
Citation: Stavinova, E.; Varshavskiy,

I.; Chunaev, P.; Derevitskii, I.;

Boukhanovsky, A. Surrogate

Modeling of Dynamic Pricing for Its

Quality Assessment on Open Online

Ticket System Data. Smart Cities 2023,

6, 1303–1324. https://doi.org/

10.3390/smartcities6030063

Academic Editor: Rita Yi Man Li

Received: 10 March 2023

Revised: 5 May 2023

Accepted: 6 May 2023

Published: 9 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

smart cities

Article

Dynamic Pricing for the Open Online Ticket System:
A Surrogate Modeling Approach
Elizaveta Stavinova 1,2,* , Ilyas Varshavskiy 1,, Petr Chunaev 1,2 , Ivan Derevitskii 1,2

and Alexander Boukhanovsky 1,2

1 National Center for Cognitive Research, ITMO University, 199034 Saint Petersburg, Russia;
varshavskiyie@gmail.com (I.V.); chunaev@itmo.ru (P.C.); iderevitskiy@itmo.ru (I.D.);
avbukhanovskii@itmo.ru (A.B.)

2 Sirius University of Science and Technology, 354340 Sochi, Russia
* Correspondence: stavinova@itmo.ru

Abstract: Dynamic pricing is frequently used in online marketplaces, ticket sales, and booking
systems. The commercial principles of dynamic pricing systems are often kept secret; however, their
application causes complex changes in human behavior. Thus, a scientific tool is needed to evaluate
and predict the impact of dynamic pricing strategies. Publications in the field lack a common quality
evaluation methodology, public data, and source code, making them difficult to reproduce. In this
paper, a data-driven method, DPRank, for evaluating dynamic pricing systems is proposed. DPRank
first builds a surrogate price elasticity of demand model using public data generated by a hidden
dynamic pricing model, and then applies the surrogate model to build an exposed dynamic pricing
model. The hidden and exposed dynamic pricing models were then systematically compared in
terms of quality using a Monte Carlo simulation in terms of a company’s revenue. The effectiveness
of the proposed method was tested on the dataset collected from the website of a Russian railway
passenger carrier company. Depending on the train type, the quality difference between the hidden
and exposed models can vary by several dozen percent on average, indicating the potential for
improving the existing (hidden) company’s dynamic pricing model.

Keywords: dynamic pricing; data-driven modeling; quality ranking; pricing strategies; price elasticity
of demand

1. Introduction

Nowadays, dynamic pricing methods are widely used in e-commerce online services
for marketplaces, transport/sports/entertainment ticket sales, and hotel/car/equipment
booking AI systems [1–5]. Roughly speaking, these methods build a strategy for maximizing
business profit, revenue, or conversion by setting flexible prices for products or services based
on current market demand and supply, competitor pricing, and other internal and external
factors. The operating principles of dynamic pricing industrial systems usually remain hidden
as a commercial secret. However, based on the advertising information of such systems [6–10],
it is natural to suppose that they are complex models of real purchasing processes that pos-
sibly take into account numerous features (such as weather, seasonality, event calendar,
consumer behavior, etc.) and exploit deep learning or other advanced technologies; see,
e.g., the descriptions in [6–10]. Recall that dynamic pricing methods usually rely on the price
elasticity of demand model, which is built based on available historical data.

Note that there are two types of strategies for the dynamical setting of prices used
in AI e-commerce systems. The first one is for ordinary products, goods, and services.
In this case, the dynamics are often controlled only by external factors (such as weather,
calendar, etc.). The second and more interesting type is specifically for ticket systems (such
as transport, mass events, etc.), which are designed to reflect demand before the upcoming
event. In this case, the dynamics are determined mainly by internal factors (such as the
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number of tickets sold) and are indeed available for management (such as in the process of
solving the conversion maximization problem). In this regard, we will further discuss the
dynamic pricing for ticket systems.

Dynamic pricing strategies inside of these systems are effective tools used to manage
population mobility. When alternative carriers, routes, or modes of transportation exist,
the pricing strategies of carriers create an opaque picture of human mobility and trans-
portation accessibility. The standard models of mobility, such as minimizing distance or
travel time, or gravity models, are no longer sufficient for explaining this picture. Therefore,
a scientific tool is needed to provide a deep understanding of carrier dynamic pricing
strategies in order to (a) evaluate and predict their impact on mobility, (b) identify collective
effects of carrier interactions (competition and collaboration), and (c) optimize various
processes from individual carrier profit to the satisfaction of a particular region population
with the quality of carrier services. In this paper, a method for restoring a dynamic pricing
strategy based on open data for a single carrier is proposed. This method can be used
both for carrier operation optimization (as shown in the paper) and solving other tasks
mentioned above, highlighting the study’s importance.

From the scientific side, it seems that the existing dynamic pricing methods described
in publications often lack a common performance evaluation methodology, appropriate
public data, and source code, making them hardly reproducible in this sense (one can
check, for example, the works [11–14] on these issues; see also Table 1 below). The lack of a
common, generally accepted evaluation methodology, among other things, may be because
the authors of publications often focus on solving their particular dynamic pricing problems
for non-public data, such as price elasticity of demand approximation [3,15–20], consumer
behavior analysis [21], price optimization [12,22], and others. As a result, the scientific field
lacks reproducible studies where dynamic pricing methods are compared with each other
in a unified manner.

Table 1. Reproducibility in the dynamic pricing studies for train ticket data. Note that the sign
∗ indicates that the data-driven dynamic pricing comparison is only carried out in a simulated
environment; the sign ∗∗ indicates that the data-driven comparison is performed between the revenue
value obtained by the dynamic pricing method proposed and a fixed revenue value given.

Study Tests on Open Data Open-Source Code
Data-Driven

Dynamic
Pricing Ranking

[11] 8 8 8

[12] 8 8 8

[22] 8 8 8

[3] 8 8 4 *
[18] 8 8 4 **
[23] 8 8 8

[24] 8 8 4 **
[19] 8 8 8

[25] 8 8 4 **
[26] 8 8 4 **

DPRank (ours) 4 4 4

Since today’s markets are highly competitive, the question often arises as to how a
company should evaluate its dynamic pricing system against competitor systems. In this
regard, the problem of the quality ranking of existing methods for a dynamic adjustment
of prices on public data can be stated. It is reasonable to suppose that the solution to this
problem may be based on the use of a data-driven method that first builds a surrogate price
elasticity of demand model [27] using the public data generated by the hidden company’s
dynamic pricing model and further applies the surrogate model to build an exposed model of
dynamic pricing. The hidden and exposed models may be further compared systematically
in terms of quality performance; for example, by using a Monte Carlo simulation method
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(e.g., in terms of the company’s revenue from sales based on a dynamic adjustment of prices).
In our study, we propose such a method and show that it is indeed suitable for comparing
the quality performance of the hidden and exposed models, thus indicating the potential for
improving the existing (hidden to us) company’s dynamic pricing model.

In this regard, the following tasks were set for this study:

• Building a surrogate price elasticity of demand model only on the basis of public data
(generated by the hidden dynamic pricing model) of a commercial company;

• Interpreting and analyzing the quality of the developed model;
• Building an exposed dynamic pricing model within an optimization procedure using

the built price elasticity of demand model;
• Developing a systematic quality ranking method for a comparison of the hidden and

exposed dynamic pricing models.

The main feature of our surrogate price elasticity of demand model is that it uses simple
data approximants (oppositely to complex commercial methods). In order to build the
exposed model, the surrogate model in a multi-class constrained optimization procedure
was used to maximize the company’s revenue using an evolutionary algorithm. The quality
evaluation method is based on the Monte Carlo method and produces revenue estimates.
Thus, a systematic method is proposed that allows one to conduct comparison experiments
for existing (hidden to us) dynamic pricing methods in a unified manner.

Note that a framework for crawling an open Internet data was created by us, which
allows us to collect a dataset from a Russian railway passenger carrier company for a period
from 12 April 2021 to 17 March 2022 (1,105,025 records, approximately 29 trains in total).
The effectiveness of the method was tested on this data, while, in the paper, the examples
are given only for the 11 most diverse trains from Moscow to St. Petersburg. In order to
increase reproducibility in the field, our data, source code, and results are presented on
GitHub (https://github.com/AlgoMathITMO/DPRank, accessed on 7 May 2023). We call
our method DPRank, which stands for Dynamic Pricing Ranking.

This paper is organized as follows: Section 2 is devoted to a discussion of existing
research on the topic; Section 3 describes the proposed method for dynamic pricing quality
evaluation in mathematical details; Section 4 is about the experiments performed using the
proposed method.

2. Literature Review

As was already mentioned, the operating principles of dynamic pricing methods
that are widely used in e-commerce online services for marketplaces, ticket sales, and
booking systems [1,2] usually stay hidden as a commercial secret. The situation in the
scientific area is not much better: it seems that the existing dynamic pricing methods
described in publications often have a lack of a generally accepted quality evaluation and
comparison methodology, public data, and source code; see Table 1 for studies considering
existing methods for trains. (In Table 1, the sign ∗ indicates that the data-driven dynamic
pricing comparison is only carried out in a simulated environment. In addition, the sign
∗∗ indicates that the data-driven comparison is performed between the revenue value
obtained by the dynamic pricing method proposed and a fixed revenue value given). As a
result, the scientific field suffers from a lack of reproducible studies where dynamic pricing
methods are compared with each other in a unified way. There is a discussion of the most
related studies in a more detailed manner below.

A variant of a solution to the data-driven dynamic pricing problem as an optimization
problem with a parametrically specified demand was proposed in Ref. [27]. The authors
considered in detail the cases of dynamic pricing with and without competition and
compared the calculated results for a myopic pricing policy and a one-dimensional and
multidimensional dynamic programming formulation of the pricing problem. Note that
the authors used classical statistical tools for data-driven modeling.

A number of authors provide solutions to the dynamic pricing problem for the sphere
of passenger transportation, namely in the railway, aviation, and automotive sectors of

https://github.com/AlgoMathITMO/DPRank
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companies. In the rail industry, there is the study [22] on dynamic pricing for high-speed
trains that proposes the use of two demand functions and sets a revenue maximization
optimization problem that takes into account price constraints. Features of passenger
behavior are considered in several studies, e.g., in Refs. [3,18,23], while the distribution of
changes in the railway carriage capacity is discussed in Refs. [19,24]. The authors of Ref. [12]
considered the solution to the dynamic pricing problem using a linear regression model for
high-speed rail transportation in an imperfectly competitive market with a short-sighted
pricing policy of demand and one passenger service class. Dynamic pricing in the context
of demand forecasting is considered, e.g., in Refs. [13,14].

There are two works [25,26] where the authors solve the revenue maximization task
using nonlinear programming methods. In Ref. [25], the demand intensity was modeled by
a neural network model based on seasonal features, while, in Ref. [26], the ticket-purchasing
process was described via a Poisson process.

There are also a number of studies devoted to the dynamic forecasting of railway
ticket prices by taking into account historical data, including the number of days before
departure and the day of the train departure week [28,29]. In order to predict demand,
researchers often use linear regression and gradient boosting [15,30], and a random forest
algorithm [17].

Note that a survey covering applications of artificial intelligence in railway services [31]
exists. In particular, the topic of dynamic pricing is briefly covered there.

The sphere of dynamic pricing for air transportation is more widely studied than for
railway transportation. For example, the authors of Refs. [16,20] suggested the use of neural
networks for demand forecasting using historical data. An analysis of an air transporta-
tion market with a comparison of prices for local and international flights was proposed
in Ref. [21]. A comparison of approximating algorithms was performed in Ref. [32]. Two-
stage dynamic pricing using neural networks and optimization was proposed in Ref. [33].

One of the least studied dynamic pricing area is the field of bus transportation. The
works [1,2] describe dynamic pricing and price forecasting for intercity buses, where price
dynamics are studied among other things. The authors note that it is important to take
into account the day of the week, time, distance of the trip, and the possibility of booking
tickets before the trip.

Note that there is a work on optimization algorithms and their features [34], as well as a
work [35] on time series forecasting (both in relation to dynamic pricing) for railway tickets
using data obtained from Google trends. These works may be useful for understanding
the practical aspects of the problems one may face during solving the dynamic pricing
problem. As for optimization methods from other fields of study, we can find a similar
problem in papers [36,37]. The authors of these papers solved the tasks of medical supplies
delivery and the management of electricity system optimization, respectively. However,
these problems differ from ours in that they address multi-objective optimization.

Returning to dynamic pricing for trains and the papers listed in Table 1, one can
notice that there is only one work [3] where a data-driven comparison of several methods
is performed. However, the experiments were conducted in a simulated environment,
which was based on data about a railway network containing information about stations,
itineraries, and schedules. The customer behavior in this simulation was not based on any
open public dynamic pricing data. Furthermore, two works [18,24] performed data-driven
comparisons between the proposed dynamic pricing method and (a) the revenue obtained
with fixed fares and (b) the average value of ticket revenue for several trains. Unfortunately,
even these three papers, which may be considered the most similar to our methodology,
are not reproducible due to the lack of publicly available data and code.

Before the description of our method in detail, one should note that it follows the
general methodology in the field, particularly by using classical statistical tools for data-
driven modeling, similar to [27]. However, the proposed scheme can be found particularly
useful for its application and unification of the field as it provides a reproducible, systematic,
methodological approach for evaluating the quality of dynamic pricing models exclusively
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using open public data, and experimentally demonstrates how it can be used to identify
potential improvements in the existing (hidden) company’s model.

3. Mathematical Description of Our Method
3.1. Notation for Public Data Processing

Note that the data are usually publicly available on online ticket systems that use
dynamic pricing models hidden to us [4,6]. In this study, we supposed that the data are
parsed from the system once per day, at the same chosen time. The aim is to observe
what happens with prices and available tickets in order to analyze how the corresponding
dynamic pricing process is working.

Note that the goal is to provide a unified notation below that is still suitable for the
transportation company data one will deal with in the experimental study. The main
notation is collected in Table 2 and Figure 1.

Table 2. The notation used in our study.

Expression Description

[0, T] The period of time one observes in the online ticket system (in days)
m = 1, . . . , M The index of the selling time period withing [0, T] when the service is provided
tst,m The date that the selling time period starts on in the mth selling time period

tserv,m
The date that the selling time period finishes on in the mth selling time period,
i.e., the date that the service provided

τ The number of days before the service date
k = 1, . . . , K Service class
pτ Price of the service τ days before the service
dτ Demand on the service τ days before the service

Figure 1. The notation used. Selling time period is repeated M times and numbered by m = 1, . . . , M.
Thus, one has hτ and pτ for each m.

First, suppose that the online ticket system is observed for a fixed period of time [0, T];
see Figure 1. It is possible that the service can be provided during this period several
times; say, M ∈ N+, a fixed number. Furthermore, the system may start selling the tickets
several times too. For simplicity, let the number of selling time periods (that may overlap)
in [0, T] be the same positive integer M as in Figure 1. Thus, each selling time period can
be numbered with m = 1, . . . , M. The selling start and service date (the selling end) are
denoted as tst,m and tserv,m, respectively. Note that it is also supposed that tserv,m − tst,m is
the same for each m. In each selling time period, data can be collected τ ∈ N0 days before
the service date tserv,m so that the sequence

{tserv,m − τ}tserv,m−tst,m
τ=0 (1)
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is decreasing down to tst,m.
For example, if one works with a train ticket selling system, then, according to the

above-mentioned terms, one can check τ days in advance the price and number of available
train tickets for a chosen train that departs on a specific date.

Furthermore, the type of service (ticket) is also important (as there may be several
types). Suppose that there are K ∈ N+ service classes and let us number the classes by
k = 1, . . . , K. If one considers a chosen service, k, it can be thought of as fixed and so one
performs below by skipping k in indexes (before one comes to the multiclass optimization
procedure).

Thus, only m and τ change, with all other parameters fixed. For them, in the online
ticket system, pτ,m can be observed, which is the price of the ticket that may be bought
τ days before the service date tserv,m for the service of class k.One can also observe hτ,m,
the number of available tickets with the price pτ,m > 0. If one considers only τ ∈ Lm, where
Lm is an increasing sequence of days in the selling period m when at least one ticket is sold,
then the data available are

{{(pτ,m, hτ,m)}τ∈Lm}M
m=1. (2)

For simplicity, it is supposed that the whole number of tickets available for the service
chosen is fixed and that no-one can return a ticket once it is bought (this is not the case
in real-world online ticket systems and therefore we will have to cope with it in the
experimental study). This means that the number of available tickets is non-increasing up
to the service date and thus the sequence {hτ,m}τ∈Lm is non-decreasing with respect to τ
running over Lm.

3.2. Hidden Price Elasticity of Demand and Dynamic Pricing Models

The data (2) are not yet suitable for building the price elasticity of demand model as it
requires the demand value and not the number of tickets available. Under the assumptions
of {hτ,m}τ∈Lm , demand dτ,m (of the service with the price pτ,m if at least 1 ticket is sold in
the day τ) can be easily calculated as

dτ,m = hτ+1,m − hτ,m, dτ,m ≥ 1. (3)

Recall that the number of available tickets τ + 1 days before the service is at least
the number of available tickets τ days before the service plus 1 (by construction); see also
Figure 1.

In this way, instead of (2), we obtain

{{(pτ,m, dτ,m)}τ∈Lm}M
m=1, (4)

under the assumption that the service class k is fixed (otherwise one needs to add the
corresponding indexes).

Having all the above-mention terms at hand, one can assume that the hidden price
elasticity of demand model [27] HEd used in the hidden dynamic pricing model HDP for
each τ is as follows:

D = HEd(P; τ, · · · ), τ ∈ Lm, (5)

for the data (4). In (5), · · · means other possible arguments, including exogenous variables,
random components, etc.

3.3. Surrogate Price Elasticity of Demand Model

The purpose now is to build a surrogate price elasticity of demand model SEd using
only the public data (4) and to further apply the model to build our exposed dynamic pricing
model EDP. In order to build SEd, simple data approximants such as linear or power,
with additional random components, are used [12,18,19,27]. As usual, it is supposed that,
when the price rises, the quantity demanded decreases for the service chosen. Motivated by
the preliminary patterns found in the data used in our experimental study, here, a power (the
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log-linear option is chosen, e.g., in [12,18,19,27]; however, the data there remain unpublished,
and thus it is hardly possible to evaluate the choice) SEd for each τ = 0, . . . , tserv,m − tst,m of
the form is chosen:

D̃ = SEd(P; τ) = ατρ(P; p)βτ (1 + δτ),

ρ(P; p) := P− min
τ∈Lm ,m

{pτ,m}+ 1,

ατ ≥ 1, βτ < 0,

(6)

where ατ , βτ are unknown coefficients and δτ ≥ −1 is the relative error of the model. Here,
ατ > 0 as dτ ≥ 0 and βτ < 0 because the demand is expected to decrease while the price
increases. Furthermore, ρ(P; p) of the form in (6) is taken in order to translate the data (4)
to the origin and to avoid the singularity supposing that minτ∈Lm ,m{pτ,m} � 1 and that
the demand for the minimal price (over τ ∈ Lm, m = 1, . . . , M) is at least 1.

Recall that the coefficients ατ and βτ for the data (4) can be easily found by taking the
logarithm of both parts of (6) that are well-defined by the construction of (4) and solving
the linear approximation problem for the (correspondingly modified) data using the model

ln D̃ = βτ ln ρ(P; p) + ln ατ + ln (1 + δτ) (7)

by means of least squares. In (7), βτ and ln ατ are now unknown coefficients and ln (1 + δτ)
is the absolute error of the linear model. Namely, for the period [0, T] βτ and ln ατ , a
unique solution to the following optimization problem for each τ ∈ Lm that has to be found
is provided:

M

∑
m=1

(ln dτ,m − βτ ln ρ(pτ,m; p)− ln ατ)
2 → min, (8)

where dτ,m and pτ,m are from (4).
Note that one usually works in the presence of data streams when it is necessary

to update the model built when new data are coming [38,39]. The model (6) is rather
convenient in this sense; see Appendix A.

3.4. Empirical Relative Frequency Distribution Used in Monte Carlo Simulation

Furthermore, one can find the absolute model’s error for each m = 1, . . . , M by (7) and
thus build the empirical relative frequency distribution, eRFD, for ln(1 + δτ), and further
connect it with the eRFD of δτ in (6). In what follows, the latter is called Dτ , i.e.,

δτ ∈ Dτ . (9)

The eCDFs will further be used in the Monte-Carlo simulation.

3.5. Exposed Dynamic Pricing (Price Optimization) Model

Thus, the surrogate price elasticity of demand model SEd is built by the data (4). Now,
it is applied to build the exposed dynamic pricing model EDP.

As usually performed, the company’s ticket sale revenue for the period [0, T] for K
classes is used as an objective function:

R̃[0,T](Pstrat) =
K

∑
k=1

M

∑
m=1

tserv,m−tst,m

∑
τ=0

Pτ,m,k · D̃(Pτ,m,k), (10)

where Pstrat is a pricing strategy, i.e., the set of Pτ,m,k, the prices τ days before the service
date tserv,m in the selling time period m of tickets of class k. Furthermore, D̃ in (10) is the
surrogate price elasticity of demand function from (6). The optimization problem then may
be stated as follows: find Pstrat, which is a solution to

R̃[0,T](Pstrat)→ max (11)
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under the following demand and price constraints (inferred from the data (4)):

0 ≤
tserv,m−tst,m

∑
τ=0

D̃(Pτ,m,k) ≤ h̄k, Pτ,m,k ⊂ Πk, (12)

where h̄k is the average capacity (number of tickets) and Πk is the interval of price values
allowed for class k in the period [0, T]. (It should be noted that the constraints are rather
flexible and that, by varying the constraints, one can change the pricing strategy.) The upper
bound on demand does not allow the optimizer to offer more tickets for sale than the
company had on average in [0, T].

Thus, the EDP model for the period [0, T] is based on a solution R̃∗[0,T] to (11) with
constraints (12), where (10) is based on the SEd model (6).

3.6. Monte Carlo Simulation

Recall that there is a random component in (6) and thus the EDP model may produce
different R̃∗[0,T] over runs of a Monte Carlo simulation. For instance, if it is simulated J
times, the corresponding revenues may be represented as

R̃∗J = {R̃∗[0,T],j}
J
j=1. (13)

Analogously to (10) but without optimization already, the revenue for the hidden
dynamic pricing model, HDP, can be found from the data (4) for the same period [0, T]:

R[0,T] =
K

∑
k=1

M

∑
m=1

tserv,m−tst,m

∑
τ=0

pτ,m,k · dτ,m,k. (14)

As a result, once R[0,T] and R̃∗J are found, the corresponding dynamic pricing models’
quality performance can be compared. For example, we can find the difference between
R[0,T] and the mean value of the elements of R̃∗J . This quality performance difference
(in terms of the company’s revenue from ticket sales) between the hidden and exposed
models indicates the potential for improving the existing (hidden to us) company’s dynamic
pricing model.

Note that the above-mentioned optimization can be performed by different numerical
methods. In our experimental study, a differential evolution algorithm was applied.

3.7. Demand, Price, and Revenue Estimation and Comparison of Dynamic Pricing Models

The hidden and exposed dynamic pricing models were then compared by means of
confidence intervals for price, demand, and revenue, obtained within the Monte-Carlo
simulation.

In order to estimate the confidence interval characterizing the prices obtained from the
hidden model with the confidence level 0.95 and the sample size n, one should calculate for
p = {pτ,m} the mathematical expectation M1(p) and the corresponding unbiased estimate
of the standard deviation S0(p):

M1(p)± t0.05,n−1√
n

S0(p), (15)

where t0.05,n−1 is the 95th percentile of the Student’s distribution with n− 1 degrees of freedom.
At the same time, the standard deviation of prices for services S0(p) is formed due to

the spread of prices for all services of this type, which are paid τ days before the services,
for each kth service class separately.

The confidence interval for demand and revenue has the form analogous to (15).
For the confidence intervals for the values obtained using the surrogate dynamic

pricing model, it is necessary to use the demand model (6) to form the revenue model,
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which can be obtained by (13). The resulting revenue model is used to solve the optimization
problem (11) with constraints (12).

When optimizing, the errors from (9) are used and generated at each iteration to
obtain (13).

The quality of the exposed dynamic pricing model with respect to the quality of the
hidden one can be compared by means of the above mentioned confidence intervals for
each τ or by the expectations themselves summarized and averaged over several τ.

4. Experimental Study
4.1. Data Collection

Firstly, note that any data used to experimentally study the proposed method should
contain information on both (a) the ticket price and (b) the number of available seats. How-
ever, most data sources lack this information. For example, a large dataset on Spanish rail
ticket prices collected from the Renfe website (available on Kaggle by https://www.kaggle.
com/datasets/thegurusteam/spanish-high-speed-rail-system-ticket-pricing, accessed on
7 May 2023) was used in the experimental study in [35]. Although this dataset contains
almost 39 million records, it cannot be used to properly study the dynamic pricing problem
as only 3% of records include the number of available seats. Therefore, there is currently no
appropriate dataset available, leading us to create a data crawling framework.

A data collection framework based on the Python Selenium one was developed in this
study. This solution automatically starts to collect data every day at 5:00 am, and stops after
the collection is carried out. The algorithm reads the html code of the page and receives the
data using the Python beautifulsoup framework. The data include the train route number,
route, city of departure and arrival, station of departure and arrival, start and finish times,
passenger seat class, number of empty seats, and current ticket price (measured in rubles
denoted by RUB below.). The algorithm collects data from routes whose departure time is
from 1 day to 6 months for the period from 12 April 2021 to 17 March 2022 (1,105,025 records,
approximately 29 trains in total).

The algorithm collects all available direct trains between the four largest cities of
the Russian central region (in order to obtain sufficient data for research): Moscow, St.
Petersburg, Kazan, and Nizhny Novgorod. The main source of data is the official website of
the Russian Railways, rzd.ru. The algorithm also collects data from a third-party resource,
tutu.ru, in case of unavailability/technical problems with the rzd website (it turns out that
the data are the same on both sites). Note that we used the postgres-sql database to store
and access data.

4.2. Data Pre-Processing
4.2.1. Outlier Detection and Feature Extraction

Data pre-processing in the dynamic pricing problem of ticketing systems is divided
into two major steps, namely data pre-processing and feature extraction.

At the stage of data pre-processing, it is necessary to analyze the data and identify
and remove segments that hinder the implementation of the set goals, namely demand
anomalies, for which dynamic pricing is a separate task. One should also delete service
records for which there is too little data; for example, as a result of cascading outages of
the data collection algorithm. Moreover, one should remove outliers in the data. The used
data pre-processing scheme is shown in Figure 2. The processes shown there are described
below in more detail.

https://www.kaggle.com/datasets/thegurusteam/spanish-high-speed-rail-system-ticket-pricing
https://www.kaggle.com/datasets/thegurusteam/spanish-high-speed-rail-system-ticket-pricing
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Figure 2. Data pre-processing scheme.

Data Cleaning

1. Deletion of data that form irregular intra-annual demand for holidays.
2. Deletion of data for which a certain amount of data are missing τ days before

the service:

a. Compute the fullness, which is equal to the average number of missing data
for each service, service class, and date of service.

b. Drop data if fullness is less than or equal to the set threshold.

3. Deletion of data for which the maximum relative capacity (MRC) is less than the
set threshold:

a. Compute the MRC, which is equal to the ratio of the maximum capacity for
each service, service class, and date of service.

b. Drop data if MRC is less than or equal to the set threshold.

4. Deletion of group ticket purchases:

a. Compute the reduced capacity (RdC), which is the ratio of the capacity to the
maximum capacity for the entire dataset.

b. Compute the mean reduced capacity (MRdC) for all services and service
classes.

c. Compute the step of MRdC (SMRdC), where SMRdC equals the difference
between MRdC and date-shifted maximum absolute MRdC.

d. Obtain quantiles of SMRdC, which are designated as Q1, Q2, Q3.
e. Compute threshold such as upper inner fence.
f. Drop data if MRdC is more than or equal to the threshold.

5. Removal of other outliers using principal component analysis (PCA):

a. Obtain principal component of h.
b. Drop data if principal component is less than or equal to the threshold being set.

The set thresholds, according to which outliers are removed, are obtained using
graphical analysis.

After receiving the cleaned data, the demand d should be computed. For the conve-
nience of calculating the values of demand for the available capacity values h, a summary
table is compiled, the indices of which are the service numbers, days of the week of service,
dates, and classes of service. The pivot table columns should contain capacity data h for
the τ days prior to each service.

Feature Extraction

1. Formation of a pivot table of capacity values hτ by days before the service.
2. Formation of a pivot table of capacity values hτ+1 shifted by one day.
3. Computation of consumer demand dτ (3).
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4. Formation of a price-averaged demand model.

The resulting pivot table of average demand values is used to model the price elasticity
of demand.

4.2.2. Missing Value Restoration

At the initial stage of pre-processing—data cleaning—records corresponding to the
dates of train departures on holidays were removed from the dataset. Tickets for trains
departing during the holiday time period are observed to have abnormal demand, which
adds an irregular intra-annual component to the general type of demand. Thus, the solution
of the problem of dynamic pricing in a given period of dates seems to be a special case,
which should be considered in a separate study.

The items that were removed were: records corresponding to each train and service
class with each departure date for which data were completely missing or more than 60%
of demand data was missing in the last 30 days before the train’s departure; each train
and class of service whose capacity changed abruptly for each of the departure dates,
where such capacity behavior corresponds to the pickup or uncoupling of cars by the
transport company after the start of ticket sales and should be considered as a separate
task; records corresponding to significant group purchases or ticket sales; other outliers
(principal components less than or equal to −3).

The capacity data received for cleaning and the data obtained as a result of cleaning
are shown in Figures 3 and 4, respectively.

Figure 3 shows the capacity of the train for all those present in the set of departure dates.
The capacity of train cars corresponds to the company’s pricing policy. The popularity of
service classes increases with a decrease in the ticket price, so class C2 is the cheapest and
B1 is the most expensive.
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Figure 3. Train capacity.
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Figure 4. Cleaned train capacity.

The capacity characteristic for hooking up new cars to the train is visible on the graph
for service class C1—the pink line—when the number of vacant seats increases abruptly
when approaching the date of departure of the train. Group purchases are characterized by
a sharp, almost linear decrease in the number of vacancies. The irregularity of demand can
be seen in the example of service class C2—the brown line—when the number of free seats
decreases almost linearly long before the day of train departure; in this case, tickets already
run out 40 days before departure.

It should be noted that some phenomena characterizing the hooking of new railway
cars to the train still have not been removed; for example, the capacity for class C1 (Figure 4)
is a pink line. Such phenomena should be isolated and removed in a non-automated way.

After obtaining the cleaned capacity values, the demand is computed, the dependence
on the price of which is the price elasticity of demand.

4.3. Data Description and Preliminary Analysis

The structure of the data used is summarized in Table 3. For the experiments described
in the paper, the data for the so-called “Sapsan” trains (that depart on different weekdays)
that operate between Moscow and St. Petersburg (Russia) are used. They are examples of
high-speed intercity trains with a few stops on the way, similar to Beijing–Tianjin intercity
trains in China (operated by China Railway High-speed, CRH), Barcelona–Madrid intercity
trains Alta Velocidad Española (AVE) operated by Renfe, the Spanish national railway
company, etc. Note that each train has four classes of service (we deal with all of them in
the multi-class dynamic pricing problem):

• B1—First;
• B2—Economy+;
• C1—Business;
• C2—Economy.
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Table 3. The structure of the data collected and used.

Name Implication Data Type

days Number of days before train departure int
date Train departure date timestamp
places Capacity int
price Ticket price float
num Train number str
class Service class int
departure hour Train departure time float
arrival hour Train arrival time float
day name Day of the week of train departure str

Usually, a train consists of 10 vans that can accommodate from 411 to 538 passengers
depending on the seat configuration. Table 4 shows the quartiles of the available place
distribution for two classes of service (Business and Economy). Among the “Sapsan” trains,
752A, 759A, 772A, 771A, and 780A were chosen for the experimental study, while the
following ones were chosen for illustration in plots in what follows:

• Type A: Train number 752A with the route “Moscow—St. Petersburg”, with departure
on Friday;

• Type B: Train number 780A with the same route, with departure on Thursday,

Table 4. Quartiles of available place distribution in the pre-processed data.

Business Economy
Days before Departure Q1(25%) Q2(50%) Q3(75%) Q1(25%) Q2(50%) Q3(75%)

89 44 44 44 368 370 370
45 42 44 44 331 355 366
30 40 43 44 292 332 356
15 37 41 44 228 288 328
5 28 35 41 103 184 249
2 20 29 37 37 107 175
1 17 27 37 15 77 141

The total passenger flow for high-speed trains between Moscow and St. Petersburg
was approximately 14.5 thousand passengers per day in 2021. There is a strong pendulum
mobility and weekly rhythm, with a tourist load returning after COVID-19. While these
high-speed trains are an alternative to airplanes, people primarily use them for convenience.
The trains are usually very well-filled, sometimes up to 100%, but tickets are often bought
in the last few days, particularly for business trips. An additional description of the selected
trains is available in Table 5. Note that the chosen high-speed trains are highly demanded
and are indicated as those with dynamic pricing on the railway company’s website.

Table 5. Description of high-speed trains 752A and 780A from Moscow to St. Petersburg.

Parameter 752A 780A

Line length 645 km 645 km
Number of stops 0 4
Travel time 3 h 30 m 4 h 8 m
Average speed 186 km/h 157 km/h

A simple analysis of the data shows the typical price intervals for different classes;
see Figure 5. It should be noted that the proximity of the price ranges of the least expen-
sive classes C2 and B2 is caused by the pricing features of the additional service. Class
B2, unlike C2, includes meals. At the same time, the new restrictions do not enter each
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other’s boundaries, which, in our method, allows us to avoid the multiplication of de-
mand for overlapping classes, where such demand behavior would be uncharacteristic for
the company.
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Figure 5. Price histogram with price ranges of classes in RUB. In the histogram, dotted lines represent
the average prices for each class of service. Class boundaries are marked with solid lines.

Using the data referring to Figure 5, the price ranges that are natural for the trains
in the period under consideration are found. Namely, the average prices by class are
calculated, the average of the average prices for these classes is taken for the price border
with an existing neighboring class, and the extreme value of the price is taken for the price
border for classes without an existing neighboring class. These price ranges are further
used as the constraints (12). In general, other ranges are possible as these would probably
make the dynamic pricing process less restrictive.

Furthermore, the dataset of the form (4) (i.e., the price–demand pairs) is obtained
via (3). These data represent the result of the dynamic pricing process (hidden) in the
railway company.

4.4. Surrogate Models and Their Errors Used in Simulation

In what follows, the dynamic pricing problem for 13 days prior to train departure,
i.e., τ = 2, . . . , 14, is considered. The surrogate price elasticity of demand model of the
form (6) for each τ for the trains under consideration is then built; see Figure 6.

Note that the prices and demand in Figure 6 are for all available classes. It is seen that
the demand is rather high for cheap tickets and low for expensive ones (this is expected).
Furthermore, the price elasticity of demand is well-described by the power function chosen.
One can find the parameters of the resulting surrogate models in Figure 7.
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Type A

Type B

Figure 6. Surrogate models of price elasticity of demand (SEd) for several days before the departure.
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Figure 7. Parameters of surrogate models of price elasticity of demand.

As seen from Figure 7, the conditions in (6) for the α and β coefficients are met, and
the price elasticity of demand model describes the dataset received from the hidden model
in the expected way. It is important to note how dramatically the coefficients depend on τ
and may oscillate from day to day.

In order to proceed to further simulation, the residuals (errors) of the power function
model chosen were analyzed. According to (6), there is the relative error, which is rather
suitable for the power function model. Figure 8 shows the empirical relative frequency
distribution (eRFD) of the errors of the surrogate model.

These errors were further used during the Monte Carlo simulation by (6) for each
τ = 2, . . . , 14. Such a simulation was performed 100 times and, for each case, the optimiza-
tion problem (11) with the constraints (12) determined by the data above was solved.
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Type A

Type B

Figure 8. eRFD of errors δ of the surrogate model for several days τ before the departure.

4.5. Dynamic Pricing (Optimization)

Once all the necessary components of the objective function (10) are found, the opti-
mization procedure can start. In order to cope with it, a variant of the differential evolution
method (a version due to [40]) that performs optimization by maintaining a population
of candidate solutions and creating new candidate solutions by combining existing ones,
and then keeping the candidate solution that has the best score, was used. In particular,
the version from Python’s scipy (https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.differential_evolution.html, accessed on 7 May 2023) was used.

An important setting of the method is the population size parameter, which is cal-
culated as the product of the popsize parameter (in scipy) and the number of variables to
be optimized, which, in turn, is equal to the product of the number of classes K = 4 and
the number of days before the departure of the train 13, τ = 2, . . . , 14. For experiments,
the popsize parameter was chosen to be equal to 1, 5, and 10. As expected, the larger the
popsize, the higher the quality of results obtained, on average. However, a large popsize
leads to a high computational time. In order to have a trade-off between the quality and
time, popsize = 5 for illustration in this paper was chosen.

Having received the constraints and tuned the optimizer, the confidence intervals of
the form (15) for prices, demand, and revenue for the Monte Carlo simulation and our
dynamic pricing model and the railway company model (hidden to us) were found; see
Figures 9–11, correspondingly.

Having obtained the values of the prices and demand, it is necessary to calculate the
company’s revenue, which can be obtained using this strategy.

Recall that the methodology for calculating the railway company revenue involves
an element-by-element multiplication of the data array averaged over demand prices by
the corresponding prices; see (14). After that, the confidence interval for revenue of the
form (15) of revenue for the day before departure for each class separately was determined.
The total revenue was calculated as the sum of the average revenue by class for each day
before the departure of the train.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
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Figure 9. Confidence intervals for prices on the tickets for τ = 1, . . . , 14 days before the departure
(via simulation and from the real-world railway company data).
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Figure 10. Confidence intervals for demands on tickets for τ = 1, . . . , 14 days before the departure
(via simulation and from the real-world railway company data).
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Figure 11. Confidence intervals for revenues for τ = 1, . . . , 14 days before the departure (via
simulation and from the real-world railway company data).



Smart Cities 2023, 6 1320

Besides the trains of Type A (752A Fri) and Type B (780A Thu), calculations of summa-
rized revenue obtained via simulation and from the real-world railway company data for
the trains mentioned at the beginning of Section 4.3 were made, and the results are shown
in Table 6. In this table, the revenue changes comparable with or more than the standard
deviation of both the simulation and railway company data samples are shown in magenta.
Using the table, one can rank the dynamic pricing systems for different trains and see the
potential for improving the hidden-to-us company’s model.

Table 6. Summarized revenue (as the sum of revenue random variables for τ = 2, . . . , 14) obtained
via simulation and from the real-world railway company data (m and s stand for the sample mean
and sample standard deviation, respectively). The amounts in RUB and percentages are rounded to
the nearest integer. The revenue changes comparable with or more than the standard deviation of
both the simulation and railway company data samples are shown in magenta.

Train Simulation, RUB Railway Company, RUB Rev.
m s s

m m s s
m Change

752A Fri 1,201,939 281,224 23% 1,248,440 215,498 17% −4%
780A Thu 1,295,597 194,895 15% 1,250,500 252,856 20% +4%
752A Sat 1,188,889 496,196 42% 1,064,879 314,756 30% +12%
759A Thu 1,109,254 159,048 14% 950,537 194,293 20% +17%
752A Wed 1,042,359 281,224 27% 848,271 215,499 25% +23%
752A Thu 1,223,061 215,442 18% 987,000 250,221 25% +24%
772A Sat 977,220 171,514 18% 775,815 213,716 28% +26%
752A Mon 1,429,092 277,865 19% 1,127,439 253,689 23% +27%
752A Tue 1,102,256 187,248 17% 799,782 198,582 25% +38%
777A Tue 1,010,397 174,581 17% 681,406 136,589 20% +48%
752A Sun 839,326 187,580 22% 187,579 164,041 87% +57%

The average capacity values were used as the upper limit during optimization to mon-
itor the achievement of the limits by the optimizer and the proposed capacity, where
the demand for tickets by class is shown in Table 7.

Table 7. Total demand for tickets received by the optimizer by class of service for τ = 2, . . . , 14.

Train Simulation Railways Company
B1, B2, C1, C2 B1, B2, C1, C2

752A Fri 13, 33, 30, 258 16, 36, 41, 259
780A Thu 13, 31, 32, 248 15, 32, 39, 248
752A Sat 10, 32, 28, 232 16, 35, 41, 232
759A Thu 11, 22, 25, 204 14, 24, 34, 204
752A Wed 11, 33, 24, 295 16, 40, 42, 298
752A Thu 12, 34, 29, 304 16, 38, 39, 304
772A Sat 11, 30, 22, 284 15, 39, 40, 286
752A Mon 12, 40, 29, 311 14, 42, 42, 311
752A Tue 11, 35, 22, 315 16, 43, 43, 317
777A Tue 10, 29, 18, 298 16, 40, 42, 299
752A Sun 7, 34, 20, 309 16, 44, 43, 310

4.6. Results and Discussion

As was stated earlier, the effectiveness of the proposed method was tested on the
dataset collected from the website of Russian railway passenger carrier company for the
period from 12 April 2021 to 17 March 2022. In this paper, experiments on 11 diverse trains
from Moscow to St. Petersburg are presented as an example. It can be concluded that the
resulting pricing (Figure 9) strategy relies to a greater extent on the cheapest service class
(C2), as can be seen from the price given by the optimizer for this class of service, while
the average optimal price for more expensive classes (B1, B2, C1) of service is above the
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average optimal price of the railway company. This optimization approach is consistent
with the expectation of the company, which sets this trend by setting the largest number of
tickets for the class from which the company expects to receive the maximum revenue.

According to the received new pricing strategy, the demand (Figure 10) can be ob-
served. The optimization suggested an increased demand in the last few days before the
departure of the train for the most popular class of service, which is achieved by corre-
sponding prices. In accordance with the available description of the price elasticity of
demand, for the most expensive classes of service, this effect is less noticeable due to the
flatness of the function when the price increases. This effect corresponds to the expected
one, where the demand for the most expensive train classes is historically not large, which
is also expressed by the company’s policy on the initial formation of the number of seats by
class of service.

As can be seen from Table 6, the quality of dynamic pricing of the Type A and B trains
are rather similar in the simulation and in the real-world railway company data, taking into
account the deviation calculated. In a sense, this means that the dynamic pricing system
of the railway company works similar to the simple model proposed by us and gives
the highest-quality ranked results among the other trains considered. At the same time,
the results for other trains are more interesting and show that the existing system has a
high potential for improvement (especially since it is compared with the simple data-driven
model that we built). Again considering the deviation, the quality performance difference
(in terms of the company’s revenue from ticket sales) between the hidden and exposed
models varies here up to 57% on average, which is rather impressive. In other words,
the results show that, depending on the train type, the quality performance difference
(in terms of the company’s revenue from ticket sales) between the hidden and exposed
models can vary by up to several dozen percent on average, indicating the potential for
improvement in the company’s existing (hidden to us) dynamic pricing model.

As expected from the obtained values of demand and prices, the company’s optimized
revenue largely depends on the pricing policy for the most popular and, accordingly,
the cheapest service class (see Table 7). This revenue optimization is in line with the overall
revenue generation strategy of the passenger rail company, whose historical data show that
the company always expects to generate the bulk of revenue from the most desirable class
of service.

At the same time, this strategy of multi-class optimization allows one to receive
increased revenue, including from classes of service that are not the main ones in terms of
revenue. This indicates that the railway company’s hidden model is somewhat inferior to
the dynamic pricing based on the surrogate model. At the same time, it should be noted
that the company’s model is most likely based on a predictive price elasticity of demand
model, whereas, in this paper, the actual values of demand are used. The lower income of
the hidden model may be due to the prediction error. Nevertheless, the method proposed
in this study make the quality ranking of the dynamic pricing models rather evident and
similar to what we would have after testing the hidden model in reality.

It should be noted that the dynamic pricing method used and the demand model
itself are simplified, for example, in comparison with methods based on deep learning.
In addition, the presented model works under conditions of unknown actual price limits
for service classes existing in the company. Moreover, the data used in our study were
cleared of holiday demand anomalies, thus possibly “losing” the corresponding part of
demand within the Monte Carlo simulation. It is interesting that, even in the simplified
setting, we have the data-driven dynamic pricing model that shows a better performance
than the existing company’s model.

5. Conclusions

Motivated by the lack of reproducibility in the field of dynamic pricing for train ticket
data, this paper proposes a simple, data-driven method called DPRank with open-source
code and publicly available data. The method allows for the evaluation and ranking of
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the quality of existing dynamic pricing models using only open data from online ticket
systems. Specifically, it builds a surrogate price elasticity of demand model using public
data generated by the hidden dynamic pricing model, and then applies the surrogate
model to build the exposed model of dynamic pricing. The hidden and exposed models
were further compared in terms of revenue optimization quality through a Monte Carlo
simulation method.

The developed method demonstrates the possibility of restoring the pricing model
based on open data. Its practical significance lies in its ability to solve various tasks for
different actors of the smart urban environment. For carrier companies, it can be used to
optimize their pricing programs and increase market volumes in a competitive environment,
where pricing programs consider the restored models of other carriers. City or regional
government authorities can use this method to optimize the transport system and increase
transport accessibility for the population through a flexible coordinating policy of carriers.
This includes implementing multitransport routes with convenient connections, single
tickets for different types of transport, and dynamic tickets such as a “weekend ticket”.
Additionally, this method can serve as the basis of work for transport aggregators in the B2C
segment, allowing them to recommend the most favorable offers on routes and prices at a
selected time, especially in pre-order or “waiting list” modes. In general, this method will
make the mobility of the population more interpretable, which is essential when managing
a smart city or region.

The limitation of this method is that it models the potential demand for transportation
(which, under certain conditions, can be realized in the form of ticket purchases) rather than
the actual use of transportation. Therefore, for managing the mobility of the population,
the developed method is not enough, and additional mechanisms are required to contribute
to the realization of potential demand, such as popularization and advertising.

In this study, a highly versatile method (implemented on the specified GitHub) was
developed that, together with an open data crawling framework for ticket prices, can be
used for any railway passenger carrier company. Its functionality was confirmed using
the Moscow to St. Petersburg route as an example. However, its effectiveness may vary
depending on the specific route’s mode and load, and it may differ between different
countries and routes. This fact requires a separate study, which is planned as a part of our
future work.
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Appendix A. Incremental Update of the Surrogate Price Elasticity of Demand Model

Suppose that the entire procedure for the period [0, T] has been carried out. Once new
data are obtained, say, already of the form (4) for the time period [T, Tinc], the surrogate price
elasticity of demand model (6) has to be updated and the prices have to be re-optimized
according to the new data. It is, however, usually too time and memory consuming to repeat
the procedure for [0, Tinc]. For this reason, it is convenient to use incremental learning,
where one updates the model’s parameters without the usage of the old data but only by
using the new one.

https://github.com/AlgoMathITMO/DPRank


Smart Cities 2023, 6 1323

In this study, the following simple method of incremental learning was used. For the
new data from the period [T, Tinc]

{{(p′τ,m, d′τ,m)}τ∈Lm}Minc

m=1, (A1)

a new model of the form (7) was calculated:

ln D̃′ = β′τ ln
(

P− min
τ∈Lm ,m

{p′τ,m}+ 1
)
+ ln α′τ + ln

(
1 + δ′τ

)
, (A2)

and averaged with the one for the period [0, T], i.e., (7) itself. As a result, one simply has
the geometric mean of the two models of the form (6):

D̃inc = SEdinc(P; τ) =
√

ατα′τρ(P; p)βτ ρ(P; p′)β′τ (1 + δτ)(1 + δ′τ), (A3)

where

ρ(P; p) := P− min
τ∈Lm ,m

{pτ,m}+ 1, ρ(P; p′) := P− min
τ∈Lm ,m

{p′τ,m}+ 1. (A4)
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