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Abstract: This paper addresses the problem of designing an adaptive Kalman consensus filter (a-KCF)
which embedded in multiple mobile agents that are distributed in a 2D domain. The role of such filters
is to provide adaptive estimation of the states of a dynamic linear system through communication
over a wireless sensor network. It is assumed that each sensing device (embedded in each agent)
provides partial state measurements and transmits the information to its instant neighbors in the
communication topology. An adaptive consensus algorithm is then adopted to enforce the agreement
on the state estimates among all connected agents. The basis of a-KCF design is derived from the
classic Kalman filtering theorem; the adaptation of the consensus gain for each local filter in the
disagreement terms improves the convergence of the associated difference between the estimation
and the actual states of the dynamic linear system, reducing it to zero with appropriate norms.
Simulation results testing the performance of a-KCF confirm the validation of our design.

Keywords: adaptive consensus filters; Kalman filters; distributed system; communication topology

1. Introduction

The problem of distributed estimation for linear dynamic systems via the coopera-
tion and coordination of multiple fixed/mobile agents has been extensively explored by
numerous researchers [1–5]. Distributed Kalman filtering has been broadly utilized as a
powerful and efficient tool to solve the aforementioned scenario [1,6–10]. An essential
problem involving cooperation of multi-agent systems that has attracted much attention is
the consensus problem. In order to reconstruct the states of the dynamic system, a network
of sensing agents is adopted; these may form either a homogeneous or a heterogeneous
network. Each agent transmits state estimates to its immediate neighbors based on the com-
munication topology. Through the consensus strategy, all agents in use eventually agree
with each other on a common estimation value regarding the states of the dynamic system.

The early formal study of consensus problems [11] formed the basis of distributed
computing [12], which has found wide and popular utilization in sensor network applica-
tions [13,14]. The dynamic consensus problem appears frequently in the cooperation and
coordination of multi-agent systems, including scenarios such as formation control [5,9,15],
self-alignment, flocking [4,16], and distributed filtering [1,17]. The typical consensus pro-
tocol and its performance analysis were first introduced by Olfati-Saber and Murray in
the continuous-time model (see [3,7]). In [7], the authors considered a cluster of first-
order integrators working cooperatively under the average consensus control algorithm,
in which each agent finally agrees on a common value that is the average of initial states
of all agents as the individual ultimate state. In [1], a distributed Kalman filtering (DKF)
algorithm was proposed in which data fusion was achieved through dynamic consensus
protocols [18]. Later, in [17], the same author extended the results of [1] to use two identical
consensus filters for sensor fusion with different observation matrices, then presented [1]
an alternative distributed Kalman filtering algorithm which applies consensus to the state
estimates. This idea forms the foundation of the present paper, in which we propose an
adaptive Kalman consensus filtering algorithm. In [9], the authors presented a different

Signals 2023, 4, 617–629. https://doi.org/10.3390/signals4030033 https://www.mdpi.com/journal/signals

https://doi.org/10.3390/signals4030033
https://doi.org/10.3390/signals4030033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0009-0007-0028-6968
https://doi.org/10.3390/signals4030033
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals4030033?type=check_update&version=1


Signals 2023, 4 618

view towards designing consensus protocols based on the Kalman filter structure. By
adjusting the time-varying consensus gains, [9] proved that consensus can be achieved
asymptotically under a no-noise condition. In addition, graph theory [7,19,20] has been
adopted to construct the communication topology among distributed agents. In this paper,
we assume a fixed topology; however, it is not necessarily relaxed to the point of all-to-all
connection. This means that each agent is not constrained in communication with others, a
consideration that would be more practical in real-world applications.

Recently, many extensions of consensus protocols have been explored to improve
the convergence rate of dynamic systems among cooperative agents. This includes the
study of communication topology design [21,22], optimal consensus-based estimation
algorithms [2,23,24], and adaptive consensus algorithms [25–27] in both continuous-time
and discrete-time scenarios. Other extensions for system control purposes have been
studied to realize finite time consensus among agents, methods of which involves event-
triggered and sliding mode control [28,29]. These research fruits have been considered
and embedded in Kalman filtering algorithms [30,31], although the complexity of the
algorithms makes practical implementation challenging, particularly when compared to
the adaptive weight parameter method proposed in this paper.

The main contribution of this paper is to derive an adaptive Kalman consensus filtering
(a-KCF) strategy in a continuous-time model and analyze its stability and convergence
properties. Extensive simulation results aim to demonstrate better effectiveness of a-KCF
compared with the previous work of Olfati-Saber[17] along with a faster convergence
rate of the estimation error when the consensus gains change adaptively based on the
disagreement of these filters.

The remainder of this paper is organized as follows. In Section 2, we provide pre-
liminaries on algebraic graph theory [20], which is the basis of the consensus strategy.
In Section 3, we provide a retrospective view of the previous work of Olfati-Saber on
the Kalman consensus filtering algorithm, which our analysis relies upon. In Section 4,
we illustrate the main results of this paper, namely, derivation of the adaptive Kalman
consensus filtering algorithm. The purpose is to adaptively adjust the consensus gain as
the weight applied to the disagreement terms in order to improve the convergence of the
estimation error. Simulation results are presented in Section 5, then we conclude our work
in Section 6.

The following notations are be used throughout this paper: Rn and Rm×ndenote the
n dimensional square matrices and the set of all m× n matrices, respectively. Im denotes
the identity matrix with dimension m× m. For a given vector or matrix, AT represents
the transpose of the matrix A. For a given square matrix A, tr(A) denotes its trace and
the norm of A is defined by ‖A‖ =

√
trace(AT A). If f ∈ N (a, σ), this indicates a random

variable f that complies with a Gaussian distribution with mean a and variance σ.

2. Problem Statement

Consider a continuous-time dynamic system that has the following form:

ẋ(t) = Ax(t) + Bw(t); x(0) ∈ N (x0, P0) (1)

with m states measured by n distributed agents via sensing devices and local filters. Here,
x(t) ∈ Rm denotes the states of this dynamic system, Am×m represents the dynamical
matrix, w(t) represents the white Gaussian noise of the system, which is distributed by the
matrix B with zero mean and covariance Q(t) = E[w(t)w(t)T ], x0 is the initial guess for the
states of the dynamic system with error covariance P0, and the sensing capability of each
agent is determined by the following equation:

yi(t) = Cix(t) + vi(t); yi ∈ R`, ` ≤ m (2)

with the measurement matrix C`×m
i . The sensing devices are not able to measure all the

states of the system; thus, only partial information is available to the local filters for the
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state estimation. Here, vi(t) represents the white Gaussian noise of measurement for the
ith agent, with zero mean and covariance matrix Rij(t) = E[vi(t)vj(t)T ]. Throughout this
paper, we assume that there is no noise coupling effect among the agents; therefore, we can
set both Q(t) and Rij(t) as diagonal matrices. The main purpose of this paper is to design
an adaptive state estimation structure for each agent such that the state estimation of indi-
viduals can be exchanged among their immediate neighbors through the communication
topology G(V , E ,A).

2.1. Graph Theory Preliminaries

We consider n distributed agents working cooperatively through a communication
network/topology characterized by a weighted graph G = (V , E ,A) with inconsistent
information, where V = {1, 2, ..., n} represents the set of agents, E = [εij] denotes the set
of edges in G, and εij represents the connected bridge of an ordered pair (j, i). For each
ε ∈ E , we mean that the ith agent can only receive information from the jth agent, not vice
versa. In such cases, we call j the neighbor of i and denote Ni = {j ∈ V|(j, i) ∈ E} as the
set of neighbors of the ith agent. If (j, i) 6∈ E , this means that there is no communication
link between the jth and ith agents.

Let A = [aij] ∈ Rn×n represent the adjacency matrix of G, defined as aij = 1, ∀i 6= j
and j ∈ Ni; otherwise, aij = 0.

We define the in-degree of the ith agent as degin(i) = ∑Ni
j=1 aij and the out-degree

of the ith agent as degout(i) = ∑Ni
j=1 aji; then, the graph Laplacian of G can be defined as

L = ∆−A, where ∆ = diag(degin(1), ..., degin(n)) ∈ Rn×n.
One important property of L (see [19] for more details) is that all eigenvalues of L are

non-negative, and at least one of them is zero. If we denote Λi(L) as the ith eigenvalue of
L, then we have the following valid relation for any graph G: 0 = λ1(L) ≤ λ2(L) ≤ ... ≤
λn(L) [32].

In a special case, if the in-degree of the ith agent or degin(i) = n− 1; ∀i = 1, ..., n, then
we call the graph G, as an all-to-all connected topology. In such cases, the graph Laplacian
L is a symmetric and positive-semidefinite matrix with only one zero eigenvalue.

2.2. Consensus Protocols

Several types of consensus protocols have been explored, and these have been utilized
in many different scenarios over the years. In this paper, we mainly adopt the “consensus
in network” strategy mentioned in [17].

Using the background information provided in Section 2.1 and assuming that there
are n integrator agents working cooperatively with dynamics ẋi = ui, the “consen-
sus in network” strategy forces those agents to reach an agreement on their states by
˙̂xi(t) = ∑j∈Ni

aij(x̂j(t)− x̂i(t)).
This distributed dynamic structure demonstrates that the ith agent updates its state by

penalizing the state disagreement between its immediate neighbor j ∈ Ni and itself in order
to ensure that all of those n agents finally agree on a common value as their ultimate state.
Via this protocol, which [17] proved to be stable and convergent, we can say consensus is
achieved through the communication and cooperation among the agents.

Furthermore, we can explore the collective dynamics of individual agents in the
graph G, which can be expressed as ẋ(t) = −Lx(t), where L is the aforementioned graph
Laplacian in Section 2.1.

3. Kalman Consensus Filtering Algorithm

In this section, we provide a retrospective view of the previous work of Olfati-
Saber [17], in which the author presented the continuous-time distributed Kalman filtering
strategy without adopting the consensus filtering algorithm, instead forcing consensus
through state estimates. We treat this work as the fundamental background for designing
our adaptive Kalman consensus filters.
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In [17], the author considered n distributed agents working cooperatively to complete
a common task for estimating the state of a linear system, defined in Equation (1), with the
sensing capability defined as in Equation (2). Each agent shares its instant state estimates
with its immediate neighbors Ni through the communication topology G. Olfati-Saber [17]
proposed individual agents applying the following distributed estimation algorithm:

˙̂xi = Ax̂i + Ki(yi − Ci x̂i) + γPi ∑j∈Ni
(x̂j − x̂i)

Ki = PiCT
i R−1

i , γ > 0
Ṗi = APi + Pi AT − KiRiKT

i + BQBT
(3)

with initial conditions Pi(0) = P0 and x̂i(0) = x(0).
Through this distributed algorithm, it was claimed that the collective dynamics of

the estimation errors are ei = xi − x (in the absence of noise, this assumption is made to
ease the computation complexity of the proof; later work showed that even if process and
measurement noise are present, the stability and convergence properties of the adaptive
Kalman consensus filtering algorithm remain valid). The errors converge to zero through
analysis of the Lyapunov function V(e) = ∑n

i=1 eT
i P−1

i ei. Furthermore, all agents with the
estimator structure in Equation (3) asymptotically agree with each other on their state
estimates, which match the value of the true states of the linear system in Equation (1), such
as x̂1 = ... = x̂n = x. See the proof in [17] for more detail.

4. Adaptive Kalman Consensus Filtering

In this section, we show our main contribution to this paper, in which we consider
adding an adaptation mechanism to the Kalman consensus filtering algorithm shown in
Section 3. We name this adaptive Kalman consensus filtering, or a-KCF. The proposed ith
agent estimation structure with adaptive gain γij(t) on the consensus term is as follows:

˙̂xi(t) = Ai x̂i(t) + Kiyi(t) + Wi ∑
j∈Ni

γij(t)(x̂j(t)− x̂i(t))

Ai = A− KiCi; x̂i(t) 6= x(0) i = 1, ..., n
(4)

where x̂i(t) represents the state estimates of the ith agent and γij(t) is the scalar adaptive
gain of the estimation differences between the ith agent and its neighbors. The consensus
weighting matrix Wi is designed based on Lyapunov stability analysis, as detailed in the
following part.

If we consider a scenario in which no noise affects the error dynamics, as proposed
in [17], in a similar fashion, we can derive the local error dynamic of the ith agent using the
fact that x̂j(t)− x̂i(t) = ej(t)− ei(t), as shown below:

ėi(t) = Aiei(t) + Wi ∑
j∈Ni

γij(t)(ej(t)− ei(t)) (5)

The basic idea for seeking the adaptive gain γij(t) involves consideration of two aspects:

• The proposed adaptive Kalman consensus filter has stable performance.
• The associated error dynamic asymptotically converges to zero.

Lemma 1. The proposed distributed estimator structure of the ith agent with adaptive gains
γij, ∀j ∈ Ni for each disagreement term is provided by Equation (4). By means of analyzing a
Lyapunov function Vi = eT

i Π−1
i ei + ∑j∈Ni

γ2
ij, where Πi is a symmetric positive definite matrix,

the local adaptation law can be derived by satisfying the system stability conditions for both Vi and
V̇i, which turns out to be γ̇ij = −(Ciei)

TCi(x̂j − x̂i).

Proof. We consider the following local Lyapunov function for the ith agent based on
Lyapunov redesign methods
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Vi = eT
i Π−1

i ei + ∑
j∈Ni

γ2
ij (6)

where Πi is a symmetric positive definite solution of the following Lyapunov equation:

AT
i Π−1

i + Π−1
i Ai = −Ωi (7)

with the assumption that Ωi is a symmetric positive definite matrix and all eigenvalues of
the matrix Ai have negative real parts.

Because Ai = A− KiCi, there exist many ways to design Ki in order to satisfy the
aforementioned assumption. One possible way is to use the pole placement method to
design the value for Ki such that Ai generates an exponentially stable local system.

Now, the derivative of Vi is provided by V̇i = ėT
i Π−1

i ei + eT
i Π−1

i ėi + 2 ∑j∈Ni
γijγ̇ij. By

substituting ėi from Equation (5) into Equation (6), we obtain the following expression:

V̇i = eT
i AT

i Π−1
i ei + eT

i Π−1
i Aiei + 2 ∑

j∈Ni

γijγ̇ij + ∑
j∈Ni

γij(ej − ei)
TWT

i Π−1
i ei + eT

i Π−1
i Wi ∑

j∈Ni

γij(ej − ei) (8)

In order to further simplify Equation (8), we can assume the weighted consensus
matrix Wi = ΠiCT

i Ci. Thus, the expression of V̇i is

V̇i = eT
i (AT

i Π−1
i + Π−1

i Ai)ei + 2(Ciei)
T ∑

j∈Ni

γij(Ciej − Ciei) + 2 ∑
j∈Ni

γijγ̇ij (9)

Therefore, by setting the sum of the last two terms in Equation (9) to equal zero, we
can derive the adaptation law shown below:

2(Ciei)
T ∑

j∈Ni

γij(Ciej − Ciei) + 2 ∑
j∈Ni

γijγ̇ij = 0

2 ∑
j∈Ni

γij(Ciei)
T(Ciej − Ciei) + 2 ∑

j∈Ni

γijγ̇ij = 0

∑
j∈Ni

γij((Ciei)
T(Ciej − Ciei) + γ̇ij) = 0

(10)

Therefore, the local adaptation law is now provided by

γ̇ij = −(Ciei)
T(Ciej − Ciei)

= −(Ciei)
TCi(x̂j − x̂i).

(11)

Remark 1. The choice of the structure of Wi is not necessarily unique; it is only necessary for it to
be possible to cancel out the Πi term in Equation (8), along with the arbitrary matrix Yi, which has
an appropriate dimension such that Yiei and Yiej are available signals for the estimation process.
Here, we choose Yi = Ci for simplification.

Furthermore, if we examine the derivative of V̇i, then we find that

V̇i = eT
i AT

i Π−1
i ei + eT

i Π−1
i Aiei

= eT
i (AT

i Π−1
i + Π−1

i Ai)ei = −eT
i Ωiei.

(12)

However, we can only argue that

V̇i = −eT
i Ωiei ≤ −λmin(Ωi)‖ei‖2

2 ≤ 0. (13)

This means we need additional arguments to guarantee that the convergence of |ei|
reaches zero, as V̇i is only negative semi-definite. Thus, in order to show that each individual
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error dynamic asymptotically converges to zero, we need to examine the collective error
dynamics for all agents.

Let us denote E =
[
e1 e2 ... en

]T as the collective error vector; now, we can write
the collective error dynamics in the following form (without noise):

Ė =
d
dt

e1
...

en

 =

A1 · · · 0
...

. . .
...

0 · · · An

E+

W1 · · · 0
...

. . .
...

0 · · · Wn

 · (Γ⊗ Im) ·E (14)

where Ai = A− KiCi and

Γ =


−∑j∈N1

γ1j γ1j1 · · · γ1jN1

γ2j1 −∑j∈N2
γ2j · · ·

...
... · · · . . .

...
γnj1 · · · · · · −∑j∈Nn γnj

. (15)

Remark 2. The row sum of Γ is zero; furthermore, the sum of the off-diagonal entries in each row
is equal to the negative value of the corresponding diagonal entry. The operator ⊗ denotes the
Kronecker product, while Im denotes a m×m identity matrix.

Theorem 1. Consider a wireless sensor network consisting of n agents which form a communication
topology G(V , E ,A). Each agent adaptively estimates the states of a linear dynamic system with
the structure governed by Equation (4) using the local adaptation law in Equation (11). Each
Ai = A− KiCi satisfies the Lyapunov equation as in Equation (7). Then, the collective dynamics of
the estimation errors in Equation (14) (without noise) represent a stable system. Furthermore, the
adaptive Kalman consensus filter (a-KCF) and the adaptation law law can be implemented through
Algorithm 1, which generates a stable estimation system.

Proof. The error dynamics can now be written as

Ė = AE+W · (Γ⊗ Im) ·E (16)

where

A =

A1 · · · 0
...

. . .
...

0 · · · An

, W =

W1 · · · 0
...

. . .
...

0 · · · Wn

 (17)

and Γ is defined as in Equation (15).
We now can write the collective Lyapunov function as follows:

V = ∑n
i=1 Vi = ∑n

i=1 eT
i Π−1

i ei + ∑n
i=1 ∑j∈Ni

γ2
ij

=
n

∑
i=1

eT
i Π−1

i ei + tr(ΓTΓ)
. (18)

We denote D = diag(Π1, ..., Πn), where each entry in D is a symmetric positive definite
solution of Equation (7) with respect to a different index i.

Now, we can use the collective error dynamics to represent V in Equation (18) as follows:

V = ETDE+ trace(ΓTΓ). (19)
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Then, we take the derivative of V and combine it with the adaptation law in
Equation (11), resulting in the following expression:

V̇ = ET(MTD−1 +D−1M)E = −ETΩE ≤ 0 (20)

where Ω = diag(Ω1, ..., Ωn) and each entry of Ω must satisfy Equation (7) for the corre-
sponding ith index.

Therefore, we can argue that the collective error dynamics E and Γ from Equation (20)
are bounded; thus, we can say that E ∈ L2 ∩ L∞. From Equation (16), it can be concluded
that Ė is bounded as well, that is, Ė ∈ L∞. Therefore, using Barbalat’s Lemma, we can write
E→ 0 as t→ ∞; in other words, the error dynamics of each agent asymptotically converge
to zero.

Algorithm 1 Adaptive Kalman Consensus Filter

1: Initialize: x̂i(0) = x(0), P̂0 = P0, ei0 = e(0).
2: Compute the weighted consensus matrix: Wi = ΠiCT

i Ci, where Πi is a symmetric
positive definite matrix that satisfies the Equation (7).

3: Compute the Kalman gain: Ki=PiCT
i R−1

i , and Ki satisfies to generate an exponentially
stable local system.

4: Compute the adaptive gain: γ̇ij = −(Ciei)
TCi(x̂j − x̂i)

5: Compute the estimated state: ˙̂xi(t) = Ai x̂i(t) + Kiyi(t) + Wi ∑j∈Ni
γij(t)(x̂j(t)− x̂i(t))

6: return x̂i

Special case: when the adaptive gain γij = γi
If we assume that the adaptive gains γij for all neighbors of the ith agent are identical,

such that γij = γi, ∀j ∈ Ni. Then, we can take the γij term out of the summation in
Equation (4); in this manner, we can further simplify the structure of Γ in Equation (15) to
Γ = diag(γ1, ..., γn). Therefore, the error dynamics in Equation (16) change to

Ė = AE+ ΓW · (L⊗ Im) ·E, (21)

where L is the graph Laplacian of the communication topology G.
Therefore, we can rewrite the adaptation law in this special case as follows:

γ̇i = −(Ciei)
T ∑

j∈Ni

(Ciej − Ciei)

= −(Ciei)
T ∑

j∈Ni

Ci(x̂j − x̂i)
(22)

Remark 3. By carefully examining the above analysis, we find that there is vagueness when
observing the agreement evolution of our adaptive Kalman consensus filters. Thus, it is necessary to
show that the convergence of individual a-KCF to a common value, which implies that each agent
agrees with the others on their estimates. To this end, it is necessary to define a quantity to measure
the disagreement level of the proposed a-KCF.

Lemma 2. In a similar manner as [17], we define the measure of disagreement of n a-KCFs
as follows:

δi(t) = x̂i(t)− µ(t), i = 1, ..., n (23)

where µ(t) = 1
n ∑n

i=1 x̂i(t) is the mean estimate of n a-KCFs. Therefore, δi represents the deviation
of each agent’s estimate from the mean estimate. Furthermore, by examining the disagreement
dynamics of Equation (23), it is proved to converge to zero in finite time.
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Proof. The measurement of disagreement can be transformed into the following expression:

δi(t) = x̂i(t)− µ(t)

=
1
n

(
nx̂i(t)−

n

∑
j=1

x̂j(t) + nx(t)− nx(t)

)

=
1
n

(
−nei(t)−

n

∑
j=1

ej(t)

)
=

1
n
[
I · · · −(n− 1)I · · · I

]
E(t).

(24)

Then, we can write the collective dynamics of δi(t) as follows:

δ(t) =

δ1(t)
...

δn(t)

 =
1
n
LE(t); where L =

−(n− 1)I I · · ·
...

. . .
...

I · · · −(n− 1)I

. (25)

It can instantly be recognized that the convergence of δ(t) is related to the convergence
of E(t). We have proved that E(t) converges to zero in finite time; however, due to the zero
eigenvalue of the matrix L, Equation (24) does not simply imply that δ(t) converges to zero
in finite time. Therefore, we need to find an alternate approach to prove this lemma.

Let us define x̂ij = x̂i − x̂j as the estimate difference between the ith and the jth agents
and denote eij = ei − ej as the estimation error difference between the ith and the jth
agents. It is immediately clear that eij = x̂ij. Now, we can rewrite Equation (23) into the
following form:

δi(t) = x̂i −
1
n

n

∑
j=1

x̂j =
1
n

n

∑
j=1

(x̂i − x̂j) =
1
n

n

∑
j=1

x̂ij =
1
n

n

∑
j=1

eij. (26)

From Equation (26), it can be argued that if we are able to prove the convergence of
the dynamics of x̂ij or eij to zero in finite time, we can conclude that δi converges to zero, as
t→ ∞.

For simplification, consider the special case when γij = γi. According to Equation (5),
we can find the dynamics of eij as follows:

ėij = (A− KiCi)ei − (A− KjCj)ej + γiWi ∑
k∈Ni

(ek − ei)− γjWj ∑
j∈Nj

(el − ej)

= (A− KiCi)ei − (A− KjCj)ej + KiCiej − KiCiej + γiWi ∑
k∈Ni

eki − γjWj ∑
l∈Nj

el j

= (A− KiCi)eij + (KjCj − KiCi)ej + γiWi ∑
k∈Ni

eki − γjWj ∑
j∈Nj

el j.

(27)

In Section 4, we showed that A−KiCi generates an exponentially stable linear dynamic
system for the ith agent, while both γiWi and γjWj, along with KjCj − KiCi, are bounded
quantities. In the proof of Theorem 1, we concluded that E ∈ L2 ∩ L∞; hence, ej ∈ L2 ∩ L∞.
To complete this proof, we need to prove that both eki and el j are L2 bounded.
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We now proceed to study the L2 norm of eij, which is denoted as
∫ ∞

0 |ej − ei|2dτ; then,∫ ∞

0
|eij|2dτ =

∫ ∞

0
|ei − ej|2dτ

=
∫ ∞

0
(ei − ej)

T(ei − ej)dτ

=
∫ ∞

0
(eT

i ei − eT
j ei − eT

i ej + eT
j ej)dτ

=
∫ ∞

0
|ej|2dτ +

∫ ∞

0
|ei|2dτ −

∫ ∞

0
(eT

j ei + eT
i ej)dτ

≤
∫ ∞

0
|ej|2dτ +

∫ ∞

0
|ei|2dτ +

∫ ∞

0
|eT

j ei|+ |eT
i ej|dτ

≤
∫ ∞

0
|ej|2dτ +

∫ ∞

0
|ei|2dτ +

∫ ∞

0

|ej|2 + |ei|2

2
dτ +

∫ ∞

0

|ei|2 + |ej|2

2
dτ

≤ 2
∫ ∞

0
|ej|2dτ + 2

∫ ∞

0
|ei|2dτ.

(28)

From above, it can be proved that eij ∈ L2 ∩ L∞; therefore, we can conclude that eij
converges to zero, as t → ∞. Furthermore, δi(t) in Equation (26) converges to zero in
finite time.

5. An Example

Consider a linear dynamic system in Equation (1) with A =

[
−2 1
0 −1

]
; assume that

there are three agents distributed in a 2D domain. Each agent embeds a sensing device
with measurement capability Ci, such as C1 =

[
1 0

]
, C2 =

[
0 1

]
, C3 =

[
0.5 0

]
.

It is clear while that the system itself is not observable by individual agents, it
is observable through all of them. In this simulation, we carry out a comparison be-
tween the Kalman consensus filtering algorithm proposed by Olfati-Saber in [17] and our
adaptive Kalman consensus filtering algorithm from Theorem 1 on their performance and
effectiveness.

We set up our simulation with the following parameter configuration:

• Kalman Consensus Filter
The process noise distribution matrix is B = I2, and the covariance matrix of the
process noise and measurement noise are R = 1 and Q = 0.052 × I2, respectively. We
assume the initial conditions for the error covariance matrices of the agents to be

P1(0) =
[

1 0
0 1

]
; P2(0) =

[
0.5 1
2 0.5

]
; P3(0) =

[
1.5 2
1 1.5

]
.

We set the initial value of γ as 1. Furthermore, we assume that each agent can receive
and transmit its own information to the other two; we call this type of communica-
tion a full-connectivity topology. Therefore, the associated graph Laplacian has the
following expression:

L = −

 2 −1 −1
−1 2 −1
−1 −1 2

. (29)

• Adaptive Kalman Consensus Filter
For ease of implementation, we only consider the special case illustrated in Section 4
here. The initial guesses for the adaptive gains are γ1(0) = γ2(0) = γ3(0) = 1. The
consensus weighting matrix Wi for each agent i is calculated through Equation (7),
with the assumption that Ωi = I2 for all i and that Wi = ΠiCT

i Ci.
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In both cases above, we assume the same initial conditions for the error dynamics,
such as e1(0) = [−0.6, 0]T ; e2(0) = [2, 1]T and e3(0) = [−2, 0.5]T . In order to construct a fair
comparison between the KCF and a-KCF algorithms, we assume that the dynamics of the
error covariance matrix in Equation (3) comply with the algebraic Riccati equation, and use
the same filter gains Ki in both cases.

The simulation results are shown in Figures 1–4. From a comparison of Figure 1a,b,
we can conclude that a-KCF has better performance regarding the error convergence rate
than the KCF in [17]. Figure 2a,b illustrates the evolution of the disagreement term in both
the KCF and the a-KCF algorithms. According to the simulation results in Figure 3a,b, both
the state estimation error and the disagreement term converge faster in the a-KCF case.
Figure 4 demonstrates the dynamics of the adaptive gain.
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Figure 1. Evolution of state errors vs. time.
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Figure 3. Performance comparison examining state estimation error and disagreement term evolution
vs. time.
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Figure 4. Adaptive gains evolution vs. time.

6. Conclusions

In this paper, the problem of n distributed agents working cooperatively through a
communication network to estimate the true state of a linear dynamic system has been
considered for both the non-adaptive DKF algorithm proposed by Olfati-Saber [17] and
our proposed adaptive Kalman consensus filtering (a-KCF) algorithm. Stability and per-
formance analyses are demonstrated for the a-KCF algorithm, showing that our adaptive
extension of Olfati-Saber’s work in [17] has better convergence performance for the col-
lective dynamics of the estimation errors. The simulation results in Section 5 match our
theoretical analysis. Moreover, the a-KCF algorithm turns out to be a suboptimal one which
neglects the coupling effect among the agents’ cooperation. For simplification, we only con-
sider the no-noise scenario. However, we recognize the benefit of the a-KCF algorithm in
that it lowers the communication complexity from O(n2) to O(n) and has better scalability
when more agents join the network.
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