed to the diverse range of services included within this variable. On weekends, 
with a broader spectrum of activities beyond traditional work-related commuting, the 
inclusion of elements such as lifts that are a touristic attractions, cemeteries, and private 
emergency services within the government and public sector POIs variable may 
contribute to a more major influence on e-scooter usage during leisure or non-work-
related periods. Conversely, on weekdays, when the focus tends to be more on work-
related commuting, the influence of government and public sector POIs may be more 
subdued. Commuters during the week might primarily rely on these points for specific 
work-related purposes, resulting in a less pronounced impact on e-scooter usage 
compared to the varied and leisure activities that occur on weekends. These results 
emphasize the connection between points of interest in the government and public sector 
and the dockless e-scooter-sharing system, highlighting the role of these points in 
influencing usage patterns throughout the municipality of Lisbon. 

Regarding the local accommodation variable, Figure 13 provides insights into the 
relationship between this factor and the use of the dockless e-scooter-sharing system 
through different parishes of the municipality of Lisbon, concerning the arrivals on 
weekdays. 

 
Figure 13. Dockless e-scooter-sharing MGWR beta coefficient of local accommodation|X–local p-
value > 0.05 (arrivals—weekdays). 

It can be observed that several parishes, including Carnide, Alvalade, Marvila, 
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suggesting that the presence of local accommodation facilities significantly influences e-
scooter usage in these areas, potentially due to a higher demand from tourists or visitors. 
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maintain positive correlations with local accommodation, even though they are lower. 
This can indicate that tourists or visitors may contribute to e-scooter usage in these 
parishes, although to a lesser extent. Also, parishes such as São Domingos de Benfica, 
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local accommodations, although with lightly lower coefficients, suggesting that the 
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Figure 12a–c represents the interaction between government and public sector POIs
and the usage patterns of e-scooters across different parishes of the municipality of Lisbon.

Figure 12a showed that parishes such as Belém and Ajuda consistently reveal a strong
positive correlation with government and public sector points of interest, signifying a robust
connection between the presence of these points and heightened e-scooter usage. A similar
pattern continues in parishes such as Alcântara and Benfica, where positive correlations
persist, even with slightly reduced magnitudes. As we move towards the center of the
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municipality, parishes like Estrela, Campo de Ourique, Campolide, São Domingos de
Benfica, Avenidas Novas, Santo António, Arroios, Santa Maria Maior, São Vicente, and
Penha de França continue to demonstrate positive correlations, indicating a widespread
influence of government and public sector POIs on e-scooter mobility. Curiously, some
parishes, including Misericórdia, Beato, Areeiro, Alvalade, and Marvila, reveal positive
correlations as well, albeit with diverging degrees. In the case of the parishes of Carnide,
Lumiar, Olivais, Parque das Nações, and Santa Clara, they all exhibit a local p-value greater
than 0.05 for the variable government and public sector POIs indicating that, although
there may be a directional relationship between the government and public sector POIs
variable and the usage of dockless e-scooter-sharing in these areas, this relationship lacks
statistical significance. Figure 12b (arrivals weekend) reveals a similar pattern to the
first result, with parishes such as Belém, Ajuda, Alcântara, Campo de Ourique, Estrela,
and Benfica displaying positive correlations with government and public sector POIs.
Interestingly, the negative correlations observed in Figure 12a appear to be reduced in
Figure 12b, demonstrating a shift in the spatial dynamics of e-scooter arrivals during
weekends. In Figure 12c, focused on spatial distribution of government and public sector
POIs for departures on weekends, we find consistent patterns of influence associated with
government and public sector points of interest. However, it is important to reinforce that
there are no total average e-scooter trips for the parish of Santa Clara. Parishes such as
Belém and Ajuda maintain their strong positive correlations, reaffirming the enduring
impact of these points on e-scooter departures. Similarly, other parishes continue to present
positive correlations, although with slightly varying magnitudes. Also, the disappearance
of negative correlations in Figure 12c suggests a consistent trend of positive influence
exerted by government and public sector points of interest during weekends. The observed
difference in the influence of government and public sector POIs on e-scooter system
usage between weekends and weekdays may be attributed to the diverse range of services
included within this variable. On weekends, with a broader spectrum of activities beyond
traditional work-related commuting, the inclusion of elements such as lifts that are a
touristic attractions, cemeteries, and private emergency services within the government
and public sector POIs variable may contribute to a more major influence on e-scooter
usage during leisure or non-work-related periods. Conversely, on weekdays, when the
focus tends to be more on work-related commuting, the influence of government and public
sector POIs may be more subdued. Commuters during the week might primarily rely on
these points for specific work-related purposes, resulting in a less pronounced impact on
e-scooter usage compared to the varied and leisure activities that occur on weekends. These
results emphasize the connection between points of interest in the government and public
sector and the dockless e-scooter-sharing system, highlighting the role of these points in
influencing usage patterns throughout the municipality of Lisbon.

Regarding the local accommodation variable, Figure 13 provides insights into the rela-
tionship between this factor and the use of the dockless e-scooter-sharing system through
different parishes of the municipality of Lisbon, concerning the arrivals on weekdays.

It can be observed that several parishes, including Carnide, Alvalade, Marvila, Areeiro,
and Beato, showed a strong positive correlation with local accommodation, suggesting that
the presence of local accommodation facilities significantly influences e-scooter usage in
these areas, potentially due to a higher demand from tourists or visitors. Moving across
the city, parishes such as Penha de França, Lumiar, and Olivais also maintain positive
correlations with local accommodation, even though they are lower. This can indicate
that tourists or visitors may contribute to e-scooter usage in these parishes, although to a
lesser extent. Also, parishes such as São Domingos de Benfica, Avenidas Novas, Arroios,
Santa Maria Maior, and São Vicente demonstrated positive correlations, extending the
influence of local accommodation to a broader urban landscape, and shaping e-scooter
mobility patterns in these areas. The parishes of Misericórdia, Santo António, Campolide,
and Benfica showed positive correlations with local accommodations, although with lightly
lower coefficients, suggesting that the impact of local accommodation on e-scooter usage
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may be less pronounced in these areas. In the instance of the parishes of Ajuda, Alcântara,
Belém, Campo de Ourique, Estrela, Parque das Nações, and Santa Clara, despite the
presence of beta coefficients, these parishes demonstrate a local p-value exceeding 0.05 for
the variable local accommodation. This indicates that, although there might be a certain
directional connection between the local accommodation variable and the usage of dockless
e-scooter-sharing, this connection lacks statistical significance in these parishes. Therefore,
the presence of local accommodations does not have a statistically significant impact on
dockless e-scooter-sharing usage within these parishes. This analysis provided insights
into how the presence and density of local accommodations impact the usage of e-scooters
in the different parishes of the municipality of Lisbon.

4.4. Comparison of Docked Bike-Share and Dockless E-Scooter Share Usage Patterns

Within this section, we proceed to explore and address RQ3 and RQ4, focusing on a
comprehensive comparative analysis of spatiotemporal usage patterns between e-scooter-
sharing and docked bike-sharing systems. As in the previous sections, this comparative
analysis includes arrivals and departures for weekdays and weekends.

In terms of the total number of trips for the same period of time, the docked bike-
sharing system has more trips registered than the dockless e-scooter-sharing system. This
might be due to factors such as familiarity with traditional biking, the convenience of
accessing bikes from designated docking stations, and established cycling infrastructure.
The discrepancy could signify differences in user preferences and comfort levels with
the available modes of transportation. Moreover, the observed trend might also indicate
variations in urban mobility patterns and the suitability of the respective systems to the
local environment. Docked bike-sharing systems are often integrated into city planning and
infrastructure, providing users with a reliable and well-organized means of transportation,
potentially contributing to higher adoption rates. The dockless e-scooter-sharing system
might cater to a distinct user demographic seeking short, flexible trips that are not well-
suited for the bulkier bikes in the docked system. However, it is essential to emphasize
that, in this study, we are solely evaluating one of the dockless e-scooter systems operating
in Lisbon, despite the presence of multiple others, whereas, for docked bike-sharing, there
is only one system in place. If we were to assess all of the e-scooter systems, it is probable
that the total number of trips taken would surpass that of docked bike-sharing.

4.4.1. Temporal Patterns

In the analysis of individual temporal patterns for both the docked bike-sharing and
dockless e-scooter-sharing systems, the trip data were aggregated by the hour of the day
and day of the week. Through this comparative analysis, we were able to realize that
docked bike-sharing and e-scooter-sharing systems behave similarly.

For the arrivals, the distribution of trips throughout the course of the day on weekdays
is similar for the two shared micromobility services. In the context of arrivals, there is
a striking resemblance in the trip distribution over the course of weekdays between the
two shared micromobility services. Also, the peak hours of use manifest a similarity in
both systems—8–9 h, 13–14 h, and 17–19 h. These consistent peaks underscore a shared
propensity among users to engage with these services during specific windows of the day,
reflecting common patterns in commuting habits or preferred travel times. The convergence
of these high-activity periods between docked bike-sharing and e-scooter-sharing systems
implies a uniformity in user preferences during these pivotal timeframes, presenting an
opportune juncture for service optimization and resource allocation strategies, considering
that, in this case, the docked system has more trips registered than the dockless system.
On the weekend, the two systems have a slightly different distribution of trips. While
the docked bike-sharing system experiences significant usage until around 20 h, in the
dockless system, the number of trips begins to decline starting from 17 h. Regarding
the departures, the temporal usage patterns also exhibit similarity in both the docked
and dockless systems. However, there is a remarkable surge in the use of bikes at 8 h
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on weekdays that is not as pronounced within the dockless e-scooter-sharing system. As
previously discussed, this divergence hints at differing user preferences during the morning
commute, possibly influenced by the nature of these modes of micromobility. Additionally,
the patterns during weekends, similar to what was seen in the analysis of arrivals, show
the same trend. Notably, the docked bike-sharing system reveals a propensity for extended
use even during later hours on weekends, indicating a distinct weekend usage behavior
that may stem from users’ leisurely or recreational activities during these periods.

4.4.2. Spatial Patterns

After comparing temporal patterns, we proceed with the comparative analysis of the
spatial differences between these two systems. The initial constraint encountered was that
we were only able to compare data from 19 parishes within the municipality of Lisbon. This
limitation arises because the docked bike-sharing system operates only in these 19 parishes:
Alcântara, Alvalade, Areeiro, Arroios, Avenidas Novas, Belém, Benfica, Campo de Ourique,
Campolide, Carnide, Estrela, Lumiar, Misericórdia, Olivais, Parque das Nações, Santa
Maria Maior, Santo António, São Domingos de Benfica, and São Vicente.

Starting by comparing the arrivals of the two systems, the parishes that present the
highest average number of trips, and thus where trip concentrations are the most pro-
nounced, differ between the two systems on both weekdays and weekends. Nevertheless,
there are notable similarities concerning specific parishes. Parishes such as Alvalade,
Avenidas Novas, Arroios, Parque das Nações, Santa Maria Maior, and Santo António
emerge as regions where system usage is most prevalent in both modes of shared micromo-
bility, spanning weekdays and weekends. Also, the parish of Areeiro demonstrates higher
usage in both bikes and e-scooters; however, during weekends, it was excluded from this
prominence in the dockless e-scooter-sharing system. Additionally, in terms of spatial
resemblances, the parish of São Vicente emerges as one with fewer trips in both the docked
bike-sharing system and dockless e-scooter system. Concerning disparities between the
two shared micromobility modes, the parishes of Lumiar and Olivais exhibit greater bike
usage while showing fewer e-scooter trips. In contrast, parishes such as Alcântara, Belém,
Campo de Ourique, Estrela, and Misericórdia experience higher e-scooter usage while
demonstrating fewer bike trips. Curiously, the parishes with the lowest number of trips in
the dockless system are the ones where the bike-sharing system is not available. In the case
of the departures, as expected, the spatial distribution patterns of the two systems are quite
similar to those of arrivals.

In the context of our analysis of the OLS, GWR, and MGWR models, and before delving
into the estimates of the MGWR model, differences in the models’ fit were observed between
the two shared micromobility systems. For the docked bike-sharing system, a higher R2

value (OLS, GWR, and MGWR) was observed on weekdays compared to weekends, for
both arrivals and departures. The consistently elevated R2 values on weekdays suggest a
stronger correlation between system usage and daily commuting patterns, such as home-
to-work travel, which is more prevalent on weekdays. On weekends, usage may be more
sporadic and diverse, leading to a reduced capacity of the models to explain data variation.
Additionally, it can be inferred that the independent variables of the model are more suited
to explaining the specific usage pattern observed on weekdays, resulting in a better model
fit during these periods compared to weekends. Conversely, for the dockless e-scooter
system, the R2 values are generally higher on weekends, indicating greater variability in
e-scooter usage during leisure periods or specific weekend events. This trend may also
be associated with the increased alignment of significant variables with observed usage
patterns on weekends, resulting in a heightened predictive capacity of the model during
these days.

Regarding the spatial variation in some significant variables in the two shared mi-
cromobility services’ MGWR estimations, we found that there are no common variables
revealing spatial variation in both systems, which does not allow us to make a comparison
between them. Despite this, we can evaluate the positive or negative effect of these variables
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on each of the systems, through the average value taken from the MGWR model statistics.
The positive mean indicates that, on average, the variable has a consistent and positive
influence on bike-sharing usage or e-scooter-sharing usage, and this influence remains the
same in all locations, since there is no spatial variation. A variable with a negative mean
implies a negative influence on bike-sharing usage or e-scooter-sharing usage. That is, the
variable can be associated with an increase or decrease in the use of these systems, with
this association being uniform and constant throughout the study area. In the case of this
analysis, the lack of spatial variation means that there is no variation in the strength or
direction of this positive or negative effect between different parishes in the municipality
of Lisbon. It is noteworthy, as shown in Appendix A (Tables A8 and A9), that there is
one variable, commuting by bike, which, despite not displaying spatial variation, appears
consistently in both systems. For the docked bike-sharing system, the commuting by bike
variable appeared as a significant variable for both arrivals and departures on weekdays
and weekends, while for the dockless e-scooter systems it appeared for both arrivals and
departures only on weekends. In the case of the docked bike-sharing system, commuting
by bike exhibited a positive effect, while for the dockless e-scooter-sharing system, the same
variable had a negative influence. It is curious that the variable commuting by bike has
a positive effect on the docked bike-sharing system that represents the same commuting
mode. This suggests that, while both docked bike-sharing and dockless e-scooter-sharing
may seem similar in that they are both shared micromobility options, there are specific user
behaviors and preferences. For docked bike-sharing, individuals who already bike com-
mute may find it convenient to use the service as an extension of their existing biking habits.
It complements their mode of transportation and offers a convenient last-mile solution. In
contrast, for dockless e-scooter-sharing, bike commuters may have distinct reasons for not
choosing e-scooters. These could be related to factors like the perceived convenience, cost,
or suitability of e-scooters for their specific commuting routes. This contrast highlights
the importance of considering not just the mode of transportation but also the context and
preferences of users when analyzing shared micromobility services. It underscores the
need for tailored strategies to optimize the adoption of these services among diverse user
groups. There is also another significant variable (commercial POIs) in common in both
systems for weekday arrivals that has a positive effect (positive mean) on their usage. The
positive mean indicates that commercial POIs have a consistent positive influence on both
micromobility systems for weekday arrivals. However, for docked bike-sharing, there is
spatial variation, while, for dockless e-scooter-sharing, there is none. The spatial variation
in the impact of commercial POIs for docked bike-sharing implies that the strength of this
influence varies across different parishes or locations within the city. The lack of spatial
variation in the impact of commercial POIs for dockless e-scooter-sharing suggests that this
variable has a consistent positive effect across all parishes for this transportation mode. In
other words, the presence of commercial points of interest appears to uniformly contribute
to a higher demand for dockless e-scooters in all parishes.

Furthermore, in the dockless e-scooter-sharing system, there are also other variables
that are considered significant and which do not show spatial variation in some cases, such
as No. Cultural POIs for arrivals (weekday and weekend) and for departures (weekday
and weekend), No. government and public sector POIs for departures on weekdays,
and Population unemployed for arrivals on weekdays. Therefore, the first two variables
have a positive effect on e-scooter usage. The Population unemployed variable has a
negative effect on the use of e-scooters, suggesting a complex interplay of economic,
transportation, and geographic factors that influence e-scooter adoption in areas with
higher unemployment rates.

Another piece of evidence stemming from this analysis is that some variables display
spatial variations on weekdays while remaining devoid of spatial variation during week-
ends, and vice versa for both docked and dockless systems. Temporal variation underscores
how certain variables may exhibit distinct relationships with the dependent variable during
weekdays compared to weekends, often reflecting the influence of time-sensitive activities
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such as work commutes, business operations, or weekday-specific urban dynamics. Spatial
interactions play a pivotal role as well, as variables may interact differently with other
spatial factors or geographic characteristics depending on the temporal context, leading to
varying spatial patterns. Furthermore, urban dynamics, such as rush-hour traffic, public
transportation usage, or commercial activities, tend to peak during weekdays, contributing
to the emergence of spatial variations specific to that period. These nuanced temporal and
spatial dynamics highlight the multifaceted nature of MGWR analysis and emphasize the
importance of accounting for both temporal and spatial dimensions in this analysis.

5. Conclusions

The main goal of this study was to embark on a comprehensive exploration of the
spatiotemporal usage patterns of two shared micromobility services (docked bike-sharing
system and dockless e-scooter system) in the municipality of Lisbon. Through rigorous
analysis, including temporal considerations, and the application of advanced techniques
like multiscale geographically weighted regression (MGWR), we have unveiled nuanced
insights into the factors driving usage dynamics in this emerging urban transportation
domain over approximately five months (from 17 October 2022 to 31 March 2023).

The data were categorized into arrivals and departures, a division deemed necessary
due to the nature of the data sources. We chose to examine both arrivals and departures
to investigate the presence of any significant differences; however, it is noteworthy that,
in terms of both temporal and spatial analysis, no significant differences were observed.
This underscores the robustness of our findings and suggests that the utilization patterns of
shared micromobility modes remained consistent across different perspectives, reinforcing
the reliability of our results.

Our analysis reveals a higher usage of the GIRA docked bike-sharing system compared
to the LINK e-scooter-sharing system over the analyzed period. This discrepancy cannot be
solely attributed to system superiority and reflects the complexities of urban transportation
choices, influenced by factors such as user preferences, accessibility, and city-specific
conditions. Nevertheless, the temporal distribution of trips on weekdays and weekends is
identical for both shared micromobility services.

Spatially, the distribution of trips across Lisbon’s parishes aligns between the two
systems, with certain exceptions. For instance, Santa Maria Maior, Arroios, Parque das
Nações, and Avenidas Novas emerge as the areas with the highest number of trips for both
shared micromobility systems. However, areas such as Belém, Estrela, and Misericórdia
demonstrate a higher use of the dockless e-scooter-sharing system compared to the docked
bike-sharing system. Notably, Lumiar exhibits contrasting patterns, with a high number of
trips in the docked bike-sharing system but lower usage in the dockless system.

Our study, beyond temporal and spatial analyses, utilizes MGWR model beta coef-
ficients to identify key variables influencing shared micromobility usage in the Lisbon
municipality. For docked bike-sharing, commercial POIs strongly correlate with increased
usage in the parishes of Estrela, Misericórdia, Santa Maria Maior, São Vicente, Campo de
Ourique, Santo António, Arroios, Campolide, and Avenidas Novas. Similarly, government
and public sector POIs positively affect dockless e-scooter usage in Belém, Ajuda, Alcântara,
and Benfica, particularly on weekdays. Additionally, local accommodation significantly
impacts e-scooter usage in Carnide, Alvalade, Marvila, Areeiro, and Beato.

Distinct spatial patterns emerged in the analysis of significant variables for shared mi-
cromobility services, precluding direct comparison. However, by evaluating the positive or
negative effects of variables on each system, notable trends were observed. The commuting
by bike variable positively influences docked bike-sharing system usage on weekdays and
weekends but negatively impacts dockless e-scooter usage on weekends. Additionally, the
presence of commercial points of interest positively affects both systems’ weekday arrivals,
indicating favorable utilization patterns.
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These insights offer valuable guidance for city stakeholders, aiding service providers
and urban planners in strategically locating points of interest to promote the adoption and
effectiveness of docked bike-sharing and dockless e-scooter-sharing systems.

Despite limitations in our data, including a short duration and seasonal challenges,
our analysis underscores the importance of maintaining diverse transportation options
throughout the week. While geographical constraints restricted comprehensive compar-
isons, temporal and spatial patterns shed light on user behavior, providing actionable
guidance for enhancing micromobility services’ accessibility and sustainability in Lisbon.
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Appendix A

Table A1. Cosine similarity values for arrivals of docked bike-sharing system.

Combination of Days of Week Cosine Similarity (CosSim)

Tuesday–Wednesday 0.997952

Monday–Wednesday 0.997180

Wednesday–Thursday 0.997035

Wednesday–Friday 0.996386

Tuesday–Thursday 0.996192

Thursday–Friday 0.996125

Monday–Thursday 0.996040

Monday–Tuesday 0.995915

Tuesday–Friday 0.995266

Saturday–Sunday 0.994688

Monday–Friday 0.994341

Thursday–Saturday 0.961917

Friday–Saturday 0.960978

Wednesday–Saturday 0.957010

Thursday–Sunday 0.956006

Monday–Saturday 0.954276

Friday–Sunday 0.952244

Monday–Sunday 0.950491

Tuesday–Saturday 0.949982

Wednesday–Sunday 0.949218

Tuesday–Sunday 0.940301
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Table A2. Cosine similarity values for departures of docked bike-sharing system.

Combination of Days of Week Cosine Similarity (CosSim)

Wednesday–Thursday 0.998119

Tuesday–Wednesday 0.997019

Wednesday–Friday 0.995033

Tuesday–Thursday 0.994999

Monday–Wednesday 0.994985

Monday–Thursday 0.994527

Thursday–Friday 0.994403

Saturday–Sunday 0.994298

Monday–Tuesday 0.993083

Tuesday–Friday 0.992357

Monday–Friday 0.990349

Monday–Saturday 0.955105

Friday–Saturday 0.954926

Thursday–Saturday 0.951707

Wednesday–Saturday 0.950080

Monday–Sunday 0.949725

Tuesday–Saturday 0.945902

Friday–Sunday 0.941570

Thursday–Sunday 0.940953

Wednesday–Sunday 0.938940

Tuesday–Sunday 0.934265

Table A3. Cosine similarity values for arrivals of dockless e-scooter-sharing system.

Combination of Days of Week Cosine Similarity (CosSim)

Monday–Friday 0.997658

Tuesday–Thursday 0.996818

Thursday–Friday 0.996494

Monday–Thursday 0.996182

Tuesday–Wednesday 0.995191

Wednesday–Thursday 0.994812

Tuesday–Friday 0.994647

Monday–Tuesday 0.994165

Wednesday–Friday 0.993361

Saturday–Sunday 0.991606

Monday–Wednesday 0.991336

Friday–Saturday 0.981128

Monday–Saturday 0.980666

Monday–Sunday 0.977597

Friday–Sunday 0.974771
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Table A3. Cont.

Combination of Days of Week Cosine Similarity (CosSim)

Thursday–Saturday 0.974339

Tuesday–Saturday 0.970185

Thursday–Sunday 0.967654

Tuesday–Sunday 0.966987

Wednesday–Saturday 0.963460

Wednesday–Sunday 0.961105

Table A4. Cosine similarity values for departures of dockless e-scooter-sharing system.

Combination of Days of Week Cosine Similarity (CosSim)

Monday–Friday 0.999013

Tuesday–Wednesday 0.996430

Monday–Wednesday 0.996287

Monday–Tuesday 0.996195

Thursday–Friday 0.995890

Tuesday–Friday 0.995493

Tuesday–Thursday 0.995466

Wednesday–Friday 0.995364

Monday–Thursday 0.995299

Wednesday–Thursday 0.993692

Saturday–Sunday 0.989785

Monday–Saturday 0.981617

Friday–Saturday 0.980612

Thursday–Saturday 0.972444

Monday–Sunday 0.972186

Tuesday–Saturday 0.969876

Wednesday–Saturday 0.969834

Friday–Sunday 0.967705

Wednesday–Sunday 0.961353

Tuesday–Sunday 0.960895

Thursday–Sunday 0.959037



Smart Cities 2024, 7 907

Table A5. VIF values for all independent variables for docked bike-sharing.

Variables

ARRIVALS DEPARTURES

Weekday Weekend Weekday Weekend

VIF VIF VIF VIF

Docked bike-sharing

Points of Interest (POIs) and Local Accommodation variables

No. Commercial POIs 3.224619 3.224619 3.224619 3.224619

No. Cultural POIs 4.438065 4.438065 4.438065 4.438065

No. Education POIs 21.916057 21.916057 21.916057 21.916057

No. Entertainment POIs inf inf inf inf

No. Government & Public sector POIs 5.437504 5.437504 5.437504 5.437504

No. Local accommodation inf inf inf inf

Sociodemographic variables

Monthly income 15.491573 15.491573 15.491573 15.491573

No. of Female 61,356.755974 61,356.755974 61,356.755974 61,356.755974

No. of Male inf inf inf inf

Population between 0 and 14 years old 740.100526 740.100526 740.100526 740.100526

Population between 15 and 24 years old 5323.273324 5323.273324 5323.273324 5323.273324

Population between 25 and 64 years old 20,563.249434 20,563.249434 20,563.249434 20,563.249434

Population between 65 years old and over 66.556220 66.556220 66.556220 66.556220

Population employed 28,892.559466 28,892.559466 28,892.559466 28,892.559466

Population unemployed 4.889273 4.889273 4.889273 4.889273

Population with at least high school
education 157,198.595754 157,198.595754 157,198.595754 157,198.595754

Population with at least the third cycle of
basic education completed 171.551728 171.551728 171.551728 171.551728

Population with higher education 1336.097193 1336.097193 1336.097193 1336.097193

Commuting variables

Commuting by bike 4.092077 4.092077 4.092077 4.092077

Commuting by car 12.939154 12.939154 12.939154 12.939154

Commuting by other modes of transportation 341.080117 341.080117 341.080117 341.080117

Commuting on foot 30.172336 30.172336 30.172336 30.172336

Variables with VIF values greater than ten were not considered as significant.
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Table A6. VIF values for all independent variables for dockless e-scooter-sharing.

Variables

ARRIVALS DEPARTURES

Weekday Weekend Weekday Weekend

VIF VIF VIF VIF

Dockless e-scooter-sharing

Points of Interest (POIs) and Local Accommodation variables

No. Commercial POIs 3.827945 3.827945 3.827945 3.844129

No. Cultural POIs 4.866352 4.866352 4.866352 4.885147

No. Education POIs 26.828478 26.828478 26.828478 26.328853

No. Entertainment POIs 12.044582 12.044582 12.044582 11.498100

No. Government & Public sector POIs 5.907456 5.907456 5.907456 5.935487

No. local accommodation 3.832825 3.832825 3.832825 4.374987

Sociodemographic variables

Monthly income 171.218018 171.218018 171.218018 169.676624

No. of Female 1304.803205 1304.803205 1304.803205 1258.428832

No. of Male 8250.016204 8250.016204 8250.016204 8118.955772

Population between 0 and 14 years old 100.675331 100.675331 100.675331 227.531350

Population between 15 and 24 years old 1673.584129 1673.584129 1673.584129 1648.351390

Population between 25 and 64 years old 51,739.873590 51,739.873590 51,739.873590 49,939.937696

Population between 65 years old and over inf inf inf inf

Population employed 8710.112086 8710.112086 8710.112086 26,095.996296

Population unemployed 3.730728 3.730728 3.730728 4.374987

Population with at least high school
education 71,850.786123 71,850.786123 71,850.786123 73,198.701400

Population with at least the third cycle of
basic education completed 14.056603 14.056603 14.056603 14.049273

Population with higher education 761.355546 761.355546 761.355546 791.601632

Commuting variables

Commuting by bike 3.340301 3.340301 3.340301 3.369454

Commuting by car 21.613839 21.613839 21.613839 20.907394

Commuting by other modes of transportation 401.292801 401.292801 401.292801 555.487267

Commuting on foot 43.228912 43.228912 43.228912 44.572366

Variables with VIF values greater than ten were not considered as significant.

Table A7. Moran´s I test results for significant variables.

Variables Moran’s I p-Value

No. Commercial POIs 0.1478 0.0720

No. Cultural POIs 0.3429 0.0020

No. Government & Public sector POIs −0.0917 0.3880

No. Local accommodation 0.0588 0.1940

Population unemployed 0.0964 0.1360

Commuting by bike 0.1360 0.0310
p-value larger than 0.05 are not considered statistically significant.
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Table A8. Estimation of the MGWR model for docked bike-sharing.

Mean STD Min Median Max

Weekday

Docked bike-sharing (arrivals)

Commuting by bike 0.766 0.000 0.765 0.766 0.766

No. Commercial POIs 0.226 0.383 −1.326 0.357 0.388

Weekend

Docked bike-sharing (arrivals)

Commuting by bike 0.797 0.000 0.796 0.797 0.798

Weekday

Docked bike-sharing (departures)

Commuting by bike 0.770 0.000 0.769 0.770 0.770

No. Commercial POIs 0.225 0.372 −1.278 0.351 0.383

Weekend

Docked bike-sharing (departures)

Commuting by bike 0.772 0.001 0.770 0.772 0.773

Table A9. Estimation of the MGWR model for dockless e-scooter-sharing.

Mean STD Min Median Max

Weekday

Dockless e-scooter-sharing (arrivals)

No. Government & Public sector POIs 0.225 0.158 −0.213 0.274 0.465

No. Cultural POIs 0.434 0.000 0.434 0.434 0.435

No. local accommodation 0.233 0.259 −0.868 0.309 0.443

No. Commercial POIs 0.293 0.000 0.292 0.293 0.293

Population unemployed −0.214 0.000 −0.215 −0.214 −0.214

Weekend

Dockless e-scooter-sharing (arrivals)

No. Government & Public sector POIs 0.373 0.062 0.294 0.359 0.532

No. Cultural POIs 0.678 0.001 0.676 0.678 0.679

Commuting by bike −0.265 0.000 −0.266 −0.265 −0.264

Weekday

Dockless e-scooter-sharing (departures)

No. Government & Public sector POIs 0.366 0.003 0.359 0.366 0.372

No. Cultural POIs 0.574 0.001 0.572 0.574 0.576

Weekend

Dockless e-scooter-sharing (departures)

No. Government & Public sector POIs 0.337 0.049 0.279 0.324 0.458

No. Cultural POIs 0.725 0.004 0.713 0.725 0.733

Commuting by bike −0.276 0.000 −0.276 −0.276 −0.275
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