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Abstract: Binary logistic regression has been used to estimate the probability of lane change (LC)
in the Cell Transmission Model (CTM). These models remain rigid, as the flexibility to predict LC
for different cell size configurations has not been accounted for. This paper introduces a relaxation
method to refine the conventional binary logistic LC model using an event-tree approach. The LC
probability for increasing cell size and cell length was estimated by expanding the LC probability
of a pre-defined model generated from different configurations of speed and density differences.
The reliability of the proposed models has been validated with NGSIM trajectory data. The results
showed that the models could accurately estimate the probability of LC with a slight difference
between the actual LC and predicted LC (95% Confidence Interval). Furthermore, a comparison of
prediction performance between the proposed model and the actual observations has verified the
model’s prediction ability with an accuracy of 0.69 and Area Under Curve (AUC) value above 0.6.
The proposed method was able to accommodate the presence of multiple LCs when cell size changes.
This is worthwhile to explore the importance of such consequences in affecting the performance of
LC prediction in the CTM model.

Keywords: logistic regression; cell size; multiple lane changes; cell transmission model

1. Introduction

Modeling lane changing is a challenging task that involves interactions of a vehicle
and its immediate following and leading vehicle [1,2]. The existing lane change (LC)
algorithms (e.g., trajectory planning, maneuver planning algorithm) focus on maximizing
the benefits to individual vehicles [3–8]. These algorithms require detailed microscopic
traffic variables (i.e., relative speed and positions) of the surrounding subject vehicles,
gaps between host and following and leading vehicles, which often depend not only on
the behavior and movement of the surrounding vehicles, but also on macroscopic traffic
dynamics [2]. Hence, a simplified, yet reliable, macroscopic LC prediction model that
forecasts the probability of LC occurrence in a relaxed cell (changes in time and space) is
required [1], moreso when the decision-making of lane changing is a critical link to drive
the mission of connected autonomous vehicles in complex urban environments. Current
research projects have focused on developing autonomous vehicle technologies to improve
vehicle safety, particularly when performing its fundamental tasks, including car following,
lane-keeping, and lane changing [3–8].

Studies related to macroscopic lane change (LC) prediction have gained increasing
attention in the macroscopic aspect of traffic simulation [9,10]. Efforts have been devoted
to understanding various characteristics of LC traffic based on the theoretical work of
kinematic wave (KW), which ha viewed vehicular traffic as a continuous fluid flow and
described the traffic dynamics by the changes in time and space [11–13]. Among these
macroscopic models, the cell transmission model (CTM)—a discretized version of the
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kinematic wave (LWR-KW)—model has been recognized as the simplest means to model
the evolution of traffic dynamics and features [14]. While fewer parameters are needed [15],
some limitation still exists, in which all the events related to LC could not be explained fully
in the current macroscopic traffic simulation models, partly due to lack of available data in
a macroscopic form. Previous studies have considered the components of a lane change in
developing the CTM model. Ref. [16], e.g., assigned a fixed percentage of left-turn flow
(i.e., 30%) when formulating the diverge movement to simulate oversaturated arterials.
Their improved form of the CTM model, which introduced a novel conditional cell at the
intersection, has enhanced the reliability of the CTM. However, some limitations still exist,
where the assigned percentage of LC at a fixed probability were not comprehensively taken
into consideration and remain a question to be answered. Even though the percentage of
LC may be identified empirically from field observation or a defined lane changing rate,
this does not mean it can be applied for any size of cells. These cells are influenced either
by the surrounding traffic environment (i.e., speed and density between lanes) [17–20]
or some unknown factors (i.e., driving attitude), which might affect the variance in the
percentage of turning, or in a proper term, the probability of lane change. With the lack of
comprehensive lane change in the rigid CTM model, the simulated traffic flow condition
may not be accurately estimated with the actual traffic. Ref. [21] have considered lane
change in CTM, where they introduced wτ

i (i.e., the number of vehicles that wish to change
lane at cell i, time step τ) as a variable to determine the cell occupancies in the following
time step. However, this variable has not been validated with actual data.

Due to its complex process, a macroscopic LC algorithm that predicts the occurrence
of LC in a controlled zone, defined by space over time, was introduced [17]. In a controlled
space of a cell defined by space over time, the occurrence of lane change can be predicted in
a logic binary form of either 0 (NLC or non-lane change) or 1 (LC or lane change). In other
words, each cell can capture the snapshot of the presence of LC activities and the condition
of the surrounding vehicles in the cell at any given stretch of road. Such discrete behavior
of lane change has been evaluated in the previous studies using a statistical approach. One
of the well-known statistical approaches is the binary logistic regression (BLR) technique.
Few studies, however, have adopted the BLR to model the prediction of a lane change.
Ref. [17] have used the logistic regression to develop a lane change model-based, whereby
macroscopic traffic variables (i.e., speed, density difference) are extracted and aggregated
in a cell-based form. Their model predicted the probability of a lane change and showed
statistically significant and non-linear relationships with macroscopic traffic variables. In
their model, the occurrence of lane change was predicted at a 10-s time and 150 m length
window. Ref. [22] refined and further simplified the binary logistic lane change model
suggested by [17] by introducing the direction of the LC and using lesser input variables.
Ref. [22] validated the proposed model with actual data and evaluated its performance
using the area under the curve (AUC).

However, these studies had not considered the presence of multiple-lane change
vehicles that is likely to occur simultaneously in this cell window [17,22]. Moreover, the
expected probability of LC will no longer be the same when the size of the cell windows
changes with time step, τ and cell length, L, which are affected by the surrounding traffic
speed, v. It is known that the cell length, L is a product of speed, v, and time step τ. The
fact that the actual traffic speed varies over time gives us the reason why it is crucial to
replace the conventional logistic LC model with the dynamic properties considering the
changes of cell sizes, thus making the model less rigid in predicting LC.

Aims of the Study

Indeed, abundant works focused on modeling LC behavior prediction and its im-
provement have been done in past research. However, some issues still need to be solved
in emulating the complex behavior of lane change. A crucial drawback of current logistic
regression lane change models is that they do not address the flexibility of the model in
predicting lane change when the cell sizes, defined by space over time, change. Since the
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current logistic regression model only limits predicting the probability of LC from the
binary response, the observations of two or more consecutive LC events are not possible
using this regression approach.

Intending to overcome the aforementioned deficiencies, this study developed an
improved version of the logistic model by proposed an event tree to expand the probability
estimation of the conventional logistic regression for both single and multiple events of
the lane change. Expanding the probability of LC with an event tree in the form of nodes
and branches has the potential in dealing with the decision-making process for the issues
as identified earlier. An event tree produces the probability outcome that is generated
based on predetermined cell size. By tracing the event tree, one can observe the different
outcomes on the probability of lane change based on any inputs of macroscopic traffic
variables and the ability to predict lane change of any cell sizes while observing the events
of single and multiple lane changes. Considering the limitations of the conventional logistic
regression, none have yet attempted to expand this model using this method, which is
worth exploring. Therefore, this study proposes a macroscopic LC prediction model to
calculate the probability of LC occurrence based on an event tree approach.

The main work of this paper includes the following four parts: (1) developing a
pre-defined LC event-based logistic regression model based on field data; (2) introducing
the framework of the event tree, which expands upon a pre-defined logistic regression
model; and (3) predicting the LC occurrence as zone sizes changes; and (4) evaluating the
performance of the proposed model.

The remainder of the paper is organized as follows. Section 2 introduces the basic
terminology of the logistic regression model and the variables used in the study. The frame-
work for the extended model based on the event tree approach is provided in Section 3. The
main work includes the following three parts: (1) developing a pre-defined LC event-based
logistic regression model; (2) introducing the framework of the event tree, which is ex-
panded upon a base logistic regression model; and (3) predicting the LC occurrence as zone
sizes changes; and (4) evaluating the performance of the proposed model by presenting
the empirical results. Section 4 gives a brief description of the training data used for the
regression model. Section 5 describes the methods of evaluating the performance of the
regression models. In Section 6, results and discussion are provided, and the effectiveness
of the extended model is validated and compared with the actual status of LC at different
conditions. Lastly, the conclusion of the paper is provided in Section 7.

2. Logistic Regression Model
Basic Terminology

The binary logistic regression is a popular non-linear statistical model where a flexible
logistic function is introduced to constitute the basic mathematical form of the logistic
model [23]. The logistic regression model has been widely used in many fields [24–32].
Some studies have suggested that the logistic regression model is more accurate and
efficient than the other multivariate statistical methods such as frequency ratio, bivariate
statistics, artificial neural networks, support vector machines, and classification trees in
some circumstances [33–38].

Logistic regression is a part of a larger class of algorithms, known as the Generalised
Linear Model proposed by [39], as a means for problems that were not directly suited for
applying linear regression. The logistic function may ensure that whatever estimate of the
prediction, the result will always be some number between 0 and 1, which is why the logistic
model is often the first choice when a probability is to be estimated. The model based on
logistic regression has the ability to describe the relationship between the probability of a
binary response variable and a set of corresponding explanatory variables. Moreover, it has
no restrictions on the explanatory variables, which might be either continuous or discrete,
or a mixture of both types, and the variables need not be normally distributed [29].
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The basic logistic regression model is formed as in Equations (1) or (2).

Logit(P) = ln
(

p
1− p

)
= β0 + β1x1 + β2x2 + · · ·+ βmxm (1)

P =
exp(β0 + β1x1 + β2x2 + · · ·+ βmxm)

1 + exp(β0 + β1x1 + β2x2 + · · ·+ βmxm)
, (2)

where P is the probability of an event occurring; x1, x2, . . . , and xm refer to the explanatory
variables; β0, β1, β2, . . . , βm are the model’s parameters or coefficients which could be
established by the so-called maximum likelihood estimation method [23]; m is the number
of selected variables; Logit(P) means a logit transformation of P by the natural log of the
odds (being defined as the ratio of occurrence probability to non-occurrence probability).
The beta values (i.e., the model’s parameters) for fitting the logistic regression model can
be calculated using the so-called maximum likelihood estimation method.

For this study, the value of P is defined as the estimated probability of lane change
identified from the actual LC status (1 (‘LC’)) or 0 (‘NLC’)) with their corresponding inde-
pendent variables observed from field data. P can take any value between 0 and 1, and
exceeding this range is not possible due to the logarithmic characteristic found in the prop-
erty of logistic regression. In order to define a relationship that is bounded between 0 and
1, the logistic regression gives the assumption that the relationship between independent
and dependent variables resembles a curve of an S-shaped (see Figure 1) [40]. In this case,
the independent variables, x1, x2, . . . , and xm, used are the density difference (∆k) and
speed difference (∆v), which were the main contributing factors of traffic characteristics at
the macroscopic level. Details on how these variables were taken will be discussed in the
next section.

Figure 1. Logistic relationship between lane changing probability and independent variables.

3. Extending Prediction Model Using Event Tree

An event tree is a decision-making framework that estimates the probability of a set of
pre-defined events using a tree-like decision-making process. Each branch or node of the
tree represents a set of possible outcomes for a particular event, increasing specificity with
each step. Progression to the next branch is accomplished when the probability estimate for
the preceding node exceeds a pre-defined threshold. In this study, the event tree is rooted
from a base model—a model (with a given coefficient of the parameters) determined at
a state with minimal events of multiple LC observed for a specific cell length and time
step. The following section (Section 3.1) will highlight some of the steps in identifying this
base model.

3.1. Identifying Base Model

In order to identify the base model, the vehicle trajectory dataset was post-processed
with a trial of different cell sizes until a minimal observation of multiple LC was achieved.
This can be achieved by starting from a smaller cell size. When the cell size is small, the
perimeter of the observations can be narrow up to a point where only the size of single
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vehicles can be observed. However, it is still preferable to use a bigger cell size that can
group multiple vehicles as a cell size that is too small may contradict our objectives of
studying the macroscopic behavior of traffic flow. Figure 2 presents a flowchart showing
the steps for selecting the base model. When the total number of multiple LC events is
counted, cell size with the lowest count of multiple LC will be used as the base model.
Though there may still be a small number of multiple LC events observed (i.e., <10), it can
be considered negligible with such a large dataset.

Figure 2. Framework for the selection of the base model.

3.2. Observing the Number of Observations Based on Changes in Cell Sizes

A different number of observations will be produced when the cell size changes, but
the total number of LC events remains the same for all cases. For instance, when the cell
size is smaller, more cells are needed to occupy the same amount of space. Despite how
large or small is the cell size, the total number of observations for LC events will maintain
the same since they can only be observed in an instant shot. However, when more cells
are used, the number of observations for the NLC event will increase due to the increase
of multiple shots that will form within the same zone. Equations (3) and (4) thus give the
formulation based on this concept.

The division between the total duration gives the total number of observations, N, T,
and the simulation time step, τ:

N = T/τ (3)

where N consisted of both lane change LC and NLC events:

N = NLC + NNLC (4)

3.3. The Model Formulation for Expanding the Branches

Upon having a base model, this section provides the steps to derive the event tree
based on the logistic regression. Given the configuration of cell size, (Yτ

L )∆v, ∆k that one
wishes to use, the next step is to identify the number of branches needed, starting with
the root of the base model (as shown in Figure 3a). In this configuration, L denotes cell
length (in meters), and τ is the simulation time steps (in seconds) under a specific input of
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∆v (speed difference) and ∆k (density difference). The density difference ∆k between the
origin and the target cell was computed using Equation (5).

∆k = ki,origin − ki,target. (5)

Figure 3. Schematic layout (a) the root of the base model, (b) overall event tree, (c) observing the
presence of multiple-lane change.

The speed differences of the vehicles from origin to target cell were also obtained at
the instant when lane change occurred (see Equation (6)).

∆v = vi,origin − vi,target. (6)

The branches for the event tree are categorized into two types: (i) fully-developed
branches and (ii) partially-developed branches. Given a model with cells configured at
Yτ=5

L=100 as the base model, for instance, a fully-developed branch is used when a prede-
termined Yτ

L is able to expand fully from the base model. In contrast, the remaining that
were not able to expand to a full base model, a partially-developed branch is used. As an
example, for a predetermined cell configuration at Yτ=10

L=100, two fully-developed branches
of Yτ=5

L=100 are needed, given Yτ=5
L=100 as the base model. Whereas for a predetermined cell

configuration at Yτ=8
L=100, two branches are needed—the first branch is fully-developed

Yτ=5
L=100, and subsequently, the remaining τ = 3 s will be placed in the second branch that

is partially-developed Yτ=3
L=100. A similar concept to this also applies to the changes in

cell length, L. At the end of the branches, each node gives the probability PLC(τ, L) for a
specific event estimated from the binary logistic regression (obtained from Equation (2)).

PLC(τ) =
NLC(τ)

N(τ)
(7)

PNLC(τ) = 1− PLC(τ). (8)
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When observing the changes for increasing time step τ, the probability of LC, PLC(τ
′)

for a fully-developed branch is updated as follows:

N′LC
(
τ′
)
= N′

(
τ′
)
− N′NLC

(
τ′
)

(9)

N′
(
τ′
)
=

T
τ′

∣∣∣∣ N′ < N (10)

where
τ′ = τ + ∆τ

∣∣ ∆τ < τ (11)

PLC
(
τ′
)
=

N′LC(τ
′)

N′(τ′)
. (12)

For a partially-developed branch, the probability of lane change is updated based
on the proportion of the increment in the remaining time step. The increment of this
probability denoted as ∆PLC(τ

′), is defined as:

∆PLC
(
τ′
)
= PLC(τ)·

∆τ

τ
. (13)

Probability for a partially-developed branch is then updated as follows:

PLC
(
τ′
)
= PLC(τ)·∆PLC

(
τ′
)

(14)

PNLC
(
τ′
)
= 1− PLC

(
τ′
)
. (15)

With the above formulation, the observation for the changes in cell length, L, can also
be defined in the same way as the time step, τ, discussed above. A simplified structure
of the tree diagram showing the changes to the time step is represented in Figure 3b.
However, it should be noted that a tree like this is only applicable for a specific case of the
input variables, ∆v, and ∆k. Different input variables will generate trees with different
probability outcomes. Even though the event tree is useful for presenting in detail the
many possible outcomes when the cell size changes, a large amount of space is required to
occupy these trees. Hence, the tree diagram is modeled in an Excel spreadsheet to enable
easy generation for the outcomes of all possible scenarios.

The formulation of the event tree becomes complicated when observing changes for
increasing both the time steps and the cell length at the same time. To do so, a step-forward
method that connects the τ-tree with the L-tree diagram is used. The overall probabilities
for LC and NLC from the τ-tree are transferred to the first node of the L-tree diagram and
continue to expand until the required cell length is reached.

3.4. Deriving the Observation of Multiple LC Events

One can identify the number of lane change events in a given cell size in the tree
diagram. Understanding how this concept is formed can be seen in a typical probability
tree diagram that observes the number of successes and failures in an event. For instance, in
Figure 4b, the blue path consisting of two success events, P in the given cell size; the yellow
paths consisting of one successful event; and the red path do not have any successful event.
The number of this successful event for each path can be represented by the number of
lane changes observed in the given cell size. Thus, it can be inferred that, for a tree that
expanded up to two branches, one can observe up to two vehicles that simultaneously
change lanes. In other words, a higher number of multiple LC events can be observed when
the branches of the tree diagram increase. This can also be explained in the real-life scenario,
where a snapshot with a broader view of the road can capture up to a few LC events.
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Figure 4. (a) US-101 Study Area, (b) Outputs of processed data.

As the probability of NLC, P(NLC) seen in the actual data is always higher than
the probability of LC events, P(LC), the estimated probability of multiple LC events will
always be much lesser than the P(NLC). Logically, this estimation is reasonable when on
the road, the NLC events are usually seen in higher proportions than the LC events.

The equations below derive the probability for each of the path using simple multi-
plicative and summative rules:

∑ P(LC = 2) = P∆P (16)

∑ P(LC = 1) = 2P(1− ∆P) (17)

∑ P(LC = 0) = (1− ∆P)2. (18)

4. Vehicle Trajectory Training Data

In this study, a dataset containing a series of individual microscopic trajectories from
the well-known NGSIM (Next Generation Simulation) database [41] was used to extract
the information needed to develop the lane change model. The NGSIM project is an open-
source data collection, funded by Federal Highway Administration (FHWA), in an effort for
the public to develop and/or validate potential traffic models. This study uses the vehicle
trajectory data collected at a segment of US Highway 101 (Hollywood Freeway) in Los
Angeles, California. The lane numbering of the study area can be observed in Figure 4a.

Assumptions:

• This study does not differentiate between discretionary and mandatory LC. Only
discretionary lane change events will be considered.

• Since the study considered discretionary lane change, the subject vehicles originally
traveled in lanes 1 to 5 were used. Vehicles from lanes 6 to 8 were not considered to
eliminate the possibility of drivers perform mandatory lane changes when vehicles are
entering from the upstream on-ramp or when vehicles are exiting at the downstream
off-ramp.

5. Performance Measures

From a theoretical aspect, extended the logistic regression lane change model using
the branching of event trees has demonstrated (in the previous section) the possibility of
the model to predict the probability of both single LC and multiple LC in any cell size.
However, the improved model still needs validation with the actual data in order to be
reliable at predicting the probability of LC.

With that in mind, the performance of the extended model is assessed by examining the
discriminating power of classifying the agreement between the predictions and the actual
outcomes. These classifications can be determined using a confusion matrix table that can
further give specific performance measures, such as the true-positive rate, false-negative
rate, true-negative rate, and the false-positive rate. Furthermore, predictive accuracy has
also been widely used to assess the predictive capability of the logistic regression models.
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In this case, accuracy is the proportion of LC and NLC that our models correctly classified.
Thus, accuracy together with AUC was used to evaluate the performance of the tree-based
logistic lane change models.

Accuracy =
TP + TN

TP + FP + TN + FN
(19)

where TP (true positive) and TN (true negative) are the numbers of LC events that are
correctly classified, and FP (false positive) and FN (false negative) are the numbers of LC
events incorrectly classified.

The relationship between the true and false positives can also be depicted by a receiver
operating characteristics (ROC) curve for visualization, organization, and selection of the
classification model on the basis of their performance. To compare classification models,
the performance measure of ROC can be reduced to a single number which is represented
as the area under the ROC curve, abbreviated as AUC [42]. In general, the bigger its AUC,
the better the discriminative ability of a classification model, or in other words, the better is
the overall performance of a model. Hence, AUC > 0.9 are considered outstanding, AUC
between 0.8 and 0.9 are considered excellent, AUC between 0.7 and 0.8 are considered
acceptable, and AUC between 0.6 and 0.7 are considered poor, non-discriminative if the
AUC equals 0.5 [43].

6. Results and Discussion

Following the need for a base model to be used as the root of the event tree, this
section will first explore the NGSIM dataset by processing the data for different cell sizes
in the search for the least multiple LC events. After having a base model selected, the
results will then compare the prediction of lane change between the event tree, its logistic
regression, and the actual observations seen in the dataset. To see the reliability of the
improved logistic regression model in predicting the lane change, the results will then
present the model’s performance based on what has been discussed in Section 5.

6.1. Selection of Base Model—Based on the Number of Observations

Several cases were explored in selecting the base model. As shown in Figure 5, these
cases were divided into: (i) observing at increasing time step in the same cell length, (ii)
observing at increasing cell length for the same time step and, (iii) observing at increasing
time step and cell length. Raw datasets from NGSIM were macroscopically processed based
on each of the cases provided. In case (i), datasets were observed from τ = 5 s, increasing at
an interval of 1 s, up to τ = 10 s in a fixed cell length of 100 m. Case (ii) observed datasets
from cell length, L = 100 m, increasing up to L = 200 m at an interval of 10 m. Lastly,
case (iii) observed the datasets whereby the time step and cell length are simultaneously
increased at an interval of 1 s and 10 m, respectively, from τ = 5 s, L = 100 m to τ = 10 s,
L = 150 m.

Here, a total number of observations for LC and NLC events were found for each
of these cases. In this figure (i.e., Figure 5), it can be observed that the number of NLC
events is significantly much higher than the number of LC events. Overall, a total of 943 LC
events can be seen in the 45-minute collected within the discretionary lanes considered in
the study area. Of these LC events, some multiple events of LC occurred simultaneously.
However, when compared to the total number of LC events, the events with multiple LC
constitute a relatively smaller percentage, i.e., approximately 2–4% for 2 LC events and
<1% for 3 LC events. These are considered negligible when compared with the number
of 1 LC events, which in turn, expect a low probability of LC. Having known that a base
model is required to be used as the root of the event tree for further prediction of multiple
LC events, the base model will thus be chosen, if possible, with the one with no multiple
LC events. In Figure 5d, the number of multiple LC events was compared for each case. It
is observed that cell sizes with the smallest time step and cell length have the least multiple
LC events. In this case, the cell size of τ = 5 s, L = 150 m were chosen as the ideal fit for the



Smart Cities 2021, 4 873

base model as it gives the lowest percentage of multiple LC events at approximately 2%,
which is considered negligible.

Figure 5. The number of observations processed based on (a) increasing time step, (b) increasing
cell length, (c) increasing time step and cell length; (d) comparing the number of observations for
multiple LC.

6.2. Prediction of LC—Comparing Different Approaches

In this section, a comparison is made to observe the probability of lane change pre-
dicted for different cell sizes. Specifically, the cell size considered were based on increasing
time step and cell length (τ = 5, L = 100; τ = 8, L = 130; τ = 10, L = 150), which are then
used to validate the predictions based on the following approaches:

1. Event tree for a specific cell size
2. Logistic regression processed for the respective cell size considered in (i). Note that

different coefficients of the parameters are expected for different cell sizes.
3. Probability estimated from the actual LC status for the cell size considered in (i) and

(ii), (P(LC) = number of LC observations/Total number of observations).

In all these, four separate quadrants observed among different input variables (i.e.,
speed and density difference) were also studied.

6.3. Observing Prediction of Single LC Events

Table 1 shows part of the results for the predicted probabilities in a cell size of τ = 6,
L = 110. Here, we wish to see whether there is a difference in the probability estimated
between the event tree and the logistic regression for the respective cell size. To compare
these approaches, an analysis of variance (ANOVA) was conducted on the probabilities
estimated for the different input values obtained from data. The ANOVA tests whether the
mean probability values are the same:

Ho : µET = µLR
Ha : not all µi are equal,

(20)

where µi are the mean probability values at any approach i. Suppose a Type I error is
controlled at α = 0.05, then F (0.95, 1, 1703) = 3.85 with 1 and 1703 as the degrees of freedom
associated with the factor level and the error term of the given data. The decision rule
is thus:

if F ∗ ≤ 3.85, conclude Ho
if F ∗> 3.85, conclude Ha.

(21)
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Table 1. Summary statistics for the prediction of single LC events based on the test of Analysis of
Variance (ANOVA).

Groups Count Sum Average Variance

Regression 852 62.2927 0.0731 0.0011
Derivation

(P(LC = 1)) 852 64.5671 0.0758 0.0013

Source of Variation SS df MS F p-value F crit
Between Groups 0.0030 1 0.0030 2.5799 0.1084 3.8469
Within Groups 2.0026 1702 0.0012

Total 2.0056 1703

In this table, the p-value = 0.11 > 0.05 and the Fcrit = 3.85 > F = 2.58. This shows that the
null hypothesis, which states that all means are equal, cannot be rejected. In this case, the
sample data (90% of the LC data used) is thus consistent with the hypothesis that population
means are equal between groups. In other words, the predicted probability for the event
tree does not differ much from the probabilities estimated from the logistic regression.

For τ = 6, L = 110, approximately 65% of the LC data have attained similar consistency
between the two approaches (p-value = 0.11, F = 2.46), whereas 47% of the LC data were
found consistent at τ = 10, L = 150 (p-value = 0.06, F = 3.67). Thus, as the cell size increases,
lower accuracy is expected in predicting single lane change events. This can be explained
by the presence of multiple-lane change events, which is much higher when the cell size
increased (6% Multiple LC events at τ = 10, L = 150), see Figure 6d.

Figure 6. Prediction of lane change probability—comparison between event tree and regression for
single prediction of lane change in various cell sizes of (a) τ = 6, L = 110, (b) τ = 8, L = 130, (c) τ = 10,
L = 150; comparison between actual observations, regression and event tree based on different input
variables in the cell sizes of (d) τ = 6, L = 110, (e) τ = 8, L = 130, (f) τ = 10, L = 150; (g) comparison
between the actual observations with the event tree for multiple LC events.
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Figure 6a–c provides the relative comparison of the probabilities estimated between
the event tree and the logistic regression for (a) τ = 6, L = 110, (b) τ = 8, L = 130 and (c)
τ = 10, L = 150. For the x-axis, the figure is plotted based on the outcomes of all the inputs
(speed and density difference) found in the sample data. In these figures, it can also be
clearly seen that the overall trends between the event tree and the logistic regression do
not deviate much when predicting single observations of LC.

6.4. Observing Prediction of Single LC Events at Different Input Variables

Figure 6d–f observes the ability of the extended model to predict the probabilities at
different input variables. The dataset is further divided into four separate quadrants based
on the positive and negative values of speed and density differences. In a plot of speed
difference (∆v) against density difference (∆k), the four quadrants are defined as follow:
(i) Quadrant 1 (∆v ≤ 0, ∆k ≥ 0), (ii) Quadrant 2 (∆v ≥ 0, ∆k ≥ 0), (iii) Quadrant 3 (∆v ≥ 0,
∆k ≤ 0), and (iv) Quadrant 4 (∆v ≤ 0, ∆k ≤ 0). A positive density difference means the
origin lane has a higher density over the target lane, while a positive speed difference
means that the origin lane has a higher speed over the target lane.

The comparison for each of the quadrants is made between (i) event tree, (ii) the
logistic regression, and (iii) the actual LC in the dataset. For (iii), the probability is taken
by dividing the number of LC observations by the total number of observations in the
considered quadrants. Here, it is observed that all the three approaches (i), (ii), and
(iii) have estimated probabilities that are close within the range of ±0.05 in each of the
quadrants. The probabilities estimated were observed highest in Quadrant 1, where the
origin lane is denser and at a speed lesser than the destination lane. This quadrant can also
be categorized under the intention of discretionary lane change for the purpose of speed
gain and travel time reduction.

6.5. Observing Prediction of Multiple LC Events

Figure 6g compares the prediction of multiple LC events for different cell sizes. In this
figure, the overall mean probability is taken for all the input cases found in the datasets
of different cell sizes. It is observed that in a large sample size, the estimated average
probability obtained for multiple LC is <0.1. This is considerably smaller when observed in
the field.

Comparing the average between the event tree with the actual observations, it is seen
that the prediction of P (LC = 2) for the size at τ = 6, L = 110, and τ = 8, L = 130 are rela-
tively close to each other. Further, a pairwise t-test was conducted to compare the difference
between the event tree with the actual observations. Results have confirmed no significant
difference between the two samples (given t-stat = 1.976 < t critical two-tail = 4.303). Thus,
the prediction for single and multiple observations of LC can successfully and accurately
follow the pattern of actual data, which indicates the strong predicting ability of the event
tree model.

6.6. Performance Measures of the Event Tree

In modeling the predictions of lane change, it is necessary to evaluate and assess the
quality of the models for different cases. In this study, the models’ predictive accuracy, ROC
curves, and AUC values were analyzed. Three evaluation statistics, namely, standard error,
confidence interval at 95%, and significance level p, are included (see Tables 2 and 3). The
standard errors for each variable are reasonably small, confidence intervals are relatively
narrow, and p-values are also small for all cases. All these results indicate a reasonable
goodness-of-fit for the binary logistic regression with the dataset.
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Table 2. Summary statistics for comparing the performance between the regression and the event tree.

Logistic Regression Event Tree

Mean 0.7619 0.7119
Variance 0.0010 0.0005

Observations 3 3
Pearson Correlation 0.2267

Hypothesized Mean Difference 0
df 2

t Stat 2.5565
P(T ≤ t) one-tail 0.0625
t Critical one-tail 2.9200
P(T ≤ t) two-tail 0.1250
t Critical two-tail 4.3027

Table 3. Summary statistics for the logistic regression of different cell sizes.

Estimate Std. Error Z Value Odds Ratio Confidence
Interval

τ = 6, L = 110
Intercept −3.0196 0.0390 −77.36 *** 0.0488 [0.0452, 0.0527]

∆k 0.0244 0.0023 10.23 *** 1.0247 [1.0199, 1.0295]
∆v −0.0502 0.0050 −10.09 *** 0.9510 [0.9418, 0.9603]

τ = 8, L = 130
Intercept −2.5473 0.0398 −63.87 *** 0.0783 [0.0724, 0.0847]

∆k 0.0368 0.0027 9.93 *** 1.0271 [1.0217, 1.0326]
∆v −0.0575 0.0054 −10.74 *** 0.9441 [0.9343, 0.9541]

τ = 10, L = 150
Intercept −2.0737 0.0410 −50.62 *** 0.1257 [0.1160, 0.1362]

∆k 0.0259 0.0029 9.05 *** 1.0262 [1.0205, 1.0320]
∆v −0.0678 0.0058 −11.66 *** 0.9345 [0.9239, 0.9452]

*** Significance < 0.001.

The prediction capabilities of the event tree were evaluated using validation, and
results are shown in Figure 7A–C. It can be seen that the logistic regression has a better
prediction capability than the event tree with the highest accuracy value of 0.69 at the
optimum cut-off point, an AUC value of 0.79. The other evaluation statistics for other cell
sizes also indicate that the logistic regression exhibit reasonably good prediction capabilities.
However, the capability of the event tree is not far off compared with the logistic regression,
as they also have a numerically close prediction.

Finally, to compare the statistically significant difference between the logistic regres-
sion with the event tree, a pairwise comparison of these models was conducted on the
performance figures. The null hypothesis is that there is no difference between the logistic
regression and the event tree at the 95% significance level. An independent sample t-test
and p-values are used to evaluate significant differences between them. When t-values ex-
ceed the critical values of t (4.30) and p-values are smaller than the significance level (0.05),
the null hypothesis will be rejected. Therefore, the performances of the logistic regression
with the event tree are notably different. The results of the Wilcoxon signed-rank test are
shown in Table 2. It can be seen that the performance of both the logistic regression and the
event tree is not significantly different for all cases of increasing cell sizes (p-value = 0.12,
t-value = 2.92).

The probability estimated for both single and multiple LC of the proposed event tree
method was compared against the logistic regression for approximately 10,000 data points
with the variable of varying speed and density differences from NGSIM. An overview of
the result significantly shows an improvement in the accuracy up to 5.5% when comparing
to the single LC. The probabilities estimated considering multiple LC, in general, generate
smaller differences with the logistic regression model. It can also be observed that the
accuracy improves as the cell configuration increases in its sizes from (1) to (5) at the cell
size from τ = 6, L = 100 to τ = 10, L = 150, as shown in Figure 8. It should be noted
that the negative % in the figure is an indication that shows multiple LC being closer to
regression than the single LC. Considering multiple LC, therefore, helps to improve the
model accuracy for larger cell sizes.
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Figure 7. Comparing ROC curves of models between the regression and the event tree for different
cell sizes of (A) τ = 6, L = 110, (B) τ = 8, L = 130, (C) τ = 10, L = 150; (D) Comparing the accuracy
between regression and event tree of different cell sizes.

Figure 8. Comparing the accuracy improvement between regression and event tree of different cell
sizes considering multiple LC.

The probability estimated for both single and multiple LC of the proposed event tree
method was compared against the logistic regression for approximately 10,000 data points
with the variable of varying speed and density differences from NGSIM. An overview of
the result significantly shows an improvement in the accuracy up to 5.5% when comparing
to the single LC. The probabilities estimated considering multiple LC, in general, generate
smaller differences with the logistic regression model. It can also be observed that the
accuracy improves as the cell configuration increases in its sizes from (1) to (5) at the cell
size from τ = 6, L = 100 to τ = 10, L = 150, as shown in Figure 8. It should be noted that
the negative % in the figure is just an indication that shows multiple LC being closer to
regression than the single LC. Considering multiple LC, therefore, helps to improve the
model accuracy for larger cell sizes.
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7. Conclusions

In this paper, we have investigated the behavior of macroscopic prediction of lane
change and proposed a relaxation method to improve the conventional logistic lane change
model. Here, we have used an event tree method to expand the logistic regression from a
base model that contains minimal observations of multiple lane changes. With speed and
density as the input variable, the event tree is then extended according to a predetermined
cell size defined by various time steps and cell length.

The reliability of the improved model is tested for the prediction of single and multiple
LC events at different cell sizes and input variables. The findings from this study suggest
that the use of the event tree can potentially replace the conventional logistic regression
model in predicting lane change. Particularly, the prediction of the lane change based on
the event tree approach has accurately followed the patterns of actual observation and the
regression, which indicates the strong predicting ability of the event tree model.

However, results have shown that the conventional logistic regression still performs
slightly better than the event tree in classifying the lane change and non-lane change events
correctly. Regarding the the lower prediction capability of the event tree, they had managed
to produce reasonable estimations when the conventional logistic regression models were
not able to predict uncertainty due to changes in cell sizes and the presence of multiple-lane
change events. The event tree is still acceptable for modeling the prediction of a lane
change. It is generalized, simple, and easy to construct, thus lessen the amount of time to
do regression numerously when the cell size changes.

In previous studies, researchers generally consider the model based on a restricted
cell size that has yet to predict the presence of multiple-lane change events [17]. In the
same direction of modeling the lane change probabilities, [44] also limit their interest to the
scenario where each time interval is short as such, the lane change of each vehicle can only
take place once. Hence, incorporating the event tree to extend the conventional logistic
lane change model fills the gap of this study. The proposed method allows the relaxation
to a different configuration of cell size, thus making the lane changing logic much simpler
compared to the existing microscopic lane change models.

Finally, the model presented here can be extended to multiple vehicle classes by
specifying class-specific lane changing probabilities. It is fully recognized that the reported
results are based only on limited observation in a single location, which may not be
sufficient to represent the general lane changing characteristics. Further studies to collect
more data in different roadway layouts and identify some critical factors will be needed in
the future. The improved lane change model will be integrated into the macroscopic Cell
Transmission Model for traffic simulation with the consideration of multiple lane changes
in future research. Analysis to be conducted comparing the outcomes of different Cell
Transmission Models.
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