
signals

Article

IMU-Based Hand Gesture Interface Implementing a
Sequence-Matching Algorithm for the Control of
Assistive Technologies

Frédéric Schweitzer 1,2 and Alexandre Campeau-Lecours 1,2,*

����������
�������

Citation: Schweitzer, F.;

Campeau-Lecours, A. IMU-Based

Hand Gesture Interface

Implementing a Sequence-Matching

Algorithm for the Control of Assistive

Technologies. Signals 2021, 2, 729–753.

https://doi.org/10.3390/

signals2040043

Academic Editor: Lyudmila

Mihaylova

Received: 27 April 2021

Accepted: 8 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, Université Laval, Quebec City, QC G1V 0A6, Canada;
frederic.schweitzer.1@ulaval.ca

2 Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSSCN,
Quebec City, QC G1M 2S8, Canada

* Correspondence: alexandre.campeau-lecours@gmc.ulaval.ca

Abstract: Assistive technologies (ATs) often have a high-dimensionality of possible movements (e.g.,
assistive robot with several degrees of freedom or a computer), but the users have to control them
with low-dimensionality sensors and interfaces (e.g., switches). This paper presents the development
of an open-source interface based on a sequence-matching algorithm for the control of ATs. Sequence
matching allows the user to input several different commands with low-dimensionality sensors
by not only recognizing their output, but also their sequential pattern through time, similarly to
Morse code. In this paper, the algorithm is applied to the recognition of hand gestures, inputted
using an inertial measurement unit worn by the user. An SVM-based algorithm, that is aimed to be
robust, with small training sets (e.g., five examples per class) is developed to recognize gestures in
real-time. Finally, the interface is applied to control a computer’s mouse and keyboard. The interface
was compared against (and combined with) the head movement-based AssystMouse software. The
hand gesture interface showed encouraging results for this application but could also be used with
other body parts (e.g., head and feet) and could control various ATs (e.g., assistive robotic arm
and prosthesis).

Keywords: control interface; IMU; assistive technology; algorithms; support vector machine; gestures;
open-source

1. Introduction

Assistive technologies (ATs) are used all around the world by people living with
all kinds of disabilities. For instance, the use of a robotic arm has been shown to help
people living with upper limb disabilities with their daily tasks [1]. Another study on
exoskeletons proved they have good potential for functional mobility in people with spinal
cord injury [2]. While the emphasis is often put on the assistive device itself, such systems
actually include three important parts: the user, the control interface, and the device (e.g.,
robotic arm and exoskeleton). In fact, this is the case for any human–machine interaction
and more often than not, the interface, which links the device to the user, seems to be the
key element in the system [3–5]. So, when it comes to design, it is worth spending time
on developing a valuable interface, especially with ATs, on which the ability of a user to
be independent in his or her daily living task may heavily rely on it. Besides, because of
the specific abilities and needs being very unique, even for the same diagnosis, the control
interface needs to be either tailor-made or flexible and adaptable.

Control interfaces are built using various sensors that may be combined with intel-
ligent algorithms. Recently, many interfaces using different technologies have emerged,
and they are yet being improved. The simplest interfaces like sip-and-puff or tongue
control [6,7] are widely used in practice„ due to the absence of complexity in their imple-
mentation and usage. Another popular instance is voice control. It has been shown that

Signals 2021, 2, 729–753. https://doi.org/10.3390/signals2040043 https://www.mdpi.com/journal/signals

https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0000-0001-6766-3368
https://doi.org/10.3390/signals2040043
https://doi.org/10.3390/signals2040043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/signals2040043
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals2040043?type=check_update&version=1

Signals 2021, 2 730

commercial voice assistants can help people in their daily tasks by providing functionalities
to interact with their phone [8], handle lights, or simply play music [3]. Voice assistants
often require an internet connection, but lighter versions can also be implemented of-
fline [9]. Other options include electromyography (EMG) interfaces [10–12], which use
electrical activity in muscles as input signals and control via inertial measurement units
(IMUs) [13,14], which combine accelerometer and gyroscope signals. For instance, IMUs or
EMGs can be positioned on a limb that a user can move easily (like the head, arms, or legs)
and act as an input mechanism to control a robotic arm or the mouse of a computer.

One major and obvious issue to address with almost any interface–AT pair is that
many interfaces have limited actual physical commands to efficiently control all of the
functions of their corresponding AT. Indeed, controlling a high-dimensionality device with
a low-dimensionality sensor (around which the interface is built) can be quite challenging.
The dimensionality of components in this context can be interpreted as qualitative metrics
to compare the work space of those components, in terms of degrees of freedom (DoF),
number of functions, or some other physical restrictions, such as the number of actions
a user can perform according to his or her abilities or the number of controls available.
For instance, whereas a six-DoF assistive robotic arm may need 20 commands to operate
(e.g., forward, backward, up, down, left, fingers, options, etc.), a computer may need 10
(mouse left, right, up, down, left click, right click, copy, paste, etc.). However, in both cases,
the dimensionality of the control interface depends more on the abilities of the users (the
actions they can perform and their reach). Therefore, many users only have access to basic
devices, such as switches, to control the AT.

In any case, a common way to deal with the interface’s lower dimensionality is
often to arrange the AT’s modes in sub-control groups. As shown in Figure 1, with
this approach, accessing a mode can require a series of actions to browse through the
nested groups [1,15,16]. Thus, a strategy needs to be implemented within the interface to
either reduce the total number of modes, facilitate switching between them, or somehow
artificially augment the dimensionality of the interface itself.

Translations Rotations

Configurations

Save
position	1

Save
position	2

Go	to
position	1

Go	to
position	2

z-axis
translation

x-axis
translation

y-axis
translation

z-axis	
rotation

x-axis	
rotation

y-axis	
rotation

Move

Save	a
position

Go	to	a
positionTranslations Fingers

Idle	state

Figure 1. Graph of possible sub-control groups for an assistive robotic arm.

The easiest and most flexible strategy to employ is to use a scanning menu panel [17,18].
It can be implemented with or without a sub-groups architecture (as in Figure 1) by granting
the user direct access to the modes. This may be used with a single switch interface and can
accommodate virtually any number of modes. It also gives the developer the possibility to
rearrange the modes in any architecture (number of sub-groups, number of modes by sub-
group, height of the nested architecture, etc.). At each level, the modes are proposed to the
user, one-by-one, and the user activates the switch when the mode they want is proposed.
Although this strategy is quite robust (due to its simplicity) and, thus, commonly found in
practice [19], it is time consuming and does not lead to a satisfactory user experience [15].

Signals 2021, 2 731

In the past few years, many attempts (many of them successful) have been made to try to do
better. Among them, general ideas emerged, such as level coding [11], dynamic switching,
and even automatic mode switching. Level coding can work well with analog sensors by
dividing the range of the signals into multiple sub-ranges bounded by thresholds. Hence,
what seemed to be a one-dimension interface (e.g., an ON/OFF switch) actually had a
higher dimensionality (e.g., sensing the pressure on the switch). The thresholds can also be
applied on the time axis (e.g., short click and long click). Of course, the divisibility of the
signal’s magnitude depends on the user’s dexterity and the sensor. Dynamic switching, on
the other hand, integrates machine learning models to predict or suggest the next move to
the user [20]. So, when it comes the time to select a mode, this algorithm might suggest
one of a few modes that the user is likely to select, according to his habits. Much like the
auto-completion suggestions on a smartphone keyboard, this can save the user a lot of
time. On the other hand, training a classifier may require much data, and, in the case of
rehabilitation technology, this can be difficult. Indeed, to deploy such an interface, the users
cannot be asked to build a large training dataset themselves. Thus, the development team
should have access to such a dataset and make sure that the data reflects real-life situations
(e.g., noise and imperfect inputs), which might prove difficult. Finally, another strategy
is to focus on a complete trajectory to execute an action (e.g., pour a glass of water with
a robotic arm). In this case, the algorithm is based on graph theory, rather than machine
learning [4,21]. The aim is to find optimal trajectories for a given action using graph search
algorithms, such as Dijkstra’s algorithm. This paradigm is robust for specific actions in
closed environments, but the resulting interfaces may lack flexibility when it comes to
real-life scenarios.

Recently, ref. [18] proposed a novel approach to deal with low-dimensionality inter-
faces with a sequence matching algorithm (SMA). The idea is to arrange simple signals
received from digital sensors (e.g., ON/OFF switch) into a time sequence similar to Morse
code. The algorithm takes advantage of simple devices, such as switches, which are already
vastly used by people living with disabilities but to artificially increase the number of
output states it can generate. While a single switch can only output two states (0 or 1),
a switch with SMA can generate many outputs (e.g., more than 30, with three distinct
states: 0, 1, and holding 1), which enables the user to express more commands rapidly
with a single switch. Instead of grouping the modes, a unique sequence is inputted by
the user. Each sequence is mapped to a command (mode) of the AT (e.g., forward). This
algorithm was applied to a sip-and-puff interface to control a robotic arm and has proven
to be effective for augmenting the dimensionality of currently used basic interfaces, thus
enhancing the user’s control over the assistive device [18].

The objective of this paper is to build on the SMA in [18] by adapting the algorithm to
analog signals, rather than digital signals, to further increase the output dimensionality
and enable the use of analog sensors to lead to more intuitive interfaces. The proof of
concept consists in the development, design, and implementation of an intuitive and robust
IMU-based hand gesture interface to control any assistive technology (e.g., robotic arm,
mouse, and keyboard). To that effect, a classification pipeline has been developed to detect
and recognize hand gestures from IMU signals. This pipeline was then embedded into the
SMA. With that system, we aim to answer the previously stated issue of the dimensionality
difference between the interface and the assistive technology without relying on grouping
the different modes, but rather by artificially augmenting the dimensionality of the interface
itself. The goal is to help people living with upper or lower body incapacities in their daily
life tasks.

This novel approach combines several key concepts of the multiple interface design
paradigm (previously presented). First, the usage of wearable sensors, such as IMU and
EMG, offers a high level of flexibility for the user, since they can be fixed on various body
parts. Furthermore, in most cases, they are not cumbersome for the user. Then, the scanning
menu panel strategy is intuitive and simple to use. The idea to have a display showing
the modes to help the user navigate through them is effective but not necessarily fast. The

Signals 2021, 2 732

SMA can then help speed up the usage. This work aims to show that combining those
ideas adds value to the user experience and can definitely help some people.

This paper is structured as follows. First, the methods for the development are
presented in Sections 2–4. This includes the development of an offline version of the
algorithm, followed by a real-time version and, finally, the integration of the latter to the
SMA. The experimental methods are presented in Sections 5 and 6, with the description of
the actual implementation of the interface and the experiments performed with it. Finally,
the results are presented and discussed in Section 7.

2. Hand Gesture Recognition

The process of classifying hand gestures can be done with a trained machine learning
model (classifier). Since artificial intelligence is now a blooming field of computer science
and robotics, some classifiers have proven effective for specific applications. In the case of
accelerometer and gyroscope signals for gesture recognition, the complexity of the models
can go from a linear discriminant analysis (LDA) [12,22] to a convolution neural network
(CNN) [23].

Many case studies for the gesture-recognition problem combine surface EMG sensors
with IMUs. In [24], LDA is proven to be accurate enough to classify signals from a wrist-
worn sensor device. A smartwatch could eventually house the sensors and the lightweight
classifier and be very convenient for the user. In [25], an SVM-based recognition system
is used and applied for rehabilitation purposes. Other simple, yet effective, classification
models (such as Bayesian models) can also be used [26]. However, in the framework of
this project, we aim to make use of only one IMU and focus on gestures that will take
advantage of the accelerometers, such as tapping on a hard surface or making a circle in
the air, rather than doing hand signs. Dynamic time warping is well-known and often
used with IMUs to classify hand gestures [27–29], but may not be suitable for a real-time
application, as it may not be fast enough [30].

Since the interface targets to users living with various incapacities, the classification
models have to be fitted on each user’s sample data individually. Therefore, the training
dataset has to be small. Consequently, we will focus on simpler algorithms, which are fast,
robust, and usable on an embedded system. Other than LDA, options considered were
support vector machines (SVM) [25], adaptive boosting (AdaBoost) [31], and k-nearest
neighbors (kNN) [32].

The objective of this section is to propose an encapsulated procedure that takes a
signal as an input and returns a predicted gesture. In the particular case of the experiments
in this paper, the signals are received from an IMU, and the hand gestures will serve as
individual actions to the SMA. This section presents the first of a twofold development. The
first part is the offline development and the second part is the online implementation. For
the offline development, the dataset is composed of 475 examples of 5 different gestures,
recorded at 100 Hz for 0.9 s, from a single individual.

The classification pipeline includes multiple nodes. As seen in Figure 2, features
are extracted from an input signal. Then, the classification model must determine which
class (gesture) those features are most likely to represent. Since it is established that the
training dataset will have more dimensions than training examples, the dimensionality of
the data (i.e., the number of features) must be reduced before they are presented to the
classifier. The model has to be fast (during evaluation), lightweight (for an implementation
on an embedded system), and robust, even with a very small training dataset. The next
subsections bring details on the development process and the final pipeline.

Dimensionality
reduction

ClassificationFeature
extractionInput	signals Categorized

output

Figure 2. Symbolic diagram of the classification process (pipeline).

Signals 2021, 2 733

2.1. Input Signals

In the experiments, the algorithm’s inputs were obtained through an IMU and consisted

of a first-order, low-pass filtered version of the acceleration norm (a =
∥∥∥√a2

x + a2
y + a2

z

∥∥∥) and

angular velocity norm (ω =
∥∥∥√ω2

x + ω2
y + ω2

z

∥∥∥).
For the offline development of the classifier, five distinct hand gestures were stud-

ied: hand tap (on a table), thumb tap (on a table), hand tilt, swipe left and swipe right. The
signals were chosen because they include completely distinct pairs (e.g., hand tap and
hand tilt), as well as similar signals (e.g., swipe left, and swipe right), that a simple conditional
statement cannot classify. Additionally, five gestures are enough for up to 30 commands to
be mapped to an AT’s modes (with sequences of one or two gestures). This is explained in
detail in Section 4.

The training set consists of 5 examples per class (25 examples total). The remain-
ing of the balanced 475-example dataset will be used to tune the models and evaluate
the performance.

2.2. Feature Extraction

The examples in the dataset are a time series. From those time series’ data, various
metrics were computed to “describe” their nature to the statistical model. This process is
known as feature extraction. Identifying what features to extract from a signal first requires
having a general idea of what it looks like. From Figure 3, it is possible to infer that the
means, medians, standard deviations, interquartile range, area under the curve, kurtosis,
minima and maxima of accelerations, and angular velocities are simple, yet useful, metrics
that allow the classification of gestures. Those metrics can be computed for the entire signal
but also for parts of it. Indeed, in the Figure 3 gyroscope signals, the two main peaks have
a different time lapse between them; so by dividing the signals into two equal parts, the
peaks will be distinctly distributed among the parts. Thus, the previously stated metrics
applied to the signal’s parts are distinct and offer valuable information to the classifier. It is
determined empirically that dividing the signals into four parts offers the best results.

0 20 40 60 80
Time [hundredth of second]

9

10

11

M
ag

n
it

u
d

e
[m

/s
2
]

(a) Accelerometer’s signal magnitude (hand tap)

0 20 40 60 80
Time [hundredth of second]

0.0

0.2

0.4

0.6

M
ag

n
it

u
d

e
[r

ad
/s

]

(b) Gyroscope’s signal magnitude (hand tap)

0 20 40 60 80
Time [hundredth of second]

10

11

M
ag

n
it

u
d

e
[m

/s
2
]

(c) Accelerometer’s signal magnitude (thumb tap)

0 20 40 60 80
Time [hundredth of second]

0

1

2

M
ag

n
it

u
d

e
[r

ad
/s

]

(d) Gyroscope’s signal magnitude (thumb tap)

Figure 3. Input signal examples for (a) a hand tap acceleration, (b) a hand tap angular velocity, (c) a thumb tap acceleration,
and (d) a thumb tap angular velocity.

Signals 2021, 2 734

In addition to the metrics in the time domain, others can be extracted from the
frequency domain. Figure 4 shows a fast, Fourier transform of the Figure 3 time signals.
Even though those curves are not the clearest (due to the 100 Hz sample rate), they still
offer clear patterns, and the median, maxima, and energy values of the FFTs are valuable
for the classifier.

0 10 20 30 40 50
Frequency [Hz]

0.00

0.05

0.10

F
F

T
M

ag
n

it
u

d
e

(a) Accelerometer’s signal FFT (hand tap)

0 10 40 5020 30
Frequency [Hz]

0.00

0.05

0.10

0.15

F
F

T
M

ag
n

it
u

d
e

(b) Gyroscope’s signal FFT (hand tap)

0 10 20 30 40 50
Frequency [Hz]

0.00

0.05

0.10

0.15

0.20

F
F

T
M

ag
n

it
u

d
e

(c) Accelerometer’s signal FFT (thumb tap)

0 10 40 5020 30
Frequency [Hz]

0.0

0.2

0.4

F
F

T
M

ag
n

it
u

d
e

(d) Gyroscope’s signal FFT (thumb tap)

Figure 4. Fast Fourier transform examples for (a) a hand tap acceleration, (b) a hand tap angular velocity, (c) a thumb tap
acceleration, and (d) a thumb tap angular velocity.

The final metrics extracted from the signals are the coefficients of a third-order, au-
toregressive model [33,34] and the correlation coefficients between the accelerometer and
gyroscope signals. Finally, a total of 81 features were extracted, and all of them are scaled
in a [−1, 1] range. A summary of all the features extracted is presented in Table 1.

Table 1. Summary of the extracted features. The values indicate the number of features extracted for
each signal metrics.

On Accelerometer On Gyroscope Between Both

Full signal window

Correlation coefficient 1
Mean 1 1
Median 1 1
Maximum 1 1
Minimum 1 1
Standard deviation 1 1
Interquartile range 1 1
Area under the curve 1 1
FFT-median 1 1
FFT-max 1 1
FFT-energy 1 1
Kurtosis 1 1
Autoregressive coefficients 3 3

Signals 2021, 2 735

Table 1. Cont.

On Accelerometer On Gyroscope Between Both

Split signal window

Correlation coefficient 4
Mean 4 4
Median 4 4
Maximum 4 4
Minimum 4 4
Interquartile range 4 4
Area under the curve 4 4

2.3. Dimensionality Reduction

Let X be the n by d matrix containing all the feature data extracted from the train set,
where n is the sample size (the number of examples) and d is the dimension (the number
of features):

X =

x1,1 x1,2 . . . x1,d
x2,1 x2,2 . . . x2,d

...
...

. . .
...

xn,1 xn,2 . . . xn,d

. (1)

We have:

d = 81 (2)

n = 25, (3)

since n < d, the columns of X (the variables for each example) are linearly dependent. This
means that X contains redundant information and unnecessarily increases the dimension-
ality d of the dataset. So, most of the dimensions are not needed to describe the dataset.
Furthermore, n is typically small, so the dimensionality must be reduced to avoid issues
related to the curse of dimensionality [35] and maintain the robustness of the system. In
order to do so, possible approaches include to either select the most significant features
or to compute new features, via the linear projection of X25×81 to X∗25×d∗ , with d∗ ≤ n, the
dimension of the new space. Here, the latter has been employed. The principal component
analysis (PCA) offers a deterministic method to compute projected features from X in
a lower-dimension space. The PCA allows reducing d to d∗, while keeping most of the
significant information. This fact is illustrated in Figure 5. The graphs on the figure are
obtained by first applying the PCA to the training set (25 data points, perfectly balanced in
five classes). This computes the transformation to apply to what is left of the dataset (the
validation set, 450 data points). Thus, the figure shows the distribution of the validation set
in the two- and three-dimensional spaces, after the transformation is applied. It is possible
to observe that, even with d∗ = 2 or d∗ = 3, and with the transformation computed on
a very small dataset, the classes are still almost linearly separable, making it clear that
most of the relevant information is still present in X∗. In order to implement the PCA, the
target dimension must not be more than n. In the context of this application, d∗ = n has
been used.

Signals 2021, 2 736

−0.2
0.0 0.2 0.4 0.6 0.8 1.0 1.2

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

00
00

0

0

0
0 0
0

0

0
0
0 0

000000
00
0

0 0
00

00
0

0
0 00
000 00 00
00
00
0

0
00 00

0000
00

0 0 0

0

0000
0000

0 0
0

0
0

0

0
0 0

0
00
0 0 000 00

11111 1 1
111

1
1

111
1

1
1

1

1
1

1 1 11
1

1
1
1

1

1

11
1

1

1
1

11 11

1
1

11
1

1111
111

1

1
1

1

1

1

1

11 1
11

11 11
1 1

1
1

1
1

1
1

1
1 111

1

1
11 1

1

1 1

22
2

2

2
22

2
2

2

2

22
2

2
2
22 2

2

2

2
2

2

2

2

2 22

2
2 2

22
2

2
2

2

2 2
2

2

2
2

2

2
22

2

2
2

2
2

2

2

22

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2
2

2
2

2

2

2
2

2 2
2

2

2
22

2

2

2

3

3

3 3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3 3

3

3

3

3 3

3
3

3
3

3

3

3

3

3

3 3

3

33

3

3

3

3
3

3
3 3 3

33 33

3
3

3

3

3

3
3

3

3

3 3

3

33

3

3

3

3

3

3 3
3

3
3

33

4

4
4

4
44

4
4 4

4

4 4

4

4
4

44
4

4

4

44

4

4
44

4
4

4

4

4

4
4

4 4

44

4
4 4

4
4

4
4

44 4
4

4

44
44

44
4

4

44

4 4
4

4

4

4

4

4
44

4

4 44
4

4
4

4
4

4

4

4

4

4

4
4 4

4
44

4

Legend
Hand tap
Thumb tap
Tilt
Swipe left
Swipe right

Principal Component 1

Pr
in

ci
pa

l C
om

po
nn

t 2

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0.3

0.4

0.5

0.6

0.7

0.0

0.2

0.4

0.6

0.8

1.0

0 00
000

00
0

00 00
0 0 0

000000 0
0

0
0
00000

0

0

00
0

00
0
00

0

0 000

0
00 00 000 00

0
00

0 00
0

0

000
000

00 0
00

0

0
0

000
0

0
0000 0

0
0

1111

1 1

1 1
1 1

1
1

1

1
1

1

1
1

11
1

1

1
1

1

1

1

1
11

1

11 1

1

1
1

1
1

11 1
1

1 1 1

1 1

11
11

1
1

1

11

11

1

1

1
1 1
1

11
11

1
1

1
1

1
1

1
1

1 1

111

11
1

1 11

1
1

2

2
2 2

2

2

2

2

2

2

2

2 2

2

22

2
2

2 2
2

2

22

2

2

2 22 2
2

2

2

2

2

2

2
2

2

2
22

2

2
2

2

2

2

222

2

2

2

2 2
2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2
2

2 2 2

2

2
2

2

2

2

2

2

2 2

2

2

2

2

3
3

3 33

3

333
3

33

3
3 3

3

3

3

3

33 3

3

3

3

3

3
33 3

3

33
3

3
3

3
33

3

3

3

33
3

3
3 3

3

3
3 3

3

3 33 3
3

3
3 3

3

3

3 33

3

3
3

3
3

3

3

3 3

3

3
3

3

33 3
3 3

3

3
3 3 33

4

4

4

4

4
444 4

4

4
4

44
4

4

4

4

4

4

4

4

4

4

4
4

4
44

4
4

4
4

4 4
4

4

44 4
4

44
44

4 4 4
4 4

4

44

44
4

44

4
4 4

44
4

4

4

4
4

44
4

4

4 4

4
4

4
4

4

4

4

4

4

4
4 44

4

4
4

Principal Component 2

Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 3

(b)
Figure 5. PCA’s linear projection of the dataset in two-dimensions (a) and three-dimensions (b).

2.4. Classification

The selection of the classification model is the part of the design, where the principal
design requirements (fast, lightweight, and robust, with fewer examples) should really
be taken into consideration. For the development, and in the framework of this paper,
scikit-learn [36] was used.

In recent years, deep learning algorithms have received a lot of attention. However,
one caveat is in order: they require vast amount of data. In our case, the fact that the
quantity of data required to train such an algorithm is limited rules them out, due to the
specificity of the applications. Therefore, the selection process focuses on more classic
machine learning algorithms.

The studied models for this project are listed in Table 2, along with their advantages,
specific to the design requirements.

Signals 2021, 2 737

Table 2. Studied machine learning classifiers and their advantages.

Classifier Advantages

Support vector machines (SVM) Limits overfitting, robust
Linear discriminant analysis (LDA) Fast training, low memory usage, very easy to implement

Adaptative boosting (AdaBoost) Fast, works well on smaller datasets
K-nearest neighbors (KNN) Fast training, very easy to implement

In order to test each model (and to optimize them at the same time), the selection
process consisted of a grid search with random data selection. Each model was tested on a
dataset of 475 data points (95 per class, 5 classes) on imax iterations. The models were tested
by first tuning their hyper-parameters and then retaining their best performance. For each
model, a set of hyper-parameters was determined with a testing range associated with each
one. At each iteration (i = 0, 1, . . . , imax − 1), five data points of every class were selected
(total of 25) to form the training set, and the remaining data constitutes the validation
set (450 data points). Each model was trained with this training set and tested with the
validation set once for every possible arrangement of hyper-parameters. After the imax
iterations, the performances were analyzed and the best model with the best arrangement
of hyper-parameters was retained. Having the size of the validation test far greater than
the size of the training set allows for evaluating how the algorithm succeeds in generalizing
and does not overfit on the small set of data it has been given. Table 3 presents the selected
hyper-parameters for each model, the best configuration, and the best prediction score of
the models associated with those configurations for imax = 10.

Table 3. Evaluations of the machine learning models, in function of their hyper-parameters’ tuning.
The value C > 0 is a regularization parameter, φ is the kernel function of the SVM (commonly,
Gaussian, polynomial, or sigmoid). The solver of the LDA can be a singular value decomposition,
least-square solution, or eigenvalue decomposition. The AdaBoost algorithm uses decision trees
as weak learners, where nestimators is the number of trees and maxdepth is the depth of those trees;
kneighbors is the number of points to compare for the KNN algorithm, and weights is the weighting of
each neighbor and can be uniform or a function of the distances.

Classifier Hyper-Parameters Best Configuration Best Score

SVM (C, φ) (0.1, linear) 95%
LDA (solver) (least square) 85%

AdaBoost (nestimators, maxdepth) (25, 100) 85%
KNN (kneighbors, weights) (2, distance) 92%

The final choice for the prediction model is an SVM with a linear kernel. The satisfac-
tory performance of the linear SVM implies that the data are almost linearly separable in the
d−dimensions space, even if similar gestures were chosen. This means that it should not
be difficult to choose new gestures to add to the system. Figure 6a shows the normalized
confusion matrices for the optimized SVM, with the dataset previously described.

Such matrices were obtained by choosing a training set at random (composed of 5 data
points per class), similar to the optimization process, and by validating with the remaining
450 data points. This process was repeated 50 times. Finally, the results were inputted into
the confusion matrix and normalized by row. Since most of the confusion results from
the Swipe-left and Swipe-right gestures, it was possible to improve the performance of the
system by simply removing the gestures that were too similar (and possibly adding some
others). The result of this operation is shown in the matrix (b) of Figure 6. Referring to
Section 4.1, four different gestures, with three gestures per sequence, allows 84 possible
sequences, which is fairly sufficient to control an assistive technology.

Signals 2021, 2 738

H
an

d
ta

p

T
hu

m
b

ta
p

T
ilt

Sw
ip

e
le
ft

Sw
ip

e
rig

ht

Predicted Label

Hand tap

Thumb tap

Tilt

Swipe left

Swipe right

T
ru

e
L

ab
el

0.98 0.02 0.00 0.00 0.00

0.02 0.97 0.00 0.00 0.01

0.00 0.02 0.91 0.02 0.05

0.00 0.00 0.00 0.90 0.10

0.00 0.00 0.01 0.03 0.96

(a)

H
an

d
ta

p

T
hu

m
b

ta
p

T
ilt

Sw
ip

e
le
ft

Predicted Label

Hand tap

Thumb tap

Tilt

Swipe left

T
ru

e
L

ab
el

0.98 0.02 0.00 0.00

0.02 0.98 0.00 0.00

0.00 0.03 0.92 0.05

0.00 0.00 0.01 0.99

(b)

Figure 6. Normalized confusion matrices, resulting from the validation of the optimized SVM classifier for (a) five different
gestures and (b) four different gestures.

This process simulates the workflow of a single user. The small random sample, acting
as a training set at each iteration, represents the data points of the user. What is left of the
dataset represents the gestures that the user will perform while using the system. Some
overfitting is expected, but since all of the data are specific to one user, it does not affect
the results negatively. The multiple iterations allows to validate the results and to ensure
some randomness.

2.5. Final Pipeline

The final classification pipeline is the prediction system that takes IMU signals as
inputs and returns predicted gestures. This section establishes its components. Figure 7
shows the explicit diagram of the classification process.

PCA Linear
SVM

Feature	Matrix
Xnxd

IMU	signals Hand	gesture

Figure 7. Final diagram of the classification process (pipeline).

3. Real-Time Classification

The previous section proposed an offline machine learning model to recognize hand
gestures from small fixed windows of IMU signals. To embed the Figure 7, the classification
pipeline in a real-time application, it first needs to be combined with an algorithm that
will trigger the classification process. There are (at least) two options to do that. The first
option is to have a fixed-size sliding window and repeated classification routines at short,
fixed intervals in this window. When tested, this method performed weakly (for multiple
reasons). First, different gestures take different lengths of time to complete. Even if the
gestures are supposed to be the same, they can be executed at different rates. Additionally,
to prevent the classifier from predicting the same given gesture multiple times over the
fixed sliding window (or to make an early (and incorrect) prediction), there has to be an
algorithm that determines the moment at which the gesture begins and ends (the solution

Signals 2021, 2 739

could also be to increase the time lapse between the intervals of classifications, but this
would greatly increase the risk of missing significant windows of signals).

The other option is to use a sliding window over the signal (but this time to determine
only the moments at which the gesture starts and ends); only then is the classification
process triggered and a gesture predicted. As a result, this does not produce a fixed-size
snapshot of the signal. Instead, the snapshot begins when the sliding window recognizes
the beginning of a gesture and ends when the signal comes back to an idle state. The
beginning and end of a gesture are determined for the signals’ variance and instantaneous
slope (from the derivative). Indeed, none of the components in Figure 7 actually requires
the input to always be of the same length. This procedure settles the previously stated
issues (duplication of the prediction and variable length of the gestures) and allows for the
execution of sequences of gestures in a fluid and efficient manner. Algorithm 1 presents
the definition of DETECTACTION.

Algorithm 1 Definition of the real-time gesture recognition sub-routine.

1: function DETECTACTION(SensorReading r)

2: . length(r) should be 1

3: . start = end = NULL for the first function call

4: window← concatenate(window[1...], r) . slide window

5: if
∣∣∣ d

dt [window[−δ . . .]]
∣∣∣ > thresholdd AND Var[window[−δ . . .]] > thresholdvar then

6: if start == NULL then

7: start← length(window)− δ

8: end← NULL

9: else

10: start← start− 1 . slides with window

11: end if

12: else

13: end← length(window)− 1

14: if start NOT NULL then

15: action = PREDICT(window[start . . . end])

16: start← NULL

17: end if

18: end if

19: return action

20: end function

The function takes r (a sensor reading) as an input. In the context of the experiments, r
has two components, the accelerometer’s magnitude signal and the gyroscope’s magnitude
signal. Using the magnitude does not constrain the IMU to be positioned in any specific
orientation on the body of the user. The length of r should be 1, meaning it is only a single
new point. This assumption simplifies Algorithm 1, but a validation could be added. The
window sliding operation is then represented by Line 4, where r is appended to window
and the first length(r) elements of window are removed.

Signals 2021, 2 740

To generalize, the window would be a 2× lw matrix, where lw is the length of the
window and each row represents one component. So, the derivatives (computed with first
order backward differences):

d
dt
[windowi] = (windowi − window−1)

(
1
f

)
,

where f is the signal sampling frequency, and the variances (Var[window]) are computed
from the rows of window (i is an index in a row); thresholdd and thresholdvar are heuris-
tically chosen thresholds on each element of derivative matrix (in absolute value) and
variance matrix values, respectively. Those thresholds represent the sensitivity of the
algorithm to trigger the classification process. They can be modified manually for each
user. Additionally, δ is an arbitrary offset on the sliding window to compensate the lag
associated with the computation of the derivatives and variances on the tail of window
(window[−δ . . .], which represents the latest δ points of the signals). When an element of
d
dt [window[−δ . . .]] and Var[window[−δ . . .]] crosses the respective thresholds, the condi-
tion in Line 5 is satisfied. This offset allows the algorithm to have a slightly larger window,
with a few stable points before and after the signals pass the thresholds. It ensures that
all significant data are given to the classification pipeline. In other words, it enlarges the
signal snapshot by taking a few points before what is initially determined by the sliding
window before serving it to the classifier. These newly added data points help catch the
beginning of the gesture more clearly. Finally, the PREDICT function is the implementation
of the pipeline.

4. Sequence-Matching Algorithm Review

For this project, the point in developing a real-time gesture recognition algorithm is
that it can be integrated into a more general algorithm that aims to help the control over
higher dimensionality ATs. Indeed, the previous sections established a machine learning
classifier based on five different inputs. Choosing to implement it directly, in order for it to
interface with an AT, could result in a usable system, but there would only be five distinct
physical commands. Instead, the classifier is embedded in a sequence matching algorithm,
in order to artificially increase the dimensionality of the interface. This section presents
this sequence matching algorithm.

4.1. General Idea

The main objective of the SMA is to allow the user to gain degrees of control without
increasing the number of actual physical controls (e.g., buttons, gestures, sensors, etc.).
Figure 8 presents a flowchart of the general idea of the algorithm.

Detect Recognize Match Map Execute

Figure 8. Simplified representation of the general idea behind the sequence matching algorithm.

First, individual actions (gestures) are detected. They are stacked into a sequence.
Then, the algorithm recognizes, in real-time, the sequence of actions and seeks to match it
with a sequence that is among a set of sequences defined by the user. This set of user-defined
sequences maps to a set of modes of an assistive technology (each sequence corresponds to
a mode). Finally, the user can execute the commands that the mode offers. In the context of
this project, hand gestures are considered individual actions, so the user-defined sequences
are a short series of simple gestures. What follows is the mathematical formulation of the
SMA using the previously developed gesture recognition with the five possible inputs. Let
A be the set of all possible actions, then:

Signals 2021, 2 741

A = {0, 1, 2, 3, 4} (4)

where the value of an integer a ∈ A is:

a =

0, if hand tap
1, if thump tap
2, if tilt
3, if swipe left
4, if swipe right

(5)

Let s be the ordered sequence of individual actions performed by the user and S the
set possible sequences defined by the user. Finally, let C be the set of different modes for
the robotic arm and R the relation that maps S to C. This relation, or rather the set S, is
dynamic and will narrow itself as the user inputs actions and s is built. For instance, if a
user wants to control five modes on a computer, then arbitrarily:

C = {copy, paste, mouse right, mouse left, click} (6)

S = {(0, 1), (3, 4), (1, 2), (2, 1), (2, 1, 0)} (7)

and the relation R with the initial S and C is represented by the following diagram:

S

(0, 1)

(3, 4)

(1, 2)

(2, 1)

(2, 1, 0)

C

copy

paste

mouse right

mouse left

click. (8)

If the user makes a tilt, the algorithm will detect it and set s = (2). Simultaneously, the
algorithm sorts out impossible sequences and the (8) becomes:

S

(2, 1)

(2, 1, 0)

C

mouse left

click. (9)

If, right after that, the user makes a thumb tap, then s = (2, 1), but the relation in (9) does
not change, since both sequences of S begin with s. At this point, the user must wait one
second if he or she wants to enter the mouse left mode or make a hand tap (i.e., a = 0) for the
click mode to be automatically selected.

In this example, C only has five elements, but, in general, if the user chooses to have,
at most, k actions in each sequence, then the cardinality of S:

|S| =
k

∑
i=1

(|A|)i (10)

Signals 2021, 2 742

with |A| being the cardinality of A (i.e., the number of possible actions). If R is a bijection,
then |C| = |S|. In practice, it is observed that k = 3 is suitable. Greater than that, the
sequences become harder to execute correctly. Table 4 shows the values of |S|, in functions
of |A| and k, obtained with Equation (10).

Table 4. Number of possible sequences, with respect to the number of distinct actions |A| and the
chosen maximum number of actions per sequence k.

k = 1 k = 2 k = 3

|A| = 2 2 6 14
|A| = 3 3 12 39
|A| = 4 4 20 84
|A| = 5 5 30 155

The last row of Table 4 illustrates the example above. This means that it would
theoretically be possible to control a technology of 155 modes with a five-dimension
interface. Of course, in practice, this number drops because the interface would become
cumbersome with a number of controls too high; still, |S| ≈ 15 is feasible.

4.2. Pseudo-Code for the SMA

Now that the mathematical definitions have been established, the SMA can be pre-
sented in a more pragmatic form. The scheme written in Algorithm 2 presents the general
algorithm of the SMA. It requires S, C, and R, as defined in the previous subsections. A
look at the algorithm quickly reveals the five principal parts presented in Figure 8. The
Detect step is conducted by the DETECTACTION subroutine. The Recognize and Match steps
are processed inside the CHECKCURRENTSEQUENCE subroutine, the function to Map is
R. Finally, Execute represents the execution of the command c (execute(c)) when found.
Algorithm 3 details the procedure to ensure that the correct sequence is matched as fast as
possible to a sequence in the library (S). Given the current sequence inputted by the user, it
returns a boolean value (sequenceMatch) indicating whether or not the current sequence s
is an element of the set S. The function also returns the current sequence itself, which may
have been emptied if there was no possibility that it might lead to one of the sequences
of S.

The DETECTACTION subroutine is defined in Algorithm 1. It takes a sensor’s signal as
an input and returns an integer a, indicating the detected action. If this action is not in A
(i.e., no action performed by the user), a will be given a zero value.

Signals 2021, 2 743

Algorithm 2 General sequence matching algorithm.

1: function SEQUENCEMATCHINGLOOP

2: taction ← start timer

3: loop

4: s← ()

5: sequenceMatch← False

6: while NOT sequenceMatch do

7: r ← sensor reading

8: a← DETECTACTION(r)

9: if a 6= NULL then

10: append a to s

11: reset(taction)

12: end if

13: (sequenceMatch, s)← CHECKCURRENTSEQUENCE(s, taction)

14: end while

15: texec ← start timer

16: S← Initial State

17: c← R(s)

18: r ← sensor reading

19: while r 6= 0 OR texec NOT timeout do

20: if r 6= 0 then

21: reset(texec)

22: execute(c)

23: end if

24: end while

25: end loop

26: end function

Signals 2021, 2 744

Algorithm 3 Dynamic matching sub-routine of the SMA.

1: function CHECKCURRENTSEQUENCE(Sequence s, Timer t)

2: if t NOT timeout then

3: nS ← length(S)

4: for element in S do

5: if element[0 : ns] 6= s then

6: S.remove(element)

7: end if

8: end for

9: if nS == 0 then

10: return False, ()

11: else if nS == 1 then

12: sequenceMatch← (s ∈ S)

13: return sequenceMatch, s

14: else

15: return False, s

16: end if

17: else

18: sequenceMatch← (s ∈ S)

19: return sequenceMatch, s

20: end if

21: end function . boolean sequenceMatch, Sequence s

5. Experimental Implementation

Section 1 identified three parts in human–machine interactions: the user, the interface,
and the device. This section will describe how the hand gesture recognition is embedded
in the SMA in real-time, as well as an actual implementation. This system allows a user
wearing an IMU to control a computer mouse and keyboard.

5.1. System Design

This subsection will elaborate on the entire system design, choices of technology and
implementation. In order to maintain the modularity of the system, the latter has been
divided into four parts. The first part manages the sensors (IMU), the second part is the
actual interface, the third part manages the controlled device (mouse and keyboard), and,
finally, those three elements are brought together by a local server on the PC that manages
the information exchange among them. Figure 9 presents this architecture.

Signals 2021, 2 745

PC

IMU
Signal

Mode/State

ack.
Local	ServerIMU

U
SB

-R
F

D
on
gl
e

IMU
Signal

XSENS
API

Mode/
State

SMA	Interface

Request

PC	Controller

IMU	
Signal

IMU	
Signal

User	Settings

GUI

Mouse	moves		and
keystrokes

1

3

2

RF
Wireless

Switch

Boolean

Figure 9. System architecture for implementing an SMA interface for the control of a computer mouse and keyboard. The
dotted boxes represent the modular parts of the system. The chevron-shaped boxes represent the inputs and outputs of
the system.

5.1.1. Sensors

The sensors used in the implementation are the XSENS MTw Awinda [37] wireless
IMU. The data are read at 100 Hz and sent to the server.

5.1.2. Interface

The second piece of the system is the actual implementation of the SMA interface,
with the addition of a graphical user interface (GUI) that allows the user to set the system
up. Through this GUI, the user can record, edit, or delete gestures (defining A), modes
(defining C), or sequences, as well as map the sequences to the modes of the controlled AT
(defining R). The raw IMU signals dispatched by the local server are processed, according
to Algorithm 2. This module takes a third input, which is a boolean value coming from a
switch. The switch is simply an external button and is used to send the signal to execute
a mode. It also acts as a safety feature, since nothing can be executed unless the switch
is pressed. Indeed, if the AT were a robotic arm, this switch would be essential. It can
be disabled for certain static modes (e.g., click, copy, and paste) if the user wishes to
automatically execute when the sequence is executed. The module then returns the selected
mode and switch state to the server.

5.1.3. Controlled Device

In this application, the controlled devices are the mouse and keyboard of a computer,
so the modes are keyboard shortcuts (e.g., CTRL+C, CTRL+V, ATL+TAB, arrow keys, and
etc.), mouse direction, and mouse clicks. A simple mouse-and-keyboard controller has
been developed. It takes a mode and the state of the switch as inputs. This third module
manages the final output of the system.

Signals 2021, 2 746

5.1.4. Local Server

Although the first three parts of the system would work independently, they would
not offer much functionality without a central piece to bring them together. The local
server is a TCP server socket and the three previous modules are client sockets. The server
is programmed so that, at each reception of data, it sends a response to the client. The
response differs according to the sender. This way, every client–server communication
is a synchronous exchange of information, but the clients can be asynchronous from one
another. So, if one part of the system crashes, it will not stop the others. Only the failing
part will need to restart, reconnect to the server, and resume where the other parts are.

The server also allows the components to be linked easily, even if they are not written
in the same language. For example, the API for the sensor and controlled device could be
written in C++ and the interface in Python. In a final production environment, the modules
can be merged into a single application, but the server’s presence for the development
enhances the versatility and fluidity of the development.

5.2. Usage

The user’s experience with the system starts with the graphical interface. The GUI
allows the user to set up the program and helps them familiarize themselves with the
operation. Even if Equation (4) results in a large number of sequences and modes, there
are often far less dimensions to manage, in practice, since most of ATs do not have more
than 15 modes to control. Thus, the system stays easy to use. The user’s first steps with the
interface (with the GUI) are as follows:

1. Record a first gesture (i.e., execute the gesture five times to train the algorithm).
2. Define a first sequence.
3. Map the sequence with a mode of the computer’s keyboard or mouse.

After these three steps, the user is ready to control the selected modes of the computer.
To do so, they:

1. Perform the sequence associated with the desired mode.
2. When in the mode, use the switch to execute the mode (e.g., mode: mouse-up implies

that the cursor will go up on activation of the switch).
3. When done, wait two seconds. The mode is left.
4. Perform a new sequence.

With the graphical interface, at any time, the user can also:

• Record or delete gestures.
• Create, edit or delete sequences.
• Edit the mapping between the sequences and the modes.
• Adjust the system sensitivity (the thresholds that trigger the gesture recognition

algorithm as discussed in Section 3).
• View the current mapping.
• Have visual feedback of the current sequence and the individual actions performed.

Not having a large dataset has many disadvantages, but it allows the algorithm to
train very quickly. This advantage is used every time the gestures or sequences change.
When new gestures are added or removed, the recognition model is trained again in a
matter of seconds. Additionally, the algorithm verifies which recorded gestures were used
by the mapped sequences and only trains or re-trains the model on relevant gestures. This
allows the classifier’s training to be optimal on the significant data.

5.3. Availability

The software developed for this project is open-source. It is available at [38].

6. Experiments

Following the development and the implementation presented in the previous sections,
a series of tasks, involving the control of a computer mouse and keyboard, were designed

Signals 2021, 2 747

to test the system in a real-life scenario. The hand gesture interface was compared against
(and combined with) the AssystMouse [39], a head movement-based software, to control
the mouse using a webcam. The first objective of the tests was to assess the performance of
the hand gesture interface by first comparing it to the AssystMouse software. Then, the
tests aimed to evaluate the usage of the hand gesture interface, when combined with the
AssystMouse software. In this case, AssystMouse was used to control the mouse and the
hand gestures, provided quick keyboard shortcuts (e.g., Tap to copy and tap-tap to paste).
The experimental setup is presented in Figure 10. It includes an IMU to input gestures,
a webcam required by the AssystMouse, and display monitors showing the graphical
interface (displaying the modes, sequences, and options) and the actual workspace where
the tasks were performed.

Webcam

IMU

Task items

Graphical interface

Figure 10. Experimental setup for the hand gesture interface evaluation.

The experiments have been performed by five healthy participants (2 male and 3
female) between 24 and 35 years old. In order to assess the performance of the hand gesture
interface, they had to execute two tasks. To set up the experiment, each participant had
to record his or her own gestures, then build sequences and map them to specific control
modes of the mouse and keyboard. They first recorded three distinct hand gestures:

1. Tap: a simple tap on the table.
2. Swipe: a swipe on or above the table.
3. Shake: wrist shake in the air.

To do so, the participants had to execute each gesture ten times.
The first task, shown in Figure 11, was to open a folder on the PC desktop, then

open the spreadsheet in the folder and change the color of the yellow cell to red. This task
required the participant to be precise with the mouse, as well as to execute single and double
clicks. The participants had to complete this task using first the hand gesture interface
and then the AssystMouse and they were timed for both interfaces. With the gestures, five
sequences were created : Tap, Tap-Swipe, Shake, Shake-Swipe, and Swipe. Those sequences
were mapped to the mouse modes left-click, up, down, left, and right. For this task, a
button was used to activate the mode once in it. For instance, if the participant executed
Tap-Swipe to enter the mouse-up mode, they had to press the button to actually make
the cursor go up. Before the experiment, the participants had ten minutes to familiarize
themselves with each interface.

Signals 2021, 2 748

The second task was performed in the spreadsheet. The participants first had to copy
and paste a cell three times with the AssystMouse only. Then, they had to do the same thing
but using both the Assystmouse and the hand gesture interface. The first three sequences
were remapped to the modes click, copy, and paste. Thus, the gestures could be used as
shortcuts and the mouse was still controlled with the AssystMouse. This aimed to evaluate
the suitability of the hand gesture interface when used as a complement to other available
AT control systems.

Figure 11. Five steps to execute with both the hand gesture interface and the AssystMouse to complete the first task.

After the tests, the participants were asked to answer a questionnaire (which contained
questions adapted from the QUEAD [40]) and to leave their comments.

7. Results and Discussion

For each task and each interface presented in the previous section, the completion
times were noted. The distributions of these data are shown by the plots in Figure 12.

Hand-Gesture AssystMouse
0.0

25.0

50.0

75.0

100.0

125.0

150.0

175.0

Ti
m

e
(s

ec
on

ds
)

137.2 ± 18.1 39.8 ± 13.5MeanMean

1 - Mouse Control

Hand-Gesture
+

AssystMouse
AssystMouse

0.0

50.0

100.0

150.0

200.0

250.0

Ti
m

e
(s

ec
on

ds
)

27.8 ± 9.8 120.4 ± 44.9

 2 - Copy-Paste

Figure 12. Distributions of the total completion times by task and interfaces.

Signals 2021, 2 749

Figure 12 presents the data by task (mouse control and copy–paste) and interface
(hand gesture and AssystMouse), shown in a boxplot. The boxplots are wrapped in a
violin-like area that shows the estimated probability densities. The means of the completion
times, plus or minus the standard deviations, are also displayed in the figure.

The distributions show that a webcam-based system, for the control of the mouse, is
still much faster. However, the standard deviation of the times for the hand gesture mouse
control task being relatively low indicates that the system is reliable and robust, since all
the participants were able to complete the task in similar times. In other words, it does not
seem to require any specific skills to work.

On the other hand, the copy–paste task’s data shows that the integration of the hand
gesture interface with the AssystMouse consistently improved the participants’ time by
77%, on average. In addition, a one-tailed, non-parametric Wilcoxon signed-rank test also
confirmed that the usage of the hand gesture interface significantly decreases the time to
perform the second task (p-value = 0.043 < 0.050).

Another metric to look at for the experiments is the setup time for the first usage of
the hand gesture interface. In general, the average time to record the three gestures was
99 s, and the time to set up the five sequences and map them to the five modes was about
69 s. These actions are only executed the first time a participant uses the interface. The
participant’s data are then kept in memory. Therefore, it might be cumbersome to use the
hand gesture solution the first time. However, because these actions are only required once
(at the installation of the hand gesture interface) and are kept in memory from day to day,
the payback increases rapidly with time.

Finally, some qualitative data has been gathered from the experiments, as the partici-
pants answered a questionnaire after completing the tasks. This allowed the participants
to rate their appreciation of the system. The results of this questionnaire are presented in
Figure 13.

The results show that the participants appreciated using the hand gesture interface.
They felt that it would get easier to use with time, but still needed a fair level of concentra-
tion when using it. However, they did not find it cumbersome, counterintuitive, or difficult
to use. They also noted in the comments that they especially liked using the hand gesture
interface in combination with the AssystMouse, as it gave them quick access to shortcuts
that were easy to execute.

The tasks chosen for the experiments aimed to evaluate the user’s control over the
cursor, while being able to execute various commands (e.g., clicks). Many users living with
muscular dystrophy or spinal cord injury, for instance, can move their wrist or fingers.
However, they might not be able to move their arm enough to control a mouse, and it is
even more difficult to lift the arm to control a keyboard. With the device, they can rest their
arm on an armrest and move the wrist so the system can recognize different movement
signatures, which can help them to control different shortcuts, such as those tested in
the experiments. In a case where they can’t control their arm or wrist, the device can be
installed on another body part such as a foot or the head.

The choice to compare the hand gesture interface against the AssystMouse technology
also brings interesting results to the experiment. The AssystMouse is used in practice
and is easily available; it represents a valid reference point to compare the hand gesture
interface, since both interfaces may be used by the same population. The AssystMouse
is also the type of interface that makes use of subgroups to organize its commands (e.g.,
clicks: right, left, and double; triggers: auto and eyebrows). Thus, the user has to go
to the home menu of the interface every time he/she wants to switch modes. The SMA
allows for bypassing those sub-groups and uses a command directly. This explains why
the AssystMouse becomes much faster when combined with the hand gestures.

The main takeaway of this experiment is, perhaps, the efficiency of that combination.
The interfaces complement each other very well, showing that the SMA could be combined
with other devices, such as joysticks, and perform similarly.

Signals 2021, 2 750

● ● ●

Av
er

ag
e

En
tir

el
y

di
sa

gr
ee

 (1
)

M
os

tly
di

sa
gr

ee
 (2

)

M
os

tly

ag
re

e
(4

)

En
tir

el
y

ag

re
e

(5
)

PERCEIVED USEFULNESS

PERCEIVED EASE OF USE

5. I didn’t need concentration to use the
hand gesture interface

ATTITUDE

EMOTIONS

 ● ●

● ●

● ● ● ● 4.8

4.4

4.6

● ●

3.0 ● ● ●

●

● ● ●

1. In a long-term perspective, I could get
faster at using the hand gesture interface
2. In a long-term perspective, I think it
 would be easy to learn multiple command

● ● ● ●
●

ATTITUDE

1. I feel comfortable using the hand
gesture interface

1. The hand gesture interface is usefull

2. I could efficiently complete the tasks
using the hand gesture interface

1. The hand gesture interface is easy to use

2. The hand gesture interface did not feel
cumbersome to use
3. I didn't need physical strength to operate
the hand gesture interface

4. The hand gestures are easy to perform

6. Using the hand gesture interface was
intuitive

● ● ●● ● 4.6

● ● ●● ● 4.6

● ● ●● ● 4.6

● ● ●● ● 4.6

● ● ●● ● 4.6

● ● ● ● 4.8 ●

3.0

5.0
N

eu
tra

l
(3

)

Figure 13. Post experiment questionnaire results.

8. Conclusions

This paper has presented the development of an interface to control an assistive
technology efficiently and intuitively. The goal was to help people living with upper or
lower limb disabilities in their daily tasks. More specifically, the objective was to develop
an interface to easily control high-dimensionality ATs with low-dimensionality devices. To
do so, a second application of the sequence matching algorithm, presented in [18], has been
developed. The main advantage of the SMA is to navigate quickly among different modes
of an AT (without having to cluster them into multiple sub-groups) while maintaining a
robust system. The idea of the SMA was to combine simple actions into a sequence similar
to Morse code.

For this project, the SMA has been applied to hand gestures recognized from IMU
signals. This brought the problem of having to train a model to recognize those gestures
with a dataset of a size significantly lower than that of a typical machine learning implemen-
tation. To answer the problem, four lightweight, yet robust, classification algorithms have
been identified and tested against a five-class dataset. The classifiers were support vector
machines, linear discriminant analysis, adaptative boosting, and K-nearest neighbors. The
best performing classifier was the linear SVM, with 95% of the predictions correct on the
offline data. Since the size of the training dataset was small, this score could be increased
by simply having fewer classes (different gestures) or having gestures that are qualitatively
more different. Fortunately, this can be done, since it is the principal advantage of the
SMA to give many different instructions with limited physical inputs. The SVM algorithm
was preceded by the extraction of the features on the raw accelerometer and gyroscope
signals, as well as by a PCA to reduce the dimensionality of the features. These components
established the classification pipeline that predicts gestures from inputted IMU signals. The

Signals 2021, 2 751

pipeline had then been wrapped in a triggering algorithm and implemented in real-time,
so that it would output a prediction quickly on any valid input.

In addition to the elaboration of the gesture recognition routine, a complete, actual
application integrating the IMU, the SMA interface, and a controlled device has been
developed. The architecture of the system consisted of these three components (sensor,
interface, and device), implemented as independent modules and organized together with
a local server as a central piece. In the development environment, this configuration has
proven versatile and efficient. The sensor module was a wireless commercial IMU and the
device was a computer’s mouse and keyboard (moves and shortcuts). Additionally, the
user could interact with the system with a GUI to edit settings, gestures, sequences, and
mappings, as well as to have visual feedback of the state of the actions performed.

The implementation has been tested in two scenarios. For the control of the computer
mouse, when the hand gesture interface was compared against a head movement-based
interface using a webcam, the latter seems superior. However, when combined, the hand
gestures help participants increase their performance by 77%, by offering quick shortcuts
accessible with the gestures’ sequences. Besides, even if the head movement interface
offers better performance for the first half of the experiments, both interfaces may be better
adapted to different populations and different scenarios.

Although the focus here is on an application of SMA with hand gestures, the interface
is not limited to hands or to a computer as an AT. It could use head gestures (tilting) or
lower limb moves (leg raise and foot stamps), as well. The application would not require
any modifications. If the user wanted to control a robotic arm, instead of a computer, only
the controlled-device module (Section 5.1.3) would need to be modified in the system. The
control of an assistive robotic arm represents an interesting implementation for the SMA,
as well as a useful development for people living with disabilities. Additionally, future
work would be to continue to develop more intelligent algorithms, in order to increase the
robustness of the system and to test the application with people living with disabilities
executing more complex tasks, to further assess the versatility of the interface.

Author Contributions: Conceptualization, A.C.-L. and F.S.; software, F.S.; validation, F.S. and A.C.-L.;
writing—original draft preparation, F.S.; writing—review and editing, F.S. and A.C.-L.; supervision,
A.C.-L.; project administration, A.C.-L.; funding acquisition, A.C.-L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is supported by Dr. Campeau-Lecours’ startup fund, allocated by the Centre for
Interdisciplinary Research in Rehabilitation and Social Integration (Cirris).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Ethics Committee of CIUSSS-CN (protocol
code 2019-1603, RIS_2018-616 date of approval 2018-06-19).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application programming interface
AT Assistive technology
CNN Convolution neural network
Dof Degrees of freedom
EMG Electromyography

Signals 2021, 2 752

FFT Fast fourier transform
GUI Graphical user interface
IMU Inertial measurement unit
kNN K-nearest neighbors
LDA Linear discriminant analysis
PCA Principal component analysis
SMA Sequence-matching algorithm
SVM Support vector machine
TCP Transmission control protocol

References
1. Maheu, V.; Archambault, P.S.; Frappier, J.; Routhier, F. Evaluation of the JACO robotic arm: Clinico-economic study for powered

wheelchair users with upper-extremity disabilities. In Proceedings of the IEEE International Conference on Rehabilitation
Robotics, Zurich, Switzerland, 29 June–1 July 2011. [CrossRef]

2. Lajeunesse, V.; Vincent, C.; Routhier, F.; Careau, E.; Michaud, F. Exoskeletons’ design and usefulness evidence according to a
systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil. Rehabil.
Assist. Technol. 2016, 11, 535–547. [CrossRef] [PubMed]

3. Friedman, N.; Cuadra, A.; Patel, R.; Azenkot, S.; Stein, J.; Ju, W. Voice assistant strategies and opportunities for people with
tetraplegia. In Proceedings of the ASSETS 2019—21st International ACM SIGACCESS Conference on Computers and Accessibility;
Association for Computing Machinery, Inc.: New York, NY, USA, 2019; pp. 575–577. [CrossRef]

4. Herlant, L.V.; Holladay, R.M.; Srinivasa, S.S. Assistive teleoperation of robot arms via automatic time-optimal mode switching. In
Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, Christchurch, New Zealand, 7–10 March
2016; pp. 35–42. [CrossRef]

5. Herlant, L.V.; Forlizzi, J.; Hcii, C.; Takayama, L.A.; Cruz, S. Algorithms, Implementation, and Studies on Eating with a Shared Control
Robot Arm; Technical Report; Carnegie Mellon University: Pittsburgh, PA, USA, 2018. [CrossRef]

6. Andreasen Struijk, L.N.; Egsgaard, L.L.; Lontis, R.; Gaihede, M.; Bentsen, B. Wireless intraoral tongue control of an assistive
robotic arm for individuals with tetraplegia. J. Neuroeng. Rehabil. 2017, 14, 1–8. [CrossRef] [PubMed]

7. Johansen, D.; Cipriani, C.; Popovic, D.B.; Struijk, L.N. Control of a Robotic Hand Using a Tongue Control System-A Prosthesis
Application. IEEE Trans. Biomed. Eng. 2016, 63, 1368–1376. [CrossRef] [PubMed]

8. Azenkot, S.; Lee, N.B. Exploring the use of speech input by blind people on mobile devices. In Proceedings of the 15th
International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 2013, New York, NY, USA, 21–23 October
2013; ACM: New York, NY, USA, 2013; pp. 1–8. [CrossRef]

9. Poirier, S.; Routhier, F.; Campeau-Lecours, A. Voice control interface prototype for assistive robots for people living with upper
limb disabilities. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Toronto, ON, Canada, 24–28
June 2019; pp. 46–52. [CrossRef]

10. Fall, C.L.; Gagnon-Turcotte, G.; Dube, J.F.; Gagne, J.S.; Delisle, Y.; Campeau-Lecours, A.; Gosselin, C.; Gosselin, B. Wireless
sEMG-Based Body-Machine Interface for Assistive Technology Devices. IEEE J. Biomed. Health Inform. 2017, 21, 967–977.
[CrossRef] [PubMed]

11. Farina, D.; Jiang, N.; Rehbaum, H.; Holobar, A.; Graimann, B.; Dietl, H.; Aszmann, O.C. The extraction of neural information
from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges. IEEE Trans. Neural Syst.
Rehabil. Eng. 2014, 22, 797–809. [CrossRef] [PubMed]

12. Scheme, E.; Englehart, K. Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and
challenges for clinical use. J. Rehabil. Res. Dev. 2011, 48, 643–660. [CrossRef] [PubMed]

13. Raya, R.; Roa, J.O.; Rocon, E.; Ceres, R.; Pons, J.L. Wearable inertial mouse for children with physical and cognitive impairments.
Sens. Actuators A Phys. 2010, 162, 248–259. [CrossRef]

14. Fall, C.L.; Turgeon, P.; Campeau-Lecours, A.; Maheu, V.; Boukadoum, M.; Roy, S.; Massicotte, D.; Gosselin, C.; Gosselin, B.
Intuitive wireless control of a robotic arm for people living with an upper body disability. In Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Milan, Italy, 25–29 August 2015;
Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 4399–4402. [CrossRef]

15. Lebrasseur, A.; Lettre, J.; Routhier, F.; Archambault, P.S.; Campeau-Lecours, A. Assistive robotic arm: Evaluation of the
performance of intelligent algorithms. Assist. Technol. 2021, 33, 95–104. [CrossRef] [PubMed]

16. Vu, D.S.; Allard, U.C.; Gosselin, C.; Routhier, F.; Gosselin, B.; Campeau-Lecours, A. Intuitive adaptive orientation control
of assistive robots for people living with upper limb disabilities. In Proceedings of the IEEE International Conference on
Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 795–800. [CrossRef]

17. Simpson, T.; Broughton, C.; Gauthier, M.J.; Prochazka, A. Tooth-click control of a hands-free computer interface. IEEE Trans.
Biomed. Eng. 2008, 55, 2050–2056. [CrossRef] [PubMed]

18. Schweitzer, F.; Campeau-Lecours, A. Intuitive sequence matching algorithm applied to a sip-and-puff control interface for robotic
assistive devices. arXiv 2020, arXiv:2010.07449.

http://doi.org/10.1109/ICORR.2011.5975397
http://dx.doi.org/10.3109/17483107.2015.1080766
http://www.ncbi.nlm.nih.gov/pubmed/26340538
http://dx.doi.org/10.1145/3308561.3354605
http://dx.doi.org/10.1109/HRI.2016.7451731
http://dx.doi.org/10.1184/R1/6714647.V1
http://dx.doi.org/10.1186/s12984-017-0330-2
http://www.ncbi.nlm.nih.gov/pubmed/29110736
http://dx.doi.org/10.1109/TBME.2016.2517742
http://www.ncbi.nlm.nih.gov/pubmed/26780786
http://dx.doi.org/10.1145/2513383.2513440
http://dx.doi.org/10.1109/ICORR.2019.8779524
http://dx.doi.org/10.1109/JBHI.2016.2642837
http://www.ncbi.nlm.nih.gov/pubmed/28026793
http://dx.doi.org/10.1109/TNSRE.2014.2305111
http://www.ncbi.nlm.nih.gov/pubmed/24760934
http://dx.doi.org/10.1682/JRRD.2010.09.0177
http://www.ncbi.nlm.nih.gov/pubmed/21938652
http://dx.doi.org/10.1016/j.sna.2010.04.019
http://dx.doi.org/10.1109/EMBC.2015.7319370
http://dx.doi.org/10.1080/10400435.2019.1601649
http://www.ncbi.nlm.nih.gov/pubmed/31070524
http://dx.doi.org/10.1109/ICORR.2017.8009345
http://dx.doi.org/10.1109/TBME.2008.921161
http://www.ncbi.nlm.nih.gov/pubmed/18632367

Signals 2021, 2 753

19. Wakita, Y.; Yamanobe, N.; Nagata, K.; Clerc, M. Customize function of single switch user interface for robot arm to help a daily
life. In Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008, Bangkok, Thailand,
22–25 February 2009; pp. 294–299. [CrossRef]

20. Pilarski, P.M.; Dawson, M.R.; Degris, T.; Carey, J.P.; Sutton, R.S. Dynamic switching and real-time machine learning for improved
human control of assistive biomedical robots. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical
Robotics and Biomechatronics, Rome, Italy, 24–27 June 2012; pp. 296–302. [CrossRef]

21. Bevilacqua, P.; Frego, M.; Bertolazzi, E.; Fontanelli, D.; Palopoli, L.; Biral, F. Path planning maximising human comfort for
assistive robots. In Proceedings of the 2016 IEEE Conference on Control Applications, CCA 2016, Buenos Aires, Argentina, 19–22
September 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA 2016; pp. 1421–1427. [CrossRef]

22. Kyranou, I.; Krasoulis, A.; Erden, M.S.; Nazarpour, K.; Vijayakumar, S. Real-Time classification of multi-modal sensory data
for prosthetic hand control. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and
Biomechatronics, Singapore, 26–29 June 2016; pp. 536–541. [CrossRef]

23. Qi, W.; Su, H.; Yang, C.; Ferrigno, G.; De Momi, E.; Aliverti, A. A Fast and Robust Deep Convolutional Neural Networks for
Complex Human Activity Recognition Using Smartphone. Sensors 2019, 19, 3731. [CrossRef]

24. Jiang, S.; Lv, B.; Guo, W.; Zhang, C.; Wang, H.; Sheng, X.; Shull, P.B. Feasibility of wrist-worn, real-time hand, and surface gesture
recognition via sEMG and IMU Sensing. IEEE Trans. Ind. Inform. 2018, 14, 3376–3385. [CrossRef]

25. Kundu, A.S.; Mazumder, O.; Lenka, P.K.; Bhaumik, S. Hand Gesture Recognition Based Omnidirectional Wheelchair Control
Using IMU and EMG Sensors. J. Intell. Robot. Syst. Theory Appl. 2018, 91, 529–541. [CrossRef]

26. Lu, Z.; Chen, X.; Li, Q.; Zhang, X.; Zhou, P. A hand gesture recognition framework and wearable gesture-based interaction
prototype for mobile devices. IEEE Trans. Hum.-Mach. Syst. 2014, 44, 293–299. [CrossRef]

27. Srivastava, R.; Sinha, P. Hand Movements and Gestures Characterization Using Quaternion Dynamic Time Warping Technique.
IEEE Sens. J. 2016, 16, 1333–1341. [CrossRef]

28. Hsu, Y.L.; Chu, C.L.; Tsai, Y.J.; Wang, J.S. An inertial pen with dynamic time warping recognizer for handwriting and gesture
recognition. IEEE Sens. J. 2015, 15, 154–163. [CrossRef]

29. Akl, A.; Feng, C.; Valaee, S. A novel accelerometer-based gesture recognition system. IEEE Trans. Signal Process. 2011,
59, 6197–6205. [CrossRef]

30. Kim, M.; Cho, J.; Lee, S.; Jung, Y. IMU Sensor-Based Hand Gesture Recognition for Human-Machine Interfaces. Sensors 2019,
19, 3827. [CrossRef] [PubMed]

31. Wang, X.; Xia, M.; Cai, H.; Gao, Y.; Cattani, C. Hidden-Markov-Models-based dynamic hand gesture recognition.
Math. Probl. Eng. 2012, 2012. [CrossRef]

32. McCall, C.; Reddy, K.K.; Shah, M. Macro-Class Selection for Hierarchical k-NN Classification of Inertial Sensor Data; Science and
Technology Publications: Setúbal, Portugal, 2012; pp. 106–114. [CrossRef]

33. Khan, A.M.; Lee, Y.K.; Kim, T.S. Accelerometer signal-based human activity recognition using augmented autoregressive model
coefficients and artificial neural nets. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBS’08—Personalized Healthcare through Technology, Vancouver, BC, Canada, 20–25 August
2008; pp. 5172–5175. [CrossRef]

34. Estrada, E.; Nazeran, H.; Nava, P.; Behbehani, K.; Burk, J.; Lucas, E. EEG feature extraction for classification of sleep stages. In
Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biolog, San Francisco, CA,
USA, 1–5 September 2004; pp. 196–199. [CrossRef]

35. Verleysen, M.; François, D. The Curse of Dimensionality in Data Mining and Time Series Prediction; Lecture Notes in Computer
Science; Springer: Berlin, Germany 2005; Volume 3512, pp. 758–770._93. [CrossRef]

36. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

37. XSENS. MTw Awinda. Available online: https://www.xsens.com/products/mtw-awinda (accessed on 15 March 2021).
38. Frederic Schweitzer. TeamAT IMU-Hand-Gestures. Available online: https://github.com/team-ingreadaptulaval/TeamAT_

IMU-hand-gestures (accessed on 15 March 2021)
39. Assistyv. AssystMouse. Available online: https://www.assistyv.com/ (accessed on 15 March 2021).
40. Schmidtler, J.; Bengler, K.; Dimeas, F.; Campeau-Lecours, A. A questionnaire for the evaluation of physical assistive devices

(quead): Testing usability and acceptance in physical human-robot interaction. In Proceedings of the 2017 IEEE International
Conference on Systems, Man, and Cybernetics, SMC 2017, Banff, AB, Canada, 5–8 October 2017; Institute of Electrical and
Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 876–881. [CrossRef]

http://dx.doi.org/10.1109/ROBIO.2009.4913019
http://dx.doi.org/10.1109/BioRob.2012.6290309
http://dx.doi.org/10.1109/CCA.2016.7588006
http://dx.doi.org/10.1109/BIOROB.2016.7523681
http://dx.doi.org/10.3390/s19173731
http://dx.doi.org/10.1109/TII.2017.2779814
http://dx.doi.org/10.1007/s10846-017-0725-0
http://dx.doi.org/10.1109/THMS.2014.2302794
http://dx.doi.org/10.1109/JSEN.2015.2482759
http://dx.doi.org/10.1109/JSEN.2014.2339843
http://dx.doi.org/10.1109/TSP.2011.2165707
http://dx.doi.org/10.3390/s19183827
http://www.ncbi.nlm.nih.gov/pubmed/31487894
http://dx.doi.org/10.1155/2012/986134
http://dx.doi.org/10.5220/0003819101060114
http://dx.doi.org/10.1109/iembs.2008.4650379
http://dx.doi.org/10.1109/iembs.2004.1403125
http://dx.doi.org/10.1007/11494669_93
https://www.xsens.com/products/mtw-awinda
https://github.com/team-ingreadaptulaval/TeamAT_IMU-hand-gestures
https://github.com/team-ingreadaptulaval/TeamAT_IMU-hand-gestures
https://www.assistyv.com/
http://dx.doi.org/10.1109/SMC.2017.8122720

	Introduction
	Hand Gesture Recognition
	Input Signals
	Feature Extraction
	Dimensionality Reduction
	Classification
	Final Pipeline

	Real-Time Classification
	Sequence-Matching Algorithm Review
	General Idea
	Pseudo-Code for the SMA

	Experimental Implementation
	System Design
	Sensors
	Interface
	Controlled Device
	Local Server

	Usage
	Availability

	Experiments
	Results and Discussion
	Conclusions
	References

