
����������
�������

Citation: Varga, D. Saliency-Guided

Local Full-Reference Image Quality

Assessment. Signals 2022, 3, 483–496.

https://doi.org/10.3390/

signals3030028

Academic Editors: Francisco

Martínez González and Mohammed

K. A. Kaabar

Received: 28 April 2022

Accepted: 29 June 2022

Published: 11 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

signals

Article

Saliency-Guided Local Full-Reference Image Quality Assessment

Domonkos Varga

Ronin Institute, Montclair, NJ 07043, USA; domonkos.varga@ronininstitute.org

Abstract: Research and development of image quality assessment (IQA) algorithms have been in
the focus of the computer vision and image processing community for decades. The intent of IQA
methods is to estimate the perceptual quality of digital images correlating as high as possible with
human judgements. Full-reference image quality assessment algorithms, which have full access to
the distortion-free images, usually contain two phases: local image quality estimation and pooling.
Previous works have utilized visual saliency in the final pooling stage. In addition to this, visual
saliency was utilized as weights in the weighted averaging of local image quality scores, emphasizing
image regions that are salient to human observers. In contrast to this common practice, visual saliency
is applied in the computation of local image quality in this study, based on the observation that local
image quality is determined both by local image degradation and visual saliency simultaneously.
Experimental results on KADID-10k, TID2013, TID2008, and CSIQ have shown that the proposed
method was able to improve the state-of-the-art’s performance at low computational costs.

Keywords: full-reference image quality assessment; visual saliency; image features

1. Introduction

Image quality assessment (IQA) is a hot research topic in the image processing com-
munity, since it can be applied in a wide range of practical and important applications, such
as the optimization of computer vision system parameters [1] and monitoring the quality
of image displays [2], it is also helpful in the process of benchmarking image and video
compression and denoising algorithms [3,4]. In practice, the final perceivers and users of
digital images are human beings. As a consequence, the most reliable way of evaluating the
perceptual quality of digital images is subjective user studies involving a group of vision
experts and human observers either in a laboratory environment [5] or a crowdsourcing
experiment [6]. Further, these subjective evaluation methods result in publicly available
benchmark IQA databases, which can be used in objective IQA. Namely, objective IQA
tries to construct mathematical algorithms that estimate the perceptual quality of digital
images as consistently as possible with human judgement. To help the development of
IQA methods, publicly available benchmark databases, such as TID2013 [7] and CSIQ [8],
contain digital images with their mean opinion score (MOS) values, which are the averages
of individual human quality ratings. Traditionally, IQA is divided into three classes [9]:
full-reference (FR), no-reference (NR), and reduced-reference (RR). The main difference
is the degree of access to the reference, i.e., the distortion-free images. Namely, FR-IQA
algorithms have full access to the reference image, while NR-IQA ones have no access to
the them, and RR-IQA methods have limited access to the reference images.

Human vision research has increased the understanding of the human visual system.
During observation of an image, people tend to focus on the visually significant part of
a scene. As a consequence, the content of the image is not treated equally. This is why
considering visual saliency in FR-IQA has gained a lot of attention in the literature [10–12].
In the literature, the traditional and well-known PSNR [13] was first improved using visual
saliency computation by dividing the input images into different regions and assigning
weights to them according to their estimated saliency. This work was followed by a line
of papers utilizing visual saliency from different features. Specifically, Zhang et al. [14]
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utilized the phase congruency feature [15] as a visual saliency measure to create weights
for defined feature similarity metrics. Wang and Li [16] compiled local distortion maps
from the reference and distorted images. To quantify visual quality, these local distortion
maps were pooled together by using saliency as a weighting function. The common point
of algorithms using visual saliency is that visual saliency is used as a weighting function in
the comparison of local image quality maps.

1.1. Motivation and Contributions

Over the evolution of the human race, humans have evolved to pay different amounts
of attention to different regions of a visual scene as it is viewed. This mechanism ob-
viously affects human perceptual quality judgements. Previously published FR-IQA
methods [14,16–18] utilize visual saliency in the final pooling stage of the algorithm. To be
more specific, visual saliency is used as weight in the weighted averaging of local image
quality scores, emphasizing image regions that are more salient to the human visual system.
The main contribution of this paper was the following. As opposed to other previously
published algorithms, visual saliency was utilized by this work in the computation of
local image quality and not in the pooling stage, which is usual in the literature. In fact,
the human visual system perceives image degradation with higher probability in visually
significant regions and tends to neglect degradation in visually less significant regions. In
other words, local quality degradation is simultaneously influenced by both local image
degradation and visual saliency. The effect of visual saliency on the perception of local
image quality is demonstrated below. If humans observe Figure 1a, they to tend to focus
their attention on the child’s face rather than on the vegetation in the background. To be
specific, we added the same amount of noise to two different visually significant areas of
the image. In Figure 1a, it was added to the region containing the the vegetation in the
left corner, while it was added to the face in Figure 1b. Comparing these two figures, the
human visual system was less likely to perceive the degradation if it was not in a visually
salient area.

(a) (b)
Figure 1. HVS’s perception of local image quality in relation to visual saliency: (a) degradation in
non-salient region, (b) degradation in salient region.

Based on the above-mentioned observations, a visual-saliency-guided FR-IQA frame-
work was introduced where the visual saliency adaptively adjusted local image quality.
Within this framework, ESSIM (edge strength similarity-based image quality metric) [19]
method was further developed. Furthermore, it was demonstrated that the proposed
method was able to improve state-of-the-art performance at low computational costs on four
large and widely accepted IQA benchmark databases, i.e., KADID-10k [20], TID2013 [7],
TID2008 [21], and CSIQ [8].
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1.2. Organization of the Paper

After this introduction, related and previous papers are reviewed in Section 2. Next,
our proposed method is described in Section 3. Databases, evaluation metrics, and imple-
mentation details are given in Section 4. Numerical, experimental results, and a comparison
to the state-of-the-art is presented in Section 5. At the end, a conclusion is drawn in
Section 6.

2. Related Work

As already mentioned, FR-IQA algorithms predict the perceptual quality of distorted
images with full access to the reference images. The traditional and probably the sim-
plest methods for FR-IQA are mean squared error (MSE) and peak signal-to-noise ratio
(PSNR), which rely on the measurement of the distortion energy of the images. However,
their performance lags behind other more sophisticated metrics, since their results are
not consistent with human quality perception [22]. Hence, many FR-IQA methods have
tried to build on the properties of the human visual system (HVS) to compile effective
algorithms. For example, the structural similarity index (SSIM) [23] utilizes the observation
that HVS is sensitive to contrast and structural distortions. More specifically, SSIM [23]
applies local sliding windows on the reference and distorted images and measures lumi-
nance, contrast, and structure similarity using predefined functions containing average,
variance, and covariance computations. Finally, the perceptual quality of the distorted
image is obtained by taking the arithmetic mean of the similarity values of the local sliding
windows. Brunet et al. [24] investigated the mathematical properties of SSIM and pointed
out that SSIM satisfies the identity of indiscernibles and exhibits symmetry properties,
excluding the triangle inequality. SSIM has become quickly popular in the signal processing
community and gained a significant amount of attention for further research [25]. For ex-
ample, Wang et al. [26] extended SSIM into MS-SSIM by conducting multi-scale processing.
Further, Sampat et al. [27] utilized complex wavelet domains to define a new structural
similarity index. In contrast, Chen et al. [28] modified SSIM to compare edge information
between the reference and the distorted images. In addition to structural degradation,
image gradient is also a popular feature in FR-IQA. Specifically, Liu et al. [29] defined
an FR-IQA metric using gradient similarity between the reference and distorted images.
Similarly, Zhu and Wang [30] utilized gradient similarity, but scale information was also
incorporated into their metric.

Motivated by the success of deep learning in many image processing tasks [31–33],
deep learning has also appeared in FR-IQA. For example, significant amount of proposed
works compare deep activations of convolutional neural networks (CNNs) for a reference–
distorted image pair to establish an FR quality metric. For example, Amirshahi et al. [34]
extracted feature maps using an AlexNet [35] CNN. Subsequently, the extracted feature
maps were compared using histogram intersection kernels [36] and a similarity value
was produced for each feature map. To obtain perceptual quality, the arithmetic mean
of these similarity values was taken. Later, this approach was developed further [37]
by replacing the histogram intersection kernels by traditional image similarity metrics.
Another line of work focused on training end-to-end deep architectures on large IQA
benchmark databases [38–40]. Chubarau et al. [39] investigated vision transformers and
self-attention for FR-IQA. Namely, a context-aware sampling procedure was introduced
to extract patches from the reference and the distorted images. Next, the patches were
encoded by a vision transformer.

Another class of FR-IQA methods uses existing and available FR-IQA metrics to
construct a new metric with improved performance. For instance, Okarma [41] studied the
characteristics of three different metrics. In addition, the authors introduced a combined
metric by taking the exponentiated product of the examined three metrics. In contrast, other
proposals utilized optimization techniques to find optimal weights for a linear combination
of already existing FR-IQA techniques [42–44]. Instead of optimization, Lukin et al. [45]
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trained a neural network from scratch using traditional FR-IQA metrics as image features
to obtain improved estimation performance.

3. Proposed Method

In this section, our proposed method is introduced and described. Specifically, we first
gave an overview about the ESSIM [19] method to better understand our contribution to
the saliency-guided determination of local image quality. In the following, the ESSIM [19]
algorithm is first briefly described, and then the saliency-guided SG-ESSIM is described
in detail.

3.1. ESSIM Method

To quantify quality degradation of a distorted image (g) with respect to a reference
image ( f ), the ESSIM is defined as

ESSIM( f , g) =
1
N

N

∑
i=1

2E( f , i)E(g, i) + C
(E( f , i))2 + (E(g, i))2 + C

, (1)

where C is a small constant to avoid the division by zero. To be more specific, C has two
roles in Equation (1): as already mentioned, it is necessary to avoid having a denominator
equal to zero; secondly C is also a scaling factor. If C −→ ∞, the result of similarity measure
is 1. Further, E( f , i) is used to characterize the edge strength around pixel i in the reference
image f , and is determined as

E( f , i) = max(E1,3
i ( f ), E2,4

i ( f )), (2)

where E2,4
i ( f ) is the edge strength in the diagonal directions and is determined as

E2,4
i ( f ) = |∂ f 2

i − ∂ f 4
i |p. (3)

Similarly, E1,3
i ( f ) stands for the edge strength but in the vertical and horizontal direc-

tions and is computed as
E1,3

i ( f ) = |∂ f 1
i − ∂ f 3

i |
p. (4)

In Equations (3) and (4), ∂ f j
i stands for the directional derivatives at pixel i in reference

image f . The applied directions in the ESSIM are the following: 0◦, 45◦, 90◦, 135◦. Further,
the fractional derivatives in the ESSIM are implemented with the help of 5× 5 Scharr
operators [46]. Moreover, p is used to adapt the edge strength in the algorithm. The edge
strength of distorted image g around pixel i is defined as

E(g, i) =

{
E1,3

i (g), if E( f , i) = E1,3
i ( f )

E2,4
i (g), if E( f , i) = E2,4

i ( f )
(5)

in order to guarantee that the edge strengths of f and g are compared in the same direction.
Otherwise, E1,3

i (g) and E2,4
i (g) are determined similarly to Equations (3) and (4).

3.2. SG-ESSIM Method

As one can observe from the derivation of the ESSIM [19], the impact of visual saliency
was not incorporated into these metrics. In this section, we describe how we enhanced the
ESSIM by using visual saliency in the measurement of local image quality. Hence, it was
highlighted that local image quality degradation was jointly characterized by the objective
degradation of edge strength and significance.

As proposed by the authors of the ESSIM [19], our algorithm first determined the edge
strength maps of the reference and distorted images as recommended in the ESSIM [19].
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Subsequently, it calculated the saliency-guided local image quality map. Finally, it pooled
the local image quality map to obtain the overall perceptual quality of the distorted image.

Using Equations (2) and (5), which describe E( f , i) and E(g, i) in the ESSIM, our visual
saliency-guided local similarity map is defined as

SM(E( f , i), E(g, i)) =
2 · E( f , i) · E(g, i) + H(V(i))

(E( f , i))2 + (E(g, i))2 + H(V(i))
, (6)

where V(i) stands for the visual saliency measure at pixel location at pixel location i.
Moreover, H(·) is a decreasing function defined as

H(V(i)) = K · e−
V(i)

h , (7)

where e is Euler’s number, K is a scaling factor, and h is an attenuation factor (Equation (7)
is a decreasing function because the similarity metric defined by Equation (9) also needs to
be regulated). To be more specific, V(i) takes the edge strength maps of the reference and
distorted images and returns their pixel-wise maximum:

V(i) = max(E( f , i), E(g, i)). (8)

Equation (8) implies that regions with strong edges are more salient to the human
visual system than those with weak edges since edge information conveys essential infor-
mation about the visual scene to humans [47]. A larger value of V(i) = max(E( f , i), E(g, i))
indicated a higher visual saliency at pixel location i. Moreover, the computation of V(i) did
not result in a significant increase in the computational costs since E( f , i) and E(g, i) were
determined anyway in the ESSIM [19]. Substituting Equations (7) and (8) into Equation (9),
we obtain the following equation for visual saliency guided local similarity map:

SM(E( f , i), E(g, i)) =
2 · E( f , i) · E(g, i) + K · e−

max(E( f ,i),E(g,i))
h

(E( f , i))2 + (E(g, i))2 + K · e−
max(E( f ,i),E(g,i))

h

. (9)

Finally, the overall predicted perceptual quality score of the image was estimated by
averaging the visual saliency-guided (SG) local similarity map

SG− ESSIM =
1
N

N

∑
i=1

SM(E( f , i), E(g, i)), (10)

where N is the total number of pixels.
The hyperparameters of the SG-ESSIM, which have to be set, were K and h. These

parameters were determined on a subset of the TID2008 [21] database, which contained
5 random reference images and 340 corresponding distorted images. Specifically, those
hyperparameters were chosen where the highest Spearman’s rank order correlation co-
efficient between the ground truth and the predicted values was obtained. As a result,
we chose K = 51,000 and h = 0.5 in our MATLAB implementation. Since the SG-ESSIM
was not a machine-learning-based approach, this random subset was also used in the
evaluation process.

4. Materials

In this section, the description of the applied benchmark IQA databases are given first.
Second, we give the applied evaluation metrics and protocol. Finally, the implementation
details of the proposed method are given.

4.1. Databases

In this study, four large publicly available IQA benchmark databases (KADID-10k [20],
TID2013 [7], TID2008 [21], and CSIQ [8]) were used to evaluate and compare the state-of-the-
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art to the proposed method. The most important information about the applied databases
is summarized in Table 1. Namely, these databases contained a small set of distortion-free
reference images from which distorted images were derived using different distortion
types at different distortion levels. Moreover, the distorted images were annotated with
subjective quality ratings. Therefore, they were suitable and accepted for the evaluation
and ranking of FR-IQA metrics in the literature [48]. Figure 2 depicts the empirical MOS
distributions in the applied databases.

Table 1. Summary of benchmark databases used in this study.

Database Ref. Images Dist. Images Dist. Types Dist. Levels

KADID-10k [20] 81 10,125 25 5
TID2013 [7] 25 3000 24 5
TID2008 [21] 25 1700 17 4

CSIQ [8] 30 866 6 4–5

(a) (b)

(c) (d)

Figure 2. Empirical MOS distributions in benchmark IQA databases: (a) KADID-10k [20],
(b) TID2013 [7], (c) TID2008 [21], and (d) CSIQ [8].

4.2. Evaluation Metrics and Protocol

Ranking of FR-IQA methods relies on measuring the correlation between predicted
and ground truth quality scores of benchmark IQA databases, such as KADID-10k [20]. To
be more specific, the performance of an FR-IQA metric was evaluated using three different
criteria in this study: Pearson’s linear correlation coefficient (PLCC), Spearman’s rank order
correlation coefficient (SROCC), and Kendall’s rank order correlation coefficient (KROCC).
In addition, a nonlinear logistic regression was applied before the calculation of the PLCC
as recommended in [49], because nonlinear relationship exists between the ground truth
and predicted scores:

Q = β1

(
1
2
− 1

1 + eβ2(Qp−β3)

)
+ β4Qp + β5, (11)

where Q and Qp are the fitted and predicted scores, respectively. In addition, the regression
described by Equation (11) is determined by the βi (i ∈ {1, 2, . . . , 5}) parameters.
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4.3. Implementation Details

MATLAB R2021a was used to implement the proposed FR-IQA metric using the
functions of the Image Processing Toolbox. The computer configuration applied in our
experiments is outlined in Table 2.

Table 2. Computer configuration applied in our experiments.

Computer model STRIX Z270H Gaming
Operating system Windows 10

Memory 15 GB
CPU Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (8 cores)
GPU Nvidia GeForce GTX 1080

5. Experimental Results and Analysis

In this section, our experimental results and analysis are presented using four common
benchmark IQA databases: KADID-10k [20], TID2013 [7], TID2008 [21] , and CSIQ [8].
More specifically, the proposed SG-ESSIM method was compared to thirteen other state-
of-the-art FR-IQA metrics (2stepQA [50], CSV [51], DISTS [52], ESSIM [19], GSM [29],
IW-SSIM [16], MAD [8], MS-SSIM [26], PSNR, ReSIFT [53], RVSIM [54], SSIM [23], SUM-
MER [55]), whose original source codes were made publicly available by their authors, on
the above-mentioned databases in terms of correlations with ground truth quality ratings.
Furthermore, their hyperparameter values (if any) were applied in the examined state-of-
the-art methods, which were recommended as default values by the original authors in
their MATLAB implementations. In addition to this, a detailed comparison of TID2013 [7]
and TID2008 [21] with respect to different noise types and noise levels is also presented.

The comparison, in terms of the PLCC, SROCC, and KROCC, in KADID-10k [20],
TID2013 [7], TID2008 [21], and CSIQ [8] is summarized in Tables 3 and 4. From these experi-
mental, numerical results, it could be seen that the proposed SG-ESSIM was able to provide
the best results in terms of the SROCC and KROCC on KADID-10k [20] and the PLCC on
TID2013 [7], respectively. Moreover, it gave the best results for all correlation values in
TID2008 [21]. On CSIQ [8], the second best results in terms of the SROCC and KROCC were
achieved by the proposed method. To illustrate the overall performance of the examined
methods on these databases, direct and weighted average (using the numbers of images as
weights) performance values are summarized in Table 5. It could be seen that the proposed
method was able to deliver the second best results in terms of the SROCC and KROCC,
both in direct and weighted averages. In Tables 6 and 7, detailed results could be seen on
TID2013 [7] and TID2008 [21] with respect to the different distortion types. Similarly, Tables 8
and 9 illustrate the detailed results with respect to the noise levels. TID2013 [7] contained
images with 24 different distortion types, such as AGN (additive Gaussian noise), ANC
(additive noise in color components), SCN (spatially correlated noise), MN (masked noise),
HFN (high frequency noise), IN (impulse noise), QN (quantization noise), GB (Gaussian
blur), DEN (image denoising), JPEG (JPEG compression), JP2K (JPEG2000 compression),
JGTE (JPEG transmission errors), J2TE (JPEG2000 transmission errors), NEPN (noneccen-
tricity pattern noise), BLOCK (local block-wise distortions of different intensity), MS (mean
shift), CC (contrast change), CCS (change in color saturation), MGN (multiplicative Gaussian
noise), CN (comfort noise), LCNI (lossy compression of noisy images), ICQD (image color
quantization with dither), CA (chromatic aberrations), and SSR (sparse sampling and recon-
struction). TID2008 [21] consisted of the first 17 distortion types from TID2013 [7]. From the
presented results, it could be observed that SG-ESSIM was able to produce the best SROCC
values on five distortion types of TID2013 [7] and on four distortion types of TID2008 [21].
On the other hand, it provided the second best results on nine distortion types of TID2013 [7]
and on seven distortion types of TID2008 [21]. Moreover, the SG-ESSIM was able to produce
the best SROCC values on three distortion levels of TID2013 [7], while it gave the second best
results on the remaining two distortion levels. In TID2008 [21], it provided the best results
on three distortion levels and the second best result on the remaining distortion level.
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Table 3. Comparison of the SG-ESSIM to several other state-of-the-art algorithms on KADID-10k [20]
and TID2013 [7]. The highest values are typed in bold, while the second highest ones are underlined.

KADID-10k [20] TID2013 [7]

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

2stepQA [50] 0.768 0.771 0.571 0.736 0.733 0.550
CSV [51] 0.671 0.669 0.531 0.852 0.848 0.657

DISTS [52] 0.809 0.814 0.626 0.759 0.711 0.524
ESSIM [19] 0.644 0.823 0.634 0.740 0.797 0.627
GSM [29] 0.780 0.780 0.588 0.789 0.787 0.593

IW-SSIM [16] 0.781 0.756 0.524 0.832 0.778 0.598
MAD [8] 0.716 0.724 0.535 0.827 0.778 0.600

MS-SSIM [26] 0.819 0.821 0.630 0.794 0.785 0.604
PSNR 0.479 0.676 0.488 0.616 0.646 0.467

ReSIFT [53] 0.648 0.628 0.468 0.630 0.623 0.471
RVSIM [54] 0.728 0.719 0.540 0.763 0.683 0.520
SSIM [23] 0.670 0.671 0.489 0.618 0.616 0.437

SUMMER [55] 0.719 0.723 0.540 0.623 0.622 0.472

SG-ESSIM 0.739 0.838 0.650 0.878 0.805 0.636

Table 4. Comparison of SG-ESSIM to several other state-of-the-art algorithms on TID2008 [21] and
CSIQ [8]. The highest values are typed in bold, while the second highest ones are underlined.

TID2008 [21] CSIQ [8]

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

2stepQA [50] 0.757 0.769 0.574 0.841 0.849 0.655
CSV [51] 0.852 0.851 0.659 0.933 0.933 0.766

DISTS [52] 0.705 0.668 0.488 0.930 0.930 0.764
ESSIM [19] 0.658 0.876 0.696 0.814 0.933 0.768
GSM [29] 0.782 0.781 0.578 0.906 0.910 0.729

IW-SSIM [16] 0.842 0.856 0.664 0.804 0.921 0.753
MAD [8] 0.831 0.829 0.639 0.950 0.947 0.796

MS-SSIM [26] 0.838 0.846 0.648 0.913 0.917 0.743
PSNR 0.447 0.489 0.346 0.853 0.809 0.599

ReSIFT [53] 0.627 0.632 0.484 0.884 0.868 0.695
RVSIM [54] 0.789 0.743 0.566 0.923 0.903 0.728
SSIM [23] 0.669 0.675 0.485 0.812 0.812 0.606

SUMMER [55] 0.817 0.823 0.623 0.826 0.830 0.658

SG-ESSIM 0.853 0.888 0.708 0.836 0.944 0.786

Table 5. Comparison of SG-ESSIM to several other state-of-the-art algorithms. Direct and weighted
average PLCC, SROCC, and KROCC values are presented. Measured on KADID-10k [20], TID2013 [7],
TID2008 [21], and CSIQ [8]. The highest values are typed in bold, while the second highest ones are
underlined.

Direct Average Weighted Average

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

2stepQA [50] 0.776 0.781 0.587 0.765 0.768 0.572
CSV [51] 0.827 0.825 0.653 0.740 0.738 0.582

DISTS [52] 0.801 0.781 0.601 0.795 0.785 0.599
ESSIM [19] 0.714 0.857 0.681 0.673 0.830 0.647
GSM [29] 0.814 0.815 0.622 0.789 0.789 0.596

IW-SSIM [16] 0.815 0.828 0.635 0.800 0.780 0.570
MAD [8] 0.831 0.820 0.643 0.763 0.758 0.573

MS-SSIM [26] 0.841 0.842 0.656 0.821 0.822 0.633
PSNR 0.599 0.655 0.475 0.520 0.660 0.470

ReSIFT [53] 0.697 0.688 0.530 0.655 0.641 0.483
RVSIM [54] 0.801 0.762 0.589 0.752 0.725 0.549
SSIM [23] 0.692 0.694 0.504 0.668 0.669 0.485

SUMMER [55] 0.746 0.750 0.573 0.720 0.720 0.540

SG-ESSIM 0.827 0.869 0.695 0.783 0.843 0.661
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Table 6. Comparison of TID2013’s [7] distortion types. SROCC values are given. The highest values are typed in bold, while the second highest ones are underlined.

2stepQA [50] CSV [51] DISTS [52] ESSIM [19] GSM [29] MAD [8] MS-SSIM [26] ReSIFT [53] RVSIM [54] SSIM [23] SG-ESSIM

AGN 0.817 0.938 0.845 0.911 0.899 0.912 0.624 0.831 0.886 0.848 0.936
ANC 0.590 0.862 0.786 0.806 0.823 0.800 0.387 0.749 0.836 0.779 0.855
SCN 0.860 0.939 0.859 0.938 0.927 0.929 0.683 0.839 0.868 0.851 0.935
MN 0.395 0.748 0.814 0.711 0.704 0.658 0.372 0.702 0.734 0.775 0.715
HFN 0.828 0.927 0.868 0.890 0.884 0.902 0.704 0.869 0.895 0.889 0.920

IN 0.715 0.848 0.674 0.825 0.813 0.743 0.766 0.824 0.865 0.810 0.833
QN 0.886 0.892 0.810 0.904 0.911 0.895 0.720 0.745 0.869 0.817 0.911
GB 0.853 0.933 0.926 0.970 0.954 0.915 0.762 0.937 0.970 0.910 0.969

DEN 0.900 0.952 0.899 0.956 0.955 0.922 0.819 0.907 0.926 0.876 0.963
JPEG 0.867 0.944 0.897 0.923 0.933 0.924 0.784 0.905 0.930 0.893 0.950
JP2K 0.891 0.966 0.931 0.946 0.934 0.929 0.790 0.928 0.946 0.806 0.949
JGTE 0.806 0.800 0.906 0.826 0.866 0.768 0.582 0.712 0.831 0.701 0.823
J2TE 0.854 0.887 0.865 0.902 0.893 0.854 0.742 0.835 0.882 0.813 0.899

NEPN 0.775 0.811 0.833 0.799 0.804 0.803 0.792 0.693 0.771 0.634 0.801
BLOCK 0.044 0.183 0.302 0.649 0.588 −0.322 0.382 0.440 0.545 0.564 0.623

MS 0.660 0.654 0.752 0.712 0.728 0.708 0.732 0.418 0.559 0.738 0.706
CC 0.430 0.227 0.464 0.453 0.466 0.420 0.027 −0.055 0.132 0.355 0.452

CCS −0.258 0.809 0.789 −0.297 0.676 −0.059 −0.055 −0.209 0.366 0.742 0.010
MGN 0.747 0.884 0.790 0.853 0.831 0.888 0.653 0.765 0.853 0.804 0.900

CN 0.858 0.924 0.907 0.910 0.902 0.904 0.596 0.882 0.914 0.797 0.916
LCNI 0.902 0.965 0.932 0.957 0.945 0.950 0.713 0.897 0.933 0.877 0.952
ICQD 0.808 0.919 0.832 0.904 0.901 0.867 0.739 0.770 0.871 0.820 0.928

CA 0.702 0.845 0.879 0.839 0.835 0.760 0.568 0.838 0.871 0.740 0.835
SSR 0.926 0.976 0.944 0.965 0.961 0.949 0.801 0.944 0.956 0.822 0.964

All 0.733 0.848 0.711 0.797 0.787 0.778 0.785 0.623 0.683 0.616 0.805
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Table 7. Comparison of TID2008’s [21] distortion types. SROCC values are given. The highest values are typed in bold, while the second highest ones are underlined.

2stepQA [50] CSV [51] DISTS [52] ESSIM [19] GSM [29] MAD [8] MS-SSIM [26] ReSIFT [53] RVSIM [54] SSIM [23] SG-ESSIM

AGN 0.766 0.922 0.812 0.875 0.855 0.872 0.610 0.771 0.840 0.805 0.913
ANC 0.627 0.893 0.811 0.792 0.821 0.803 0.354 0.762 0.829 0.780 0.900
SCN 0.814 0.932 0.838 0.909 0.904 0.901 0.727 0.810 0.837 0.800 0.920
MN 0.450 0.781 0.830 0.744 0.736 0.673 0.304 0.728 0.760 0.797 0.825
HFN 0.818 0.936 0.870 0.899 0.889 0.894 0.749 0.881 0.886 0.871 0.921

IN 0.659 0.819 0.626 0.777 0.764 0.650 0.767 0.777 0.836 0.776 0.786
QN 0.850 0.894 0.770 0.884 0.903 0.851 0.708 0.730 0.836 0.784 0.873
GB 0.877 0.923 0.909 0.966 0.948 0.896 0.759 0.904 0.963 0.866 0.964

DEN 0.919 0.970 0.931 0.974 0.971 0.928 0.786 0.923 0.939 0.873 0.963
JPEG 0.895 0.948 0.894 0.938 0.937 0.931 0.774 0.914 0.926 0.880 0.959
JP2K 0.910 0.984 0.953 0.966 0.949 0.941 0.837 0.935 0.970 0.745 0.972
JGTE 0.851 0.790 0.907 0.859 0.871 0.781 0.606 0.735 0.860 0.666 0.855
J2TE 0.845 0.852 0.833 0.875 0.880 0.802 0.742 0.778 0.854 0.769 0.863

NEPN 0.803 0.752 0.882 0.742 0.784 0.801 0.749 0.761 0.732 0.588 0.729
Block 0.441 0.770 0.618 0.876 0.843 −0.362 0.765 0.743 0.782 0.804 0.905
MS 0.655 0.594 0.681 0.611 0.638 0.563 0.711 0.322 0.525 0.629 0.683
CC 0.597 0.330 0.649 0.624 0.634 0.548 0.042 −0.018 0.194 0.502 0.642

All 0.769 0.851 0.668 0.876 0.781 0.829 0.846 0.632 0.743 0.675 0.888

Table 8. Comparison of SROCC of each FR-IQA metrics on TID2013’s [7] distortion levels (Level 1 represents the lowest level of degradation, while Level 5 represents
the highest one). The highest values are typed in bold, while the second highest ones are underlined.

2stepQA [50] CSV [51] DISTS [52] ESSIM [19] GSM [29] MAD [8] MS-SSIM [26] ReSIFT [53] RVSIM [54] SSIM [23] SG-ESSIM

Level 1 0.246 0.424 0.235 0.388 0.372 0.388 0.166 0.181 0.248 0.204 0.448
Level 2 0.394 0.626 0.440 0.547 0.512 0.368 0.049 0.401 0.430 0.276 0.569
Level 3 0.539 0.635 0.367 0.638 0.523 0.442 0.240 0.415 0.416 0.084 0.660
Level 4 0.571 0.749 0.606 0.766 0.669 0.284 0.172 0.699 0.702 0.208 0.787
Level 5 0.663 0.787 0.664 0.875 0.745 0.308 0.397 0.788 0.803 0.202 0.861

All 0.733 0.848 0.711 0.797 0.787 0.778 0.785 0.623 0.683 0.616 0.805

Table 9. Comparison of SROCC for each FR-IQA metric on TID2008’s [21] distortion levels (Level 1 represents the lowest level of degradation, while Level 5
represents the highest one). The highest values are typed in bold, while the second highest ones are underlined.

2stepQA [50] CSV [51] DISTS [52] ESSIM [19] GSM [29] MAD [8] MS-SSIM [26] ReSIFT [53] RVSIM [54] SSIM [23] SG-ESSIM

Level 1 0.470 0.638 0.566 0.655 0.639 0.432 0.067 0.457 0.634 0.368 0.691
Level 2 0.619 0.683 0.381 0.773 0.636 0.520 0.221 0.437 0.513 0.105 0.807
Level 3 0.573 0.774 0.581 0.826 0.677 0.239 0.059 0.707 0.761 0.190 0.849
Level 4 0.610 0.829 0.628 0.905 0.718 0.232 0.275 0.788 0.825 0.241 0.891

All 0.769 0.851 0.668 0.876 0.781 0.829 0.846 0.632 0.743 0.675 0.888
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In Figure 3, the execution time (logarithmic scale) versus SROCC scatter plot measured
on KADID-10k [20] is depicted. From this figure, it could be seen that the proposed
SG-ESSIM method was the fourth fastest algorithm out of the examined thirteen ones.
Considering execution time and estimation performance together, the SG-ESSIM provided
a competitive result against the state-of-the-art. Similarly, Figure 4 depicts the execution
versus the SROCC on the CSIQ [8] database. Here, we could also observe that considering
execution time and performance together, the proposed method was able to achieve a
competitive result.

Figure 3. Execution time (logarithmic scale) versus SROCC measured on KADID-10k [20].

Figure 4. Execution time (logarithmic scale) versus SROCC measured on CSIQ [8].

6. Conclusions

The goal of FR-IQA is to predict digital images’ perceptual quality with full access to
the distortion-free, reference images. FR-IQA methods usually contain two stages: local
image quality estimation and pooling. In addition, visual saliency is utilized in the pooling
stage as weights for the weighted averaging of local image quality. Unlike this traditional
approach, we applied visual saliency in the computation of local image quality, motivated
by the fact that local image quality is determined both by local image degradation and



Signals 2022, 3 494

visual saliency simultaneously. Experimental results on four publicly available benchmark
IQA databases showed that the proposed algorithm was able to outperform the state-of-
the-art and was characterized by low computational costs. Future work could involve the
incorporation of local and global saliency into a novel FR-IQA metric. The source code of
the proposed method is available at: https://github.com/Skythianos/SG-ESSIM (accessed
on 12 June 2022).
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Abbreviations
The following abbreviations were used in this manuscript:

AGN additive Gaussian noise;
ANC additive noise in color components;
CA chromatic aberrations;
CC contrast change;
CCS change in color saturation;
CN comfort noise;
CNN convolutional neural network;
CPU central processing unit;
DEN image denoising;
FR-IQA full-reference image quality assessment;
GB Gaussian blur;
GPU graphics processing unit;
HFN high frequency noise;
HVS human visual system;
ICQD image color quantization with dither;
IN impulse noise;
IQA image quality assessment;
JGTE JPEG transmission error;
JPEG joint photographic experts group;
KROCC Kendall’s rank order correlation coefficient;
LCNI lossy compression of noisy images;
MGN multiplicative Gaussian noise;
MN masked noise;
MOS mean opinion score;
MS mean shift;
MSE mean squared error;
NEPN noneccentricity pattern noise;
NR-IQA no-reference image quality assessment;
PLCC Pearson’s linear correlation coefficient;
PSNR peak signal-to-noise ratio;
QN quantization noise;
RR-IQA reduced-reference image quality assessment;

https://github.com/Skythianos/SG-ESSIM
http://database.mmsp-kn.de/kadid-10k-database.html
http://www.ponomarenko.info/tid2013.htm
http://www.ponomarenko.info/tid2008.htm
https://isp.uv.es/data_quality.html
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SCN spatially correlated noise;
SG saliency guided;
SROCC Spearman’s rank order correlation coefficient;
SSR space sampling and reconstruction
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