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Abstract: The smart active residential buildings play a vital role to realize intelligent energy systems
by harnessing energy flexibility from loads and storage units. This is imperative to integrate higher
proportions of variable renewable energy generation and implement economically attractive demand-side
participation schemes. The purpose of this paper is to develop an energy management scheme for smart
sustainable buildings and analyze its efficacy when subjected to variable generation, energy storage
management, and flexible demand control. This work estimate the flexibility range that can be reached
utilizing deferrable/controllable energy system units such as heat pump (HP) in combination with on-site
renewable energy sources (RESs), namely photovoltaic (PV) panels and wind turbine (WT), and in-house
thermal and electric energy storages, namely hot water storage tank (HWST) and electric battery as back
up units. A detailed HP model in combination with the storage tank is developed that accounts for
thermal comforts and requirements, and defrost mode. Data analytics is applied to generate demand
and generation profiles, and a hybrid energy management and a HP control algorithm is developed in
this work. This is to integrate all active components of a building within a single complex-set of energy
management solution to be able to apply demand response (DR) signals, as well as to execute all necessary
computation and evaluation. Different capacity scenarios of the HWST and battery are used to prioritize
the maximum use of renewable energy and consumer comfort preferences. A flexibility range of 22.3%
is achieved for the scenario with the largest HWST considered without a battery, while 10.1% in the
worst-case scenario with the smallest HWST considered and the largest battery. The results show that
the active management and scheduling scheme developed to combine and prioritize thermal, electrical
and storage units in buildings is essential to be studied to demonstrate the adequacy of sustainable
energy buildings.

Keywords: smart building; energy management; flexibility estimation; heat pump; energy storage;
hot water storage tank; building energy management system; demand response

1. Introduction

In connection with the more stringent environmental mandates, and, as a consequence, with
increasing generation of electricity from distributed and intermittent energy sources, such as wind
turbines (WTs) and photovoltaic (PV) panels, the power system is faced with a number of challenges.
Power generations in times of maximum wind or solar activity in combination with uncontrolled and
low energy consumption may lead to issues like overvoltage, reverse power flow and, as a result,
to further tripping of protection devices of the network and frequency imbalance [1]. One of the most
convincing paradigms to solve these issues is found in shifting from traditional supply control (where
electricity generation follows the demand) to demand control (where the increasing demand will be
constantly adjusted to follow a fluctuating electricity generation) [2]. This leads to an increased need for
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flexibility on the demand side (where power-intensive flexible loads and robust energy management
schemes will play a crucial role) [3] and the need for storage capacity [4] to guarantee the balance of
electricity demand and generation. One of the methods for maintaining such flexibility is the use of
demand response (DR) programs. The demand response is already far from being new to date. A wide
range of DR programs is described in multiple research works [5–7] and has already been offered by
utilities. Two main classifications of these programs exist nowadays: price-based (where users are
encouraged to individually manage their own loads in peak hours based on, for instance, a pre-specified
extra-high rate, or real-time wholesale energy market pricing) and incentive-based, that is selected
for this study. These DR activities are based on cooperation agreements between end-use customers
and utility companies or aggregators, where customers receive incentive payments for providing load
reduction when the system needs it (in response to the received information signal from the system).
By reference [8] describes each program in detail. Thus, demand-side flexibility is becoming a golden
key for a reliable operation of the future power systems with very high penetration of renewable energy
sources (RESs). The technical report “Global Energy System based on 100% Renewable Energy—Power
Sector” demonstrate prospective of a new 100% renewable electricity system with total losses of 26%
between primary energy production and total final energy consumption, compared to the current
system in which about 58% of the primary energy input is lost [9]. According to [10], almost 50% of
the EU’s final energy consumption is used for heating and cooling, of which 80% is used in buildings.

Buildings are responsible for approximately 40% of total final energy consumption, 55% of
electricity consumption, and 36% of CO2 emissions in the EU-28 in 2012, making them the single largest
energy consumer in Europe [11]. The residential sector accounts for around 75% of EU’s building stock.
However, at present, about 35% of the European buildings are over 50 years old and almost 75% of the
existing buildings are energy inefficient, where, at the same time, only 0.4–1.2% of them (depending on
the country) are renovated each year [12].

Around ten–fifteen years ago, the creation of so-called “Smart” buildings was mostly driven by the
desire of homeowners to obtain a certain level of comfort, security, resource-saving and some financial
benefits by automating certain devices or processes (such as lighting, heating/cooling, ventilation)
that basically only gave an idea of energy consumption or energy savings that has been achieved.
This was not so demanded by the ordinary occupant of the house for different reasons. With the
advent of documents such as The Energy Performance of Buildings Directive (EPBD) [10], the Energy
Efficiency Directive in Europe [13] (which became main legislative instruments to promote the energy
performance of buildings and to boost renovation within the EU), the creation of the non-profit
Green Building Council (GBC) organizations worldwide and their green building rating system LEED,
establishing formal independent quality control systems for energy performance certificates and
inspection reports in the EU, the building’s energy efficiency, performance, ecology, and greenhouse gas
emission indicators have obtained a real value and at the same time understanding of the importance
of the whole greenness of the planet by human beings.

Nowadays the existing energy systems in buildings are considered not only from the consumption
point of view but also from energy production, supply, and, to some extent, energy storage (i.e., rooftop
PV panels or WT with battery backup, solar collectors or heat pumps in combination with thermal
energy storage). These buildings are generalized as Prosumers. According to EPBD, any new public
building since 1 January 2019 and any other new building after 2021 should be Nearly Zero Energy
Building (nZEB). This basically means an energy efficient and a very high energy performance building
(as determined in amended Annex I in [14]), with very low or nearly zero primary energy needs
(amount of kWh/m2 per annum though it varies, dependent on country). The energy required should
be derived to a significant extent from on-site or local RESs.

However, since there was no clear rating of the smartness of the building at that time as well as
specific requirements in terms of RESs management and grid interaction, this kind of building lacks
proper control schemas and algorithms for RESs, as well as the ability to intelligently interact with grid
operator’s control centers through demand response, thus making the grid operation process even
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more complicated. A large number of published papers have already demonstrated many studies
proposing interesting and unique solutions in the last decade. As an example [15] proposed a dynamic
programming algorithm for optimal power flow management for grid-connected PV systems with
batteries. [16] proposed a home EMS to limit the household peak demand in order to realize residential
DR programs. They made an accent on controlling the multiple power-intensive loads in a house,
considering owner’s pre-set load priority and comfort preferences.

In 2018, the amended EPBD [14] introduced a general framework for rating the smart readiness
of buildings, highlighting the flexibility of a building’s overall electricity demand, including its
ability to interact with the grid (i.e., demand response and load shifting capacities) as one of three
key functionalities in the methodology. Therefore, buildings are becoming even more relevant and
create an ideal platform to develop, demonstrate, and implement smarter solutions and integrated
energy systems to increase renewable energy supply, flexible load control and energy efficiency,
to thereby facilitate solving the grid issues. Nevertheless, in order to implement all abovementioned,
the intelligence schemes, data management, responsiveness, and activation of energy assets of the
existing buildings still must be significantly improved.

Different papers have already demonstrated different capabilities and challenges of energy flexibility
introduction for smart grid purposes. The review article [17] summarizes different methodologies to
quantify the energy flexibility of buildings, that is, possibility to shift or deviate the consumption of
a certain amount of electrical energy in time with the help of different types of domestic electrical
devices such as heat pumps, electric vehicles, and power-intensive appliances such as washing machines,
dishwashers, tumble dryers, electric boilers. N. J. Hewitt in his article [18] discusses the possibilities and
challenges of individual heat pumps (HPs) and thermal storage utilization for system flexibility enabling.
References [19–23] analyze possibilities and propose methodologies for flexible HP operation on a single
building level, while [24–26] are devoted to much larger perspective that is, national scale energy system
models with heat pump utilization. Reference [2] summarize that a potential flexibility that can be
provided by heat pumps depends on different factors such as, to the greatest extent, appropriate control
and communication interfaces between the HP unit, the building’s EMS, and the power system, and
secondly (when the abovementioned are established), it is mainly influenced by the thermal demand, the
HP size, the storage type and size, the dynamic system properties, and the flexibility requirements from
the power system side.

Even though a large number of papers are already published, these factors in active buildings have
not been analyzed as a complex set case study nowadays. Moreover, when considering papers related
to residential buildings, most of the existing solutions are initially intended to manage a combination
of few separate components of the integrated thermal or electrical system within the building, such as
PV arrays/wind turbine with battery or PV arrays/wind turbine with heat pump and different types of
thermal storage. There is a lack of papers demonstrating solutions to manage all components including
RESs, heat pump, thermal and electrical energy storage as well as demand response applications as a
complex integrated solution.

The general idea of this study is to combine these components within one system, to be able to
manage them within a single management algorithm, and to graphically and numerically demonstrate
and evaluate how the flexibility of the HP in combination with a hot water storage tank (HWST) enables
the flexibility in electrical energy use in a household without jeopardizing the occupants’ thermal
comfort as well as annual electrical energy needs by applying artificially simulated DR request signals.
The paper analyses the battery and the HWST sizes impact on the amount of annually imported
electricity, RES utilized, and exported energy, when having own RES generation on-site.

The performance of the integrated electrical and thermal systems, flexibility range, as well as the
load-shifting potential and hence the ability to reduce peak loads will be evaluated by the following
criteria in this paper:
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• The number of hours for backup heat supply that can be provided by the HWST during the
heating season comparing various volume scenarios (0.25, 0.5, and 1 cubic meter).

• The annual amount of thermal energy lost in the HWST.
• The coefficient of performance (COP) of the HP on annual bases.
• The annual amount of thermal and electrical energy used for defrosting cycles of the HP.
• Maximal peak power output from RESs appeared during simulation on annual bases.
• The annual amount of electrical energy derived from on-site RESs.
• The amount of RES produced energy that has been consumed, stored in batteries by applying

three different battery capacity scenarios, and the excess that has been exported to the grid.
• The amount of shortage energy imported (delivered) from the grid.
• The amount of building’s primary electrical energy use in kWh/m2.per annum.
• The HWST volume impact on the amount of energy exported/imported to/from the grid (without

considering the DR signal).
• The number of loads above a certain limit on an annual basis, and consequently, the number of

DR signals requested.
• The share of DR signals which can be responded and, accordingly, peak loads shifted.

The article will first define the elements of the created model (Section 2.1). This is followed by
a control strategy and an interaction algorithm between the smart building including on-site RESs,
flexible demand unit (viz. heat pump), in-house back up thermal and electric energy storage (battery
and HWST) units, and the electrical grid (demand response application), Section 2.2. The load-shifting
potential and hence the ability to reduce peak loads applying different scenarios within a single
household, amount of annually imported/exported energy from/to the grid, amount of demand
requested and responded signals, as well as other results achieved will be tabulated and graphically
presented in Section 3 and discussed in Section 4 respectively. The paper closes with conclusions, and
proposal for further investigations in Section 5.

2. Materials and Methods

The smart active residential building model and the analysis of the integrated systems are based
on the following approach, shown in Figure 1. The electricity, generated by the rooftop PV panels and
the on-site small wind turbine is directly used to supply the household’s demand. The excess of the
electrical energy is firstly feeding a li–ion battery storage, and if the state of charge (SOC) of the battery
reaches the maximal level, electricity is exported to the grid. When the PV and WT production is not
sufficient to feed the household’s demand, the energy will firstly be discharged from the battery storage,
and if any deficit still appears—it will be met by grid supply (import). The heat pump’s electrical
consumption (that fully depends on thermal demand of the household, external air temperature, state
of energy (SOE) of the HWST, defrost cycles, and DR signals) is added to the household’s electrical
load profile. This modification will finally give the residual profile after the effect of integration of
RESs and battery, HP with HWST and DR for household and the general overview of the flexibility
achieved. For the model, 15 min time step, based on thermal and electrical energy distribution profiles
of the household, historically measured weather data (irradiance, wind speed, and air temperature),
as well as PV’s, WT’s, battery’s, HP’s and HWST’s characteristics are required.

Figure 2 represents the framework of the created system.
The first step “Input data” is dedicated to obtaining all the necessary data for creating models.

In this step sets of raw data are being processed, and all errors eliminated.
When all raw data is already processed, the “Input profiles” that reflect particular time frames

(necessary for the creation of the system components models) are created in Sections 2.1.2 and 2.1.3.
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In the third step, all necessary power output profiles and state of charge models are created using
fundamental mathematical equations and specific methods (Sections 2.1.4–2.1.6).

This is followed by the control strategy (Section 2.2) which is, based on pre-set conditions of the
created algorithm and input data, evaluates the ability of the system to respond to the DR signals
requested, charge/discharge storages to its maximal/minimal levels, as well as to manage energy
import/export to and from the grid.

In the final fifths step the results are obtained (Section 3).

2.1. Model Components

2.1.1. Input Data and Time Frames

Making an analysis of the measured data obtained from 25 buildings located in the Northern
Jylland region of Denmark (i.e., electric power demand and thermal demand for space heating (SH)
and domestic hot water (DHW)), an average statistical single-family detached household with the
District Heating (DH) heat supply is chosen as a basis. The area of the household is around 120 sq. m.
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Weather data (i.e., solar irradiance, wind speed, air temperature) were derived for the same
location from two different sources, namely, the weather forecasting station based at Aalborg University
laboratory, and the EnergyPRO software. The data from each source were carefully analyzed, compared,
and some very minor errors were interpolated and eventually eliminated.

All data sets were selected for the same year (namely, 2013) and the same location (Nordjylland,
Denmark). All the following input load profiles were created, and the simulations were executed with
a time step of 15 min, and an observation period of one calendar year.

2.1.2. Household’s Thermal Load Profile

The study made by [24], covers almost 25% of the Danish building stock, where the combination
of the district heating schemes and individual residential heat pumps in overall gradual expansion
perspective offer the best solution to transform the residential heating sector towards reduced CO2

emission. It is assumed in this study, that DH network’s supply will be replaced with an individual
HP in combination with HWST. Figure 3 illustrates the household’s total monthly (a) and an average
daily (b) thermal energy consumption by highlighting shares of space heating and domestic hot water.
The data show that the share of energy consumption directed on SH is significantly increased during
the heating season (which lasts from 1 October to 30 April), while the DHW’s share is more or less
stable throughout the year. The summarized numerical data are presented in Table 1.

1 
 

 

  
(a) (b) 

 

  

Figure 3. Household’s thermal load profile: (a) Monthly consumption; (b) average daily consumption
in specific months.

Table 1. Household’s thermal load profile.

Name Season
Total

Consumption,
kWh

Average 1

Monthly Cons.,
kWh

Average
Daily Cons.,

kWh

Maximal
Power Demand,

kW

Space heating
(SH)

Heating season 9097 1300 42.9 9.0

Out of heating season 1025 205 6.7 6.6

Year 10,122 844 27.7 9.0

Domestic hot
water (DHW)

Heating season 1502 215 7.1 3.2

Out of heating season 863 173 5.6 3.2

Year 2365 197 6.5 3.2

Total
(SH + DHW)

Heating season 10,598 1514 49.9 11.5

Out of heating season 1888 378 12.4 8.0

Year 12,486 1041 34.2 11.5
1 The average in this context and further on the paper means the arithmetic mean.
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2.1.3. Household’s Electrical Load Profile

Figure 4 illustrates the household’s total monthly (a), and average daily (b) electrical energy
consumption by highlighting the share of energy that has been consumed by the household itself
(this load profile is taken as a basis, without any other electrical heating source, to execute all the
following calculations) and the HP’s share (which is calculated using the algorithm, described in
Section 2.2). Observed from the Figure 4 that the household’s consumption share (without HP) is mainly
stable throughout the year (except February and March). While HP’s consumption is significantly
increased during the heating season due to the high space heating demand and the numerical data are
shown in Table 2.
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Figure 4. Household’s electrical load profile: (a) Monthly consumption; (b) average daily consumption
in specific months.

Table 2. Household’s electrical load profile.

Name Season
Total

Consumption,
kWh

Average
Monthly Cons.,

kWh

Average
Daily Cons.,

kWh

Maximal
Power Demand,

kW

Without HP

Heating season 3417 488 16.2 5.4

Out of heating season 1762 352 11.5 4.6

Year 5179 432 14.3 5.4

HP’s share 1

Heating season 5329 761 25.1 9.2

Out of heating season 739 148 4.9 7.9

Year 6068 506 16.7 9.2

Total (with HP)

Heating season 8746 1249 41.3 12.0

Out of heating season 2501 500 16.4 9.0

Year 11,246 937 30.9 12.0
1 The data are shown for the HP with the smallest HWST size. DR impact is not applicable here and will be graphically and
numerically presented in Section 3 (results).

2.1.4. PV, WT, and Battery

The process of the creation of PV, WT power output profiles, as well as the SOC algorithm
of the Li–Ion Battery storage is described in [27]. These models are taken as a basis. The size of
renewable energy sources is chosen considering the ratio of maximum production for self-utilization
and minimum energy excess (export to the grid), as well as the minimum shortage of energy (import
from the grid). After analyzing a dozen scenarios combining different sizes of the PV array and WT,
the best combination in terms of the optimal amount of imported and exported energy from/to the grid
is chosen as follows. Tables 3 and 4 below summarize the parameters of the PV arrays and WT such as
rated power, size, efficiency, that have been used to create a building model.
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Table 3. Photo voltaic (PV) panel parameters 1.

Length,
m

Width,
m

Rated
Power, kW Efficiency Total

Losses, % Perform.ratio Quantity of
Panels, psc.

Area of a PV
Array, m2

Rated Power
of a PV

Array, kW

1.559 1.046 0.315 0.193 8 0.750 10 16.307 3.15
1 The maximal peak production and amount of energy generated per annum is shown Section 3 (see Figure 10).

Table 4. Water Tank (WT) parameters 1.

Type of
the WIND

Turbine

Rated
Power,

kW

Power
Coefficient

Rated Wind
Speed, m/s

Cut in Wind
Speed, m/s

Cut Out
Wind Speed,

m/s

Rotor
Radius,

m

Height
of the

Mast, m

Rotor
Swept

AREA, m

HAWT 6.0 0.320 12.0 2.5 60.0 2.8 15.0 23.8
1 The maximal peak production and amount of energy generated per annum is shown Section 3 (see Figure 10).

Three different capacity of battery storage is compared. As demonstrated in [28] a typical size of a
backup battery for domestic application is in a range of 4.5–12 kWh. The rated power and the energy
capacity of the smallest size battery are chosen with respect to a maximal peak demand of the household
without HP application and are considered as a scenario, just to visually examine how the size of
the battery may affect the results. No specific criteria are applicable in this case. The medium-size
battery is chosen considering the ability to accommodate maximal peak power production from RESs
(both PV arrays and WT,) during one hour. The rated power of the largest size battery is chosen to
meet the maximal peak power demand of the household (incl. HP), and the rated energy capacity is
selected to provide one hour of islanded off-grid power supply for the household in these conditions.
Table 5 summarizes the parameters for all three batteries. The round-trip efficiency, calendar ageing
(degradation), and self-discharging per hour are neglected in this study. It is assumed that the efficiency
of charging and discharging cycles is constant 100% despite the fact that this coefficient varies between
75–77%, according to [29]. A more detailed justification of such neglect will be provided in the results
and discussion sections.

Table 5. Battery parameters.

Scenarios Rated Power, kW Rated Energy, kWh SOC Initial, % SOC Maximal, % SOC Minimal, %

Battery 1 5.4 5.4 90 90 10

Battery 2 8.4 8.4 90 90 10

Battery 3 12.0 12.0 90 90 10

2.1.5. HP, IHWH, and HWST

In residential sector, heat pumps are used to fulfill building’s heat demand by transferring thermal
energy from an external low-temperature renewable heat source such as ambient air, ground, fresh
or seawater to higher temperature useful for space heating and/or domestic hot water (which are in
most cases water or in-building air). The transferring process is realized by evaporating, compressing,
condensing and expansion of the working fluid (refrigerant liquid).

A basic vapor compression heat pump cycle is realized as follows. The working fluid, turning
itself into a gas within the “evaporator”, absorbs the heat from the external low-temperature heat
source (the evaporator, in this case, works as a first heat exchanger). The compressor then raises up
the pressure of the gas, increasing thereby its temperature. The hot gas, flowing through “condenser”
and being hotter than the secondary source (water or in-building air), dissipates its heat to this source
and condenses thus back into a liquid (the “condenser coils”, in this cycle, work as a second heat
exchanger). The liquid finally flows back through the expansion valve, reducing thus its pressure and
cooling down, then, enters back the evaporator, turning itself again into gas, and the cycle repeats.
Figure 5 demonstrates a general overview of the heating system in the household, including the heat
pump’s cycle.
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This paper investigates the capabilities of an electrically driven air-to-water type vapor compression
heat pump for heating application consisting of two units:

• Compact mono-block indoor unit with circulation pump, three-way diverter valve (heating/DHW
heating), instantaneous heating water heater, control unit, and

• Outdoor unit that contains evaporator, compressor, condenser, diverter and expansion valves,
and variable speed fans. The HP is considered with output-dependent/inverter-controlled scroll
type compressor (that uses an external variable-frequency drive to control the speed).

The size of the heat pump was chosen considering the average ambient temperature during
the heating season +3.8 ◦C, the water flow temperature limit +65 ◦C, and the average household’s
thermal demand during the heating season 2.1 kW. The rated electric power of the HP was selected
considering manufacturers technical data as reference information (to narrow the range), however, the
COP, as well as thermal energy output and electrical energy input were calculated using the equations
and the algorithm below. In order to cover household’s maximal thermal peak demand (i.e., 11.5 kW)
and to supply the heat outside HP’s working temperature limits an instantaneous heating water heater
(IHWH) with the rated power of 6 kW and a buffer thermal storage (viz. HWST) is applied. The HP’s
parameters containing rated electrical power, air intake working temperature limits, the secondary
circuit water flow temperature limit are derived from the Viessmann’s technical guide paper [30] and
are shown in Table 6.

Table 6. Heat pump (HP) parameters.

Rated Electric Power, kW
(for Specific Temperature Range, ◦C)

Min.
Air inlet
t-re, ◦C

Max.
Air inlet
t-re, ◦C

Flow
Water

t-re, ◦C−15–−7 −7–−2 +2–+7 +7–+10 +10–+20 +20–+30 +10–+20

4.83 4.83 2.74 2.89 2.84 2.80 2.73 −15 +35 +65

Thermal power output from the HP is calculated, using following equation:

PHP
th.prod.(t) = PHP

el.rat.(t)·COPHP
(t) , (1)

where: PHP
el.rat.—rated electric power, (kW), COPHP

(t) —coefficient of performance or, in other words,
transformation coefficient from electrical to thermal energy, t—time step (which is 0.25 h in the
current model).



Smart Cities 2019, 2 480

The maximal theoretical COP is determined by the inverse Carnot efficiency [31]. The Carnot cycle
demonstrates an ideal process of energy transformation, however, taking into account performance and
efficiency of different components, declared by a variety of manufacturers, such as compressor
(hermetically sealed scroll, oiled/dry, frequency/inverter-controlled types), different coatings of
evaporator, fans, circulation pumps, valves, working liquids, and losses appeared during operation,
this cycle becoming far from ideal. The empirical examination results provided by [32] demonstrates
corresponding real COP for different types of HPs. M. Bruner at al. in their study [33] show that for air
to water types HP an averaged empirical factor h (which is deviation from the ideal Carnot cycle incl.
all losses) is equal to 0.38. Thus, the practical COP is calculated by the equation below:

COPtheoretical ∼
1

µCarnot
∼

1
Tout−Tin

Tout

∼
Tout

Tout−Tin

→ COPHP
(t) = Tout

Tout−Tin(t)
·h

(2)

where: µCarnot—Carnot efficiency, Tout—outlet (flow) water temperature (K), Tin—inlet air temperature (K),
t—time step (hour), h—deviation factor from the ideal Carnot cycle (dimensionless).

If the heat pump cannot meet the heat demand in mono mode, or when the ambient temperature
falls to near or below freezing, the condenser is in a very big risk of being icing up, causing significant
damage to the heat pump. To meet the heat demand, the HP must be operated in mono energetic mode
(with instantaneous heating water heater), and to prevent potential condenser icing up, the defrost
mode must be operated. The defrost mode plays a very important role in HP’s operation process, and
can significantly reduce the household’s heat supply by distributing a great share of the total heat
produced to melt the frost appeared on the external condenser coils. A detailed explanation of this
process is presented in [34]. In this model, the defrost cycle is implemented by turning it “ON” for
5 min hourly. The annual share of thermal energy spent on defrosting, as well as electrical energy
consumption share, will be presented in the result section.

To protect the compressor from high pressure caused by the change in the flow of refrigerant
at the reversing valve, a five-minute starting time delay is introduced. Thus, having a model with a
15 min time step, the energy output for each first HP’s “ON” loop will be counted for the rest 10 min
only. Accordingly, thermal energy outputs, incl. delay time and defrost time are calculated by the
following equations.

QHP
th.prod.(t) = PHP

th.prod.(t)·t (3)

QHP
th.prod.delay(t) = QHP

th.prod.(t) · tdelay (4)

QHP
th.prod.de f rost(t) = QHP

th.prod.(t)·tde f rost (5)

where: PHP
th.prod.—thermal power output, (kW), t—time step (h), tdelay, tde f rost—time reduction coefficients

(that are equal to 2
3 in this model, dimensionless).

The literature demonstrates various heat storage technologies [35]. A comparison of active and
passive storage technologies (namely, the storage tank and the building’s thermal mass) is presented
in [36]. Even though building’s thermal mass can offer a better cost-effective solution (based on the
mentioned-above comparison results), this study is devoted to the most commonly used HP’s system
for domestic application nowadays—the hot water storage tank (HWST) [2,37]. A variety of HWST
models have been presented in many studies. A few examples can be found in [33,38,39].

In this model, the thermal energy capacity of the HWST (kWh) is calculated using the specific
heat conversion equation [31]:

QHWST =
cm∆T
3.6·106 =

cVρ∆T
3.6·106 , (6)

where: c—heat capacity of water (J/kg·◦C), m—mass (kg), ∆T—temperature difference (◦C), V—volume (m3),
ρ—density of water (kg/m3).
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As one can see from the above equation, the decision-making parameters are temperature and
volume. It is considered that the minimum possible cold-water inlet temperature is +12 ◦C, while the
outlet (flow) water temperature is +65 ◦C (see Figure 5). These temperature indicators are considered
as set points for calculating energy capacity.

The model of HWST in this case study has been created without taking into consideration the
stratification (neither highly nor moderately), as well as thermal cline effect as described in [37].
It is assumed that water inside the storage tank is constantly mixed and the temperature is uniform.
The controlled (min/max) hot water temperature boundaries of the HWST are set in the range from
+55 ◦C to +65 ◦C. Thus, using the Equation (6) difference ∆T is 10 ◦C for this volume and is equivalent to
5.8 kWh of thermal energy. When the temperature increases from +12 ◦C to +65 ◦C, water accumulates
30.8 kWh of thermal energy (for 0.5 cubic meter tank. See Table 7 below). It is also a fairly obvious
phenomenon, that thermal storage loses some part of energy over a period of time. In this study, it is
assumed that HWST loses one percent of its State of Energy per every 24 h (or 1/24 percent per hour).
Thus, the amount of thermal losses in this model for each time step is calculated by the equation below.

QHWST
losses(t) =


1

24 ·SOEHWST
(t−1)

100

·t (7)

where: SOEHWST
(t)

—state of energy of the HWST for each time step (kWh), t—time step (h).
The State of Energy of the HWST for each time step t is calculated using the following approach.

SOEHWST
(t) = SOEHWST

init. + QHP
th.prod.(t) −QHH

th.cons.(t) −QHWST
losses(t) (8)

where: SOEHWST
init. —initial state of energy of the HWST (kWh), QHP

th.prod.—thermal energy output from the

heat pump (kWh), QHH
th.cons.—thermal energy consumption of the household (kWh), QHWST

losses(t)
—thermal

energy losses of the HWST (kWh), t—time step (h).
The electrical energy consumption, based on the SOE of HWST, household’s thermal demand and

HWST’s losses for each time step will finally be converted back using the equation below.

EHP
el.cons.(t) =

QHP
th.prod.(t)

COPHP
(t)

(9)

Three different volumes and, accordingly, energy capacity scenarios of the HWST are evaluated
in this study. Namely, 0.25, 0.5 and 1 cubic meter hot water storage tanks. Since theoretically, the
flow water temperature within the HWST cannot fall below +12 ◦C (it is assumed that the HWST
is placed in-house with higher space air temperature), and consequently, no thermal energy can be
extracted from the water below this limit, the parameters will look as follows. Table 7 represents
energy capacity and its percentage equivalent in relation to the temperature difference for the three
HWST volume scenarios.

The amount of thermal energy controlled in kWh and it’s equivalent in reserve hours provided, as
well as the amount of energy lost will be presented for each scenario in Section 3 (Results).

Table 7. Hot water storage tank (HWST) parameters.

Temperature
Difference, ◦C

SOE Equivalent, kWh
SOC Equivalent, %

For 0.25 m3 For 0.5 m3 For 1 m3

from 12 to 65 15.4 30.8 61.6 100
from 12 to 55 12.2 25.0 50.0 81

12 0 0 0 0
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2.1.6. Demand Response Signal

Artificial DR request signal is simulated following the logic below. Analyzing the electricity
balance data provided in public by [40], it is investigated that, as of 2018, Denmark’s Annual Gross
Consumption (i.e., the sum of the consumption incl. transmission loss) is 34,168 GWh, the highest
hourly peak load is 6089 MWh, while an average hourly demand is 3900 MWh. Thus, the highest
peak-hour demand in Denmark appearing during a year is 56% higher than the average hourly demand.

Taking into account the hourly consumption profile and the annual mean value, the number of
appearances above the mean value in each particular hour of a day during a year has been investigated
and counted (e.g., 300 times from total 365 days has appeared at 17:00, and 298 times out of 365 days
at 18:00). The percentages of the appearance of average consumption are presented in Figure 6a.

In the next step, it was decided to increase the limit to 25% above the annual mean value and then
it gives the percentages of appearance of the value that is greater or equal to 4876 MWh. The results
are shown in Figure 6b.

The case with the limit set to 25% above yearly mean value is used in the rest of the paper,
as an example for peak shaping. This value might be a realistic threshold for the future application
of demand response depending on actual local conditions for transformer loading, line loading etc.
However, the method set up here can be applied for any chosen limit, so this is just to be seen as
an example. Based on the above, it is decided to simulate the DR request signals using random
distribution function with percentage probability shown in the case (b). According to that, having
one-year model with 35,040 (15-min) time steps, 4668 DR request signals were simulated.
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Figure 6. Peak hours distribution curve of Denmark’s electricity grid in 2018: (a) average consumption;
(b) 25 percent over the average limit.
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2.2. Control Strategy

The control strategy is organized as follows. Figures 7 and 8 below should be considered as two
inseparable components of hybrid energy flow and control algorithm for energy management of active
buildings. Based on the initialized weather forecast data and the created power output models of
renewable energy sources, the energy derived from the PV arrays and WT during a first 15-minute
time step period is calculated. The energy produced by RESs will be consumed by the household
and the heat pump as a first priority step. These two blocks are shown separately due to fact that
the household’s consumption is considered as fixed (i.e., uncontrollable) in this case study, and the
main flexibility is obtained from the second, red outlined, block, the HP. Following the conditions
shown in Figure 8 (such as working temperature limits, SOE of the HWST, defrost mode and the
availability of the DR request signals), the HP and an additional heat source can be turned either ON or
OFF. The total electrical energy consumption is then summarized and subtracted from RES calculated
value. The excessive RES energy production (if any) will, depending on the SOC of the battery, either
be accumulated in the battery (as a second priority) or be exported to the grid. In the event of a
shortage of on-site production, energy will be delivered from the grid based on the total consumption
needs and state of charge as well. A detailed control strategy of RESs utilization, the SOC of the
battery storage, charge/discharge schedule managing, and the grid import/export power, including all
equation, is described in [31].
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Figure 8. Combined flowchart for energy management of the HP, IHWH, and the state of energy of the
HWST, including the demand response application in active buildings.

3. Results

The results shown in Table 8, Figure 9, and Table 9 represent the performance of the integrated
thermal energy system. Table 8 shows energy data and the performance of HWST, namely a number of
backup heat supply hours that HWST can provide within the controlled temperature boundaries for
three different volume scenarios (0.25, 0.5 and 1 cubic meter), as well as the amount of energy which is
lost within the HWST during a year.
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Table 8. Ability of the HWST to accumulate thermal energy.

HWST
Volume, m3

Controlled
Temperature

Boundaries, ◦C

Controlled
Amount of

Energy, kWh

Reserve Hours
with Max. Peak
Demand in the
Heating Season
(i.e., 11.5 kW)

Reserve Hours
with Average

Demand in the
Heating Season

(i.e., 2.1 kW)

Thermal
Energy Losses
on an Annual

Basis, kWh

0.25

from 55 to 65

2.9 0 h 15 min. 1 h 23 min. 52

0.50 5.8 0 h 30 min. 2 h 46 min. 102

1.00 11.6 1 h 1 min. 5 h 32 min. 205

A ratio of the thermal energy produced, and electrical energy used to produce this thermal energy
(by the HP and an IHWH) on an annual basis, as well as shares of energies spent for defrosting cycle
(which is highly important to operate the HP technologically properly, but can be said wastefully for
household’s needs), as a performance indicator, are illustrated in Figure 9a,b. It is observed, for the
production of 13,217 kWh of heat, 6063 kWh of electricity have to be used, thus, in accordance with
Equation (1) the annual COP of the HP is equal to 2.18, while the share of 7,6% of the total thermal
energy produced (namely 1002 kWh). As well as electrical energy used (namely 460 kWh), was spent
on defrosting, which is a rather wasteful amount. At the same time, the very insignificant amount of
177 kWh of electrical energy used by the IHWH, indicates that the HP covers most of the heat demand
(i.e., 97%) in mono mode and that the size of the HP is chosen properly.
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Figure 9. The performance of the heat pump with medium size HWST (without demand response
(DR) application) on an annual basis: (a) Thermal energy production, kWh; (b) electrical energy
consumption, kWh.

A comparison of two different scenarios (namely without and with DR application) for three
different HWST’s volumes using the same data indicators are summarized in Table 9 to analyze the
deviation and to investigate the DR impact on final performance. The results show that the DR
application has no impact on overall performance (the HP’s COP is equal to 2.18 in all cases). However,
the smaller size of the HWST, the more energy is used by IHWH, which generally means that the small
volume of the HWST is insufficient to support HP to cover the heat demand in mono mode for a long
time, thus IHWH turns ON more frequently and the total COP decreases.



Smart Cities 2019, 2 486

Table 9. Thermal system performance on an annual basis without and with DR application.

Scenarios
HWST

Volume, m3

Thermal Energy Prod., kWh Electrical Energy Cons., kWh COP

HP IHWH Total Defrost HP IHWH Total Defrost HP Total

Without DR
application

0.25 12,645 264 12,909 506 5804 264 6068 232 2.18 2.13

0.50 13,217 177 13,394 1002 6063 177 6240 460 2.18 2.15

1.00 13,563 82 13,645 1040 6226 82 6308 478 2.18 2.16

With DR
application

0.25 12,597 296 12,893 464 5783 296 6079 213 2.18 2.12

0.50 13,120 201 13,320 909 6020 201 6220 418 2.18 2.14

1.00 13,450 111 13,561 941 6175 111 6286 432 2.18 2.16

The curves that demonstrate the maximum and average values of the power produced by the PV
array and the WT, as well as total energy produced during particular months are given in Figure 10a–c.
Having 3.15 kW rated power of the PV array and 6 kW rated power of the WT, it is observed (Figure 10a)
that PV production has not reached its maximum power output throughout the year (showing its
maximum of 2.6 kW in the late spring and summertime), while the WT’s power output of 6 kW
observed very often due to windy weather condition in Denmark (see Figure 10b). Figure 10c illustrates
the pre-dominant PV production in the summer, and early autumn seasons, while the share of WT
prevails in the rest of the year. Nevertheless, the low total RES production (which is due to the
weather conditions) is observed in the period of September–November, January–February, and a high
production is observed in a period of March–August and December. It is expected that this discrepancy
will be compensated by the battery and the energy import from the grid.

 

3 

 

  
(a) (b) 

 
(c) 

 

 

  

Figure 10. Power output profiles of the renewable energy sources: (a) PV array power output profile;
(b) wind turbine power output profile; (c) total RES energy production.
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The utilization of the renewable energy produced on-site, renewable energy exported, and the
grid imported energy (which are, to a greater extent, affiliated with the size and efficiency of the battery,
as well as the presence of load at a specific time) is demonstrated for two different battery and HWST
scenarios in Figure 11a,b below. A large energy import from the grid is observed between September
and April (which is mainly due to a shortage of RES energy production and high demand, as shown
in Figures 4a and 10c above), while export of energy is observed in a period of March - August and
December. This phenomenon can be explained as an excess of RES production and low demand in the
summertime, as well as the insufficient battery storage capacity in both scenarios.
 

4 
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Figure 11. RES energy utilization and the exchange with the grid: (a) scenario with the smallest battery
and the smallest HWST’s size; (b) scenario with the largest battery and the largest HWST’s size.

One of the interesting findings by making an analysis of results obtained from 24 simulations is the
difference between values of total annual energy imported from the grid under various battery scenarios.
Regardless of all expectations and more than a double difference in the battery size, the difference
between the above values is very small (Figure 12 and Table 10 below). Figure 12 demonstrates the
shares of energy (namely imported from the grid and RES generated), which are utilized to meet the
household’s demand in four scenarios. The discrepancy between scenarios with battery 1 and battery 3
in each case is in the range of 2–4%. That basically means, that regardless of the size of the battery
(of course, on a reasonable scale), it cannot provide long-term energy compensation, mainly due to
the fact that there are still many periods during a year where total RES generation (from both PV and
WT) is very low or absent at all (mostly in January and February), and that the largest battery, in this
case-study, helps to utilize only 16% more RES generated energy comparing to the scenario without
battery at all.
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Table 10. Comparison table of RES consumed, battery utilized, and grid exported/imported energy 
values, obtained as a result of simulating different scenarios. 

Battery 
Scenario 

HWS
T 

vol., 
m3 

Without DR With DR 
On-Site RES Produced, kWh 

Imported 
from Grid, 

kWh 

On-Site RES Produced, kWh 
Imported 

from Grid, 
kWh 

Utilized in 
Battery 

(charged/d
isch.) 

Exported 
to Grid 

Consumed 

Utilized in 
Battery 

(charged/di
sch.) 

Exported 
to Grid 

Consumed 

No bat. 

0.25 

0  3834  3744  7502  0  3832  3746  7511  
Bat. 1 1474  2361  5218  6024  1474  2364  5214  6036  
Bat. 2 1685  2149  5430  5810  1685  2150  5428  5820  
Bat. 3 1827  2007  5571  5665  1825  2011  5568  5674  

Total consumption 11,246   11,258 
Energy use per annum, kWh/m2 93.7   93.8 

      
No bat. 

0.50 

0  3827  3752  7667  0  3832  3747  7652  
Bat. 1 1447  2380  5199  6216  1456  2375  5203  6192  
Bat. 2 1684  2143  5436  5977  1695  2143  5436  5960  
Bat. 3 1835  1992  5587  5823  1844  1992  5586  5807  

Total consumption 11,419   11,399 
Energy use per annum, kWh/m2 95.1   95.0 

       
No bat. 

1.00 

0  3904  3674  7812  0  3898  3680  7785  
Bat. 1 1373  2531  5048  6434  1369  2500  5079  6383  
Bat. 2 1671  2233  5346  6134  1665  2210  5369  6093  
Bat. 3 1860  2044  5534  5943  1865  2026  5552  5906  

Total consumption 11,486   11,465 
Energy use per annum, kWh/m2 95.7   95.5 

Figure 13a,b illustrate the application of the energy management without (a) and with (b) DR. 
The fourth day of the simulation (4th of January) with the largest HWST (i.e., 1 m3) and a medium-
sized battery (battery Scenario 2, i.e., 8 kWh) is presented. Even though the cycles were shifted during 
the first three days due to DR, these two figures can ideally represent most of the processes of the 
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Figure 12. Household’s demand coverage shares for different battery scenarios and the medium
HWST’s size, where: (a) No battery; (b) battery 1; (c) battery 2; (d) battery 3.

Another interesting fact is that the use of the DR has no influence on the final annual consumption
as well as the amount of energy imported from the grid. As an example, the total energy consumption
in the scenario with 0.25 m3 HWST without DR application is 11,246 kWh, while in the same HWST
scenario with DR application; it is 11,258 kWh (see Table 10 below for more results). The discrepancy
in result values between “without” and “with” DR application is less than 0.2% which is completely
negligible. That one more time proves the fact that the DR application does not harm the user
preferences and the user will not pay more. The values for on-site RES produced energy, including
consumed by household, passed through the battery (i.e., charged/discharged), exported to the grid,
and the values for energy imported from the grid are summarized for 24 different cases (comparison of
the HWST, battery size, and DR application) in Table 10.

Table 10. Comparison table of RES consumed, battery utilized, and grid exported/imported energy
values, obtained as a result of simulating different scenarios.

Battery
Scenario

HWST
vol., m3

Without DR With DR

On-Site RES Produced, kWh
Imported
from Grid,

kWh

On-Site RES Produced, kWh
Imported
from Grid,

kWh
Utilized in

Battery
(charged/disch.)

Exported
to Grid Consumed

Utilized in
Battery

(charged/disch.)

Exported
to Grid Consumed

No bat.

0.25

0 3834 3744 7502 0 3832 3746 7511

Bat. 1 1474 2361 5218 6024 1474 2364 5214 6036

Bat. 2 1685 2149 5430 5810 1685 2150 5428 5820

Bat. 3 1827 2007 5571 5665 1825 2011 5568 5674

Total consumption 11,246 11,258

Energy use per annum, kWh/m2 93.7 93.8

No bat.

0.50

0 3827 3752 7667 0 3832 3747 7652

Bat. 1 1447 2380 5199 6216 1456 2375 5203 6192

Bat. 2 1684 2143 5436 5977 1695 2143 5436 5960

Bat. 3 1835 1992 5587 5823 1844 1992 5586 5807

Total consumption 11,419 11,399

Energy use per annum, kWh/m2 95.1 95.0

No bat.

1.00

0 3904 3674 7812 0 3898 3680 7785

Bat. 1 1373 2531 5048 6434 1369 2500 5079 6383

Bat. 2 1671 2233 5346 6134 1665 2210 5369 6093

Bat. 3 1860 2044 5534 5943 1865 2026 5552 5906

Total consumption 11,486 11,465

Energy use per annum, kWh/m2 95.7 95.5

Figure 13a,b illustrate the application of the energy management without (a) and with (b) DR.
The fourth day of the simulation (4th of January) with the largest HWST (i.e., 1 m3) and a medium-sized
battery (battery Scenario 2, i.e., 8 kWh) is presented. Even though the cycles were shifted during the
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first three days due to DR, these two figures can ideally represent most of the processes of the created
model. The attention should mainly be focused on the period between 05:30–11:00 (Figure 13a).

As can be seen at 05:45, the level of thermal energy of HWST had reached a minimum level.
To meet the household’s heat demand, the heat pump was turned ON, thus starting the charging cycle
of the HWST. Having very high thermal demand, as of 06:15, HP’s production became insufficient in
mono mode, and IHWH as an additional heat source was turned ON, and, thereby the peak demand
occurs. Since the battery SOC was at its maximum at 05:30 and the RES production was very low,
it is observed that the total load (including a peak value) was fully covered by the battery itself for
two hours.
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As one can see at 07:45, the battery SOC reached a minimum level, and since RES production
was still very low, import appeared. Based on the work performed in Section 2.1.6 above, a series
of DR request signals were received between 08:00–11:00. Since, as of 08:30, the HWST had become
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half-charged, having sufficient amount of thermal energy to cover the heat demand, as well as meeting
all other conditions (described in the algorithm in Figure 8, Section 2.2), the system responded to the
received DR signal by turning off the heat pump (see 10:30 in Figure 13b). The same figure also shows
that almost all of the energy imported between 07:45–10:30 was shifted to the evening time after 19:00.

Table 11 below shows the percentage of DR responded signals for different battery and HWST
scenarios. The results show that the bigger the battery size the lower the percentage. As an example,
battery 1 (under scenario with 0.25 m3 HWST) shows 10.8%, while battery 3–10.1%. This can be
explained by the fact that the battery covers a certain number of peak loads, and the share of power
taken from the grid at that particular time (when the signal is requested) is very insignificant or does not
exist at all. Thus, scenarios without the battery, in general, demonstrate much larger responsiveness,
namely: 14.8% of DR requested signals were responded under the scenario with 0.25 m3 HWST, while
the maximal flexibility of 22.3% was reached in the scenario with the largest HWST volume (i.e., 1 m3).

Table 11. The peak loads shifting potential of the proposed model, namely, the number of DR signals
requested and the share of responses compared for three different HWST’s volumes and three battery
capacity scenarios on an annual basis.

Battery Scenario HWST Volume, m3
Number of Requested

Signals (15 min Time Step)
per Year

Percentage of Responds
per Year, %

No bat.

0.25 4688

14.8

Bat. 1 10.8

Bat. 2 10.5

Bat. 3 10.1

No bat.

0.50 4688

16.6

Bat. 1 12.1

Bat. 2 11.5

Bat. 3 11.3

No bat.

1.00 4688

22.3

Bat. 1 17.0

Bat. 2 17.0

Bat. 3 16.3

4. Discussion

The graphical and numerical results obtained in Section 3 show that the proposed model can be
successfully applied to estimate energy activity and flexibility range in smart active residential buildings,
combining different system components within one hybrid energy flow and management algorithm.

The main advantage of this study compared with other works analyzed in Section 1 is that the
model combines a larger number of system components within a single energy management algorithm,
as well as demonstrates more accurate results based on Matlab models and simulation, comparing to
theoretical calculations of the flexibility that can be achieved (using fundamental equations) as shown
in [20].

The limitation inherent in some components of the created model in terms of accuracy (namely,
the battery efficiency, which is neglected in this study), can be overcome by applying more advanced
and accurate methodologies. An overview of the various estimation technics can be found in [41],
whereas the application example in [42]. Since the creation of a very detailed battery model was not
targeted in this study, a simple approach in Matlab is utilized. Nevertheless, based on the results
shown in Section 3 (Figures 10 and 11, and Table 10) it is clearly observed, that even having a very
large battery and 100% round trip efficiency—it does not make a very big influence on the amount of
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energy imported from the grid compared to a scenario without battery at all (for Danish conditions).
One may say that the sizes of RESs are insufficient, however, the sizes of PV and WT were also selected
based on a comparison of the results of more than 20 different simulations, considering import and
export indicators as the main criteria. With the simultaneous increase in both RES and battery size
to the enormously and unreasonably large for the household, export significantly increases in the
summertime (mainly due to lack of demand), while leaving a fairly large share of import between
autumn and early springtime (due to high demand and periods of adverse weather conditions for the
RES production), which gives reason to draw such a conclusion.

From the other side, the percentage of flexibility obtained varies from 10–22%, which is quite
satisfying results, considering the fact that DR response is applied only to very specific conditions
focused on the user’s comfort preferences. Even though the share of DR responded signals are bigger
in a scenario without battery, the fact of the presence of battery, in this case, plays opposite role.
The larger battery size, the less energy imported from the grid, and the fewer request signals have to
be responded.

If to assume that the critical load limit, described in Section 2.1.6, would increase to 35% above the
annual mean value equal to 5266 MWh, then the number of DR request signals will be much less, since
fewer periods will appear above this limit. This will definitely lead to the fact that the total amount of
energy shifted per year will be also much less. However, the percentage of flexibility, in general, should
not differ significantly from the results obtained in this study (initially, due to the given conditions of
the created algorithm). It would also be interesting to investigate the model behavior and the amount
of energy shifted under the local 10/0.4 kV grid conditions (that has fairly different peak load hour
curve), and to compare the difference between two cases, however, this is the subject of another study.

The created model and simulation results show that having such integrated systems and the
demand response application may lead to techno-economic benefits for both household’s owners,
in terms of sustainability and reducing the cost of energy, as well as the DSO’s in terms of obtaining
certain percent of the flexibility on demand-side and hence the ability to reduce peak loads thus making
grid operation process smoother.

Future research work will focus on investigating the actual amount of energy shifted (in kWh) on
an annual basis, as well as on forecasting amount of flexibility that can be achieved. In order to do so,
a price, as well as a specific statistical model for forecasting, should be introduced. This will follow
with the aggregation of a group of such kind of buildings.

5. Conclusions

In this paper, the energy flow model of a domestic dwelling consisting of PV array, individual
on-site wind turbine, battery storage, a heat pump in combination with HWST was created. Three
different scenarios of the battery, three scenarios of the HWST, as well as two scenarios of the DR
application (i.e., “with” and “without”) were simulated. The paper assesses the flexibility for each
scenario, and the results were summarized and compared in detail.

Results imply that the heat pump, without jeopardizing any user comfort preferences, even with
the smallest thermal storage size (i.e., 0.25 m3) and without battery provides quite satisfied load shifting
flexibility for this condition, namely 14.8% (Table 11 above). However, the battery seems not to be very
efficient in northern climate conditions by showing the performance that does not exceed 16% in terms
of RES energy conservation (Figure 12 above).

Considering still very high investment cost of lithium–ion batteries and a very poor price of
energy exported to the grid in Denmark (from RES energy trading point of view), a more reasonable
and forward-looking solution for the RES energy utilization for household owners (instead of rising
up the size of the battery) could be found in the following combination. A small battery can be used
for the short-term (hourly) energy compensation, a large HWST for the provision of the demand
energy flexibility services, and an electrolyzer coupled with fuel cells that stores energy in a form
of pressurized hydrogen and oxygen for the storage of large quantities of energy for a long period.
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The energy can then be used by a hydrogen car or converted back into electricity by fuel cells. However,
to evaluate the profitability of such a combination, a more comprehensive techno-economic analysis
has to be executed.

Despite the results obtained in this study, the battery may still be more attractive in other locations
with different RES generation and power demand patterns, as well as based on benefits provided from
the network side.
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Nomenclature

Acronyms
BEMS Building Energy Management System
CO2 Carbon dioxide
COP Coefficient of Performance
DC/AC Direct Current/Alternating Current
DH District Heating
DHW Domestic Hot Water
DR Demand Response
DSO Distribution System Operator
EMS Energy Management System
EPBD Energy Performance of Buildings Directive
EU European Union
GBC Green Building Council
HAWT Horizontal Axis Wind Turbine
HH Household
HP Heat Pump
HWST Hot Water Storage Tank
IHWH Instantaneous Heating Water Heater
LEED Leadership in Energy and Environmental Design
MDCP Main Distribution and Control Panel
nZEB nearly Zero Energy Building
PV Photovoltaic
RES Renewable Energy Source
SH Space Heating
SOE State of Energy
SOC State of Charge
WT Wind Turbine
bat. Battery
cons. Consumption
el. or electr. Electrical
init. Initial
prod. Production
therm. Thermal
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Symbols, Descriptions and Units
c Heat capacity of water (J/kg·◦C)
COPtheoretical Theoretical (ideal) coefficient of performance (dimensionless)
COPHP

(t) Coefficient of performance of the heat pump at a particular time (dimensionless)
Ebattery Rated energy capacity of the battery (kWh)
Econs. Electrical energy consumption over a period of time (kWh)
Eimport. Electrical energy imported from the grid over a period of time (kWh)
Eprod. Electrical energy produced over a period of time (kWh)
EHP

el.cons.(t) Electrical energy consumption of the heat pump at a particular time (kWh)
HH_ELECTR.CONS. Electrical energy consumption of the household at a particular time (kWh)
HP’s load Electric power demand of the heat pump (kW)
h Deviation factor from the ideal Carnot cycle (dimensionless)
m Mass (kg)
µCarnot Carnot efficiency (dimensionless)
ρ Density of water (kg/m3)
Pbattery Rated power of the battery (kW)
PHP

th.prod.(t) Thermal power output from the heat pump at a particular time (kW)
PHP

el.rat.(t) Rated electric power of the heat pump at a particular time (kW)
QHH

th.cons.(t) Thermal energy consumption of the household (kWh)
QHP

th.prod.(t) Thermal energy output from the heat pump at a particular time (kWh)

QHP
th.prod.delay(t)

Thermal energy output from the heat pump at a particular time including starting
delay (kWh)

QHP
th.prod.de f rost(t)

Thermal energy output from the heat pump at a particular time directed on
defrosting the external coil (kWh)

QHWST Thermal energy capacity of the hot water storage tank (kWh)
QHWST

losses(t) Thermal energy lost in a hot water storage tank over a period of time (kWh)
SOCBAT State of charge of the battery at a particular time (%)
SOEHWST

(t−1) State of energy of the hot water storage tank at a previous moment of time (kWh)
SOEHWST

(t) State of energy of the hot water storage tank at a particular time (kWh)
SOEHWST

init. Initial state of energy of the hot water storage tank (kWh)
t Time step (h)
tdelay, tde f rost Time reduction coefficients (dimensionless)
Tout Outlet (flow) water temperature (K)
Tin Inlet air temperature (K)
∆T Temperature difference (◦C)
V or VHWST Volume of the hot water storage tank (m3)
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