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Abstract: Inaccurate estimates of the linear prediction coefficient (LPC) and noise variance introduce
bias in Kalman filter (KF) gain and degrade speech enhancement performance. The existing methods
propose a tuning of the biased Kalman gain, particularly in stationary noise conditions. This paper
introduces a tuning of the KF gain for speech enhancement in real-life noise conditions. First, we
estimate noise from each noisy speech frame using a speech presence probability (SPP) method to
compute the noise variance. Then, we construct a whitening filter (with its coefficients computed
from the estimated noise) to pre-whiten each noisy speech frame prior to computing the speech LPC
parameters. We then construct the KF with the estimated parameters, where the robustness metric
offsets the bias in KF gain during speech absence of noisy speech to that of the sensitivity metric
during speech presence to achieve better noise reduction. The noise variance and the speech model
parameters are adopted as a speech activity detector. The reduced-biased Kalman gain enables the
KF to minimize the noise effect significantly, yielding the enhanced speech. Objective and subjective
scores on the NOIZEUS corpus demonstrate that the enhanced speech produced by the proposed
method exhibits higher quality and intelligibility than some benchmark methods.

Keywords: speech enhancement; Kalman filter; Kalman filter gain; robustness metric; sensitivity
metric; LPC; whitening filter; real-life noise

1. Introduction

The main objective of a speech enhancement algorithm (SEA) is to improve the quality
and intelligibility of noisy speech [1]. It can be achieved by eliminating the embedded
noise from a noisy speech signal without distorting the speech. Many speech process-
ing systems, such as speech communication systems, hearing aid devices, and speech
recognition systems, somehow rely upon the enhancement of noisy speech. Various SEAs,
namely spectral subtraction (SS) [2–5], Wiener Filter (WF) [6–8], minimum mean square
error (MMSE) [9–11], Kalman filter (KF) [12], augmented KF (AKF) [13], and deep neural
networks (DNNs) [14–16], have been introduced over the decades. This paper focuses on
KF-based speech enhancement in real-life noise conditions.

The Kalman filter (KF) was first used for speech enhancement by Paliwal and Basu [12].
In KF, a speech signal is represented by an autoregressive (AR) process, whose parameters
comprise the linear prediction coefficients (LPCs) and prediction error variance. The LPC
parameters and noise variance are used to construct the KF recursion equations. KF gives
a linear MMSE estimate of the current state of the clean speech given the observed noisy
speech for each sample within a frame. Therefore, the performance of KF-based SEA largely
depends on how accurately the LPC parameters and noise variance are estimated. Experi-
ments demonstrated that the KF shows excellent performance in stationary white Gaussian
noise (WGN) conditions when the LPC parameters are estimated from clean speech [12].
On the contrary, the LPC parameters and the noise variance directly computed from the
noisy speech would be inaccurate and unreliable, which leads to performance degradation.
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In [13], Gibson et al. introduced an augmented KF (AKF) to enhance colored noise-
corrupted speech. In this SEA, both the clean speech and noise signal are represented by
two AR processes. The speech and noise LPC parameters are incorporated in an augmented
matrix form to construct the recursive equations of AKF. In [13], the AKF processes the
colored noise-corrupted speech iteratively (usually 3–4 iterations) to eliminate the noise,
yielding the enhanced speech. Specifically, the LPC parameters for the current frame are
computed from the corresponding filtered speech frame of the previous iteration by AKF.
Although the enhanced speech of the AKF demonstrates an improvement in signal-to-noise
ratio (SNR), it suffers from musical noise and speech distortion. Therefore, this method [13]
does not adequately address the inaccurate LPC parameter estimation issue in practice.

In [17], So and Paliwal proposed a modulation-domain KF (MDKF) for speech enhance-
ment. It was claimed that the modulation domain is able to better model the long-term
correlation of speech information than that of time domain speech. It was shown that the
MDKF exhibits better objective scores than time-domain KF (TDKF), particularly in the
oracle case (LPC parameters are computed from clean speech). However, clean speech is
unobserved in practice. For practical applications, they incorporated a traditional MMSE-
STSA [9] with MDKF for speech enhancement. Specifically, the MMSE-STSA has been
used to pre-filter the noisy speech in the acoustic domain. Then, the pre-filtered speech is
transformed in the modulation domain prior to computing the LPC parameters. Therefore,
they do not adequately address LPC parameter estimation directly from the noisy speech in
the modulation domain. Technically, the characteristics of the speech signal in the acoustic
domain are entirely different than that of it in modulation domain. Due to this limitation,
it is quite difficult to assess the performance of MDKF for speech enhancement in practice.
Roy et al. introduced a sub-band (SB) iterative KF (SBIT-KF)-based SEA [18]. This method
enhances only the high-frequency sub-bands (SBs) using iterative KF among the 16 de-
composed SBs of noisy speech for a given utterance, with the assumption that the impact
of noise in low-frequency SBs is negligible. However, the low-frequency SBs can also be
affected by noise, typically when operating in real-life noise conditions. As demonstrated
in [13], the SBIT-KF [18] also suffers from speech distortion due to the iterative processing
of noisy speech by KF.

In [19], Saha et al. propose a robustness metric and a sensitivity metric for tuning the
biased KF gain for instrument engineering applications. Later on, So et al. applied the
tuning of KF gain for speech enhancement in the WGN condition [20,21]. Specifically, the
enhanced speech (for each sample within a noisy speech frame) is given by recursively
averaging the observed noisy speech and the predicted speech weighted by a scalar KF
gain [20]. However, the inaccurate estimates of LPC parameters introduce bias in the KF
gain, resulting in leaking a significant residual noise in the enhanced speech. In [20], a
robustness metric is used to offset the bias in KF gain for speech enhancement. However,
So et al. further showed that the robustness metric strongly suppresses the KF gain in
speech regions, resulting in distorted speech [21]. In [21], a sensitivity metric was used
to offset the bias in KF gain, which produced less distorted speech. In [22], George et al.
propose a robustness metric-based tuning of the AKF (AKF-RMBT) for enhancing colored
noise-corrupted speech. As in [20], the adjusted AKF gain is underestimated in speech
regions, resulting in distorted speech.

The existing KF methods [20,21] address tuning of biased Kalman gain in the WGN
condition with the prior assumption that the impact of WGN on LPCs is negligible.
Though the AKF method [22] performs tuning of biased gain in colored noise conditions, it
still produced distorted speech. In this paper, we address the tuning of KF gain for speech
enhancement in real-life noise conditions. For this purpose, we estimate noise from each
noisy speech frame using an SPP-based method to compute the noise variance. To minimize
bias in the LPC parameters, we compute them from pre-whitened speech. Then, KF is con-
structed with the estimated parameters. To achieve better noise reduction, the robustness
metric is applied to offset the bias in Kalman gain when there is speech absent to that of
the sensitivity metric during speech presence of the noisy speech. We also adopt the noise
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variance and the AR model parameters as a speech activity detector. The reduced-biased
KF gain exhibits better suppression of noise in the enhanced speech. The performance
of the proposed SEA is compared against some benchmark methods using objective and
subjective testing.

The structure of this paper is as follows: Section 2 describes the KF for speech enhance-
ment, including the paradigm shift of the KF recursive equations, the impact of biased KF
gain on KF-based speech enhancement in WGN and real-life noise conditions. In Section 3,
we describe the proposed SEA, which includes the proposed parameter estimation and the
proposed Kalman gain tuning algorithm. Following this, Section 4 describes the experi-
mental setup in terms of speech corpus, objective and subjective evaluation metrics, and
specifications of competitive SEAs. The experimental results are then presented in Section 5.
Finally, Section 6 gives some concluding remarks.

2. Kalman Filter for Speech Enhancement

Assuming that the noise, v(n), is additive and uncorrelated with the clean speech,
s(n), at sample n, the noisy speech, y(n), can be represented as:

y(n) = s(n) + v(n). (1)

The clean speech, s(n), can be represented by a pth order autoregressive (AR) model
as ([23], Chapter 8):

s(n) = −
p

∑
i=1

ais(n− i) + w(n), (2)

where {ai; i = 1, 2, . . . , p} are the LPCs and w(n) is assumed to be a white noise with zero
mean and variance σ2

w.
Equations (1) and (2) can be used to form the following state-space model (SSM) of

the KF (where the bold variables denote vector/matrix quantities, as opposed to unbolded
variables for scalar quantities):

x(n) = Φx(n− 1) + dw(n), (3)

y(n) = c>x(n) + v(n). (4)

In the above SSM:

1. x(n) is a p× 1 state vector at sample n, given by:

x(n) = [s(n) s(n− 1) . . . s(n− p + 1)]>, (5)

2. Φ is a p× p state transition matrix, represented as:

Φ =


−a1 −a2 . . . −ap−1 −ap

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

, (6)

3. d and c are the p× 1 measurement vectors for the excitation noise and observation,
written as:

d = c =
[
1 0 . . . 0

]T ,

4. y(n) is the observed noisy speech at sample n.

During the operation of KF, the noisy speech, y(n), is windowed into non-overlapped
and short (e.g., 20 ms) frames. For a particular frame, the KF recursively computes an



Signals 2021, 2 437

unbiased linear MMSE estimate, x̂(n|n), of the state vector, x(n), given the observed noisy
speech up to sample n, i.e., y(1), y(2), ..., y(n), using the following equations [12]:

x̂(n|n− 1) = Φx̂(n− 1|n− 1), (7)

Ψ(n|n− 1) = ΦΨ(n− 1|n− 1)Φ> + σ2
wdd>, (8)

K(n) = Ψ(n|n− 1)c[c>Ψ(n|n− 1)c + σ2
v ]
−1, (9)

x̂(n|n) = x̂(n|n− 1) + K(n)[y(n)− c> x̂(n|n− 1)], (10)

Ψ(n|n) = [I − K(n)c>]Ψ(n|n− 1). (11)

In the above Equations (7)–(11), Ψ(n|n − 1) and Ψ(n|n) are the error covariance
matrices of the a priori and a posteriori state estimates, x̂(n|n − 1) and x̂(n|n); K(n) is
the Kalman gain; σ2

v is the variance of the additive noise, v(n); and I is the identity
matrix. During processing of each frame, the estimated LPC parameters, ({ai}, σ2

w), and
noise variance, σ2

v , remain unchanged for that frame, while K(n), Ψ(n|n), and x̂(n|n) are
continually updated on a sample-wise basis. As demonstrated in [20,21], the estimated
speech at sample n is given by: ŝ(n|n) = c> x̂(n|n). Once all noisy speech frames have
been processed, synthesis of the enhanced frames yields the enhanced speech, ŝ(n).

2.1. Paradigm Shift of Recursive Equations

The paradigm shift of the recursive Equations (7)–(11) transforms them in scalar form.
It exploits the understanding as well as analysis of the KF operation in the speech enhance-
ment context. The simplification starts with the output of the KF, ŝ(n|n) = c> x̂(n|n), which
is re-written as [20,21]:

c> x̂(n|n) =
[
1 0 . . . 0

]


ŝ(n|n)
ŝ(n|n− 1)

...
ŝ(n|n− p + 1)

,

= ŝ(n|n).

(12)

To transform the a posteriori state estimate, x̂(n|n) from vector to scalar notation, we
multiply c> on both sides of Equation (10), i.e.,

c> x̂(n|n) = c> x̂(n|n− 1) + c>K(n)[y(n)− c> x̂(n|n− 1)]. (13)

According to Equation (12), c> x̂(n|n− 1) is also given by:

c> x̂(n|n− 1) = ŝ(n|n− 1). (14)

In Equation (13), c>K(n) represents the first component, K0(n), of the Kalman gain
vector, K(n), i.e.,

K0(n) = c>K(n). (15)

Substituting Equation (9) into Equation (15) gives:

K0(n) =
c>Ψ(n|n− 1)c

c>Ψ(n|n− 1)c + σ2
v

. (16)

With Equation (8), c>Ψ(n|n− 1)c of Equation (16) is simplified as:

c>Ψ(n|n− 1)c = c>ΦΨ(n− 1|n− 1)Φ>c + c>σ2
wdd>c. (17)
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The linear algebra operation on c>σ2
wdd>c, gives:

c>σ2
wdd>c = σ2

w, (18)

and c>ΦΨ(n− 1|n− 1)Φ>c represents the transmission of a posteriori error variance by
the speech model from the previous time sample, n− 1, denoted as [21]:

c>ΦΨ(n− 1|n− 1)Φ>c = α2(n). (19)

Substituting Equations (18) and (19) into Equation (17) gives:

c>Ψ(n|n− 1)c = α2(n) + σ2
w. (20)

From Equations (20) and (16), K0(n) is given by:

K0(n) =
α2(n) + σ2

w
α2(n) + σ2

w + σ2
v

. (21)

Substituting Equations (12), (14), and (15) into Equation (13) gives:

ŝ(n|n) = ŝ(n|n− 1) + K0[y(n)− ŝ(n|n− 1)]. (22)

Re-arranging Equation (22) yields:

ŝ(n|n) = [1− K0(n)]ŝ(n|n− 1) + K0(n)y(n). (23)

Equation (23) implies that the accurate estimates of ŝ(n|n) (output of the KF) will be
achieved if K0(n) becomes unbiased. However, in practice, the inaccurate estimates of
({ai}, σ2

w) and σ2
v introduce bias in K0(n), resulting in degraded ŝ(n|n). In [19], Saha et al.

introduced a robustness metric, J2(n) and a sensitivity metric, J1(n) to quantify the level of
robustness and sensitivity of the KF, which can be used to offset the bias in K0(n). In the
speech enhancement context, J2(n) and J1(n) metrics can be computed by simplifying the
mean squared error, c>Ψ(n|n)c of the KF output, ŝ(n|n) as [20,21]:

c>Ψ(n|n)c = c>[I − K(n)c>]Ψ(n|n− 1)c, [ f rom (11)]

= c>Ψ(n|n− 1)c− c>K(n)c>Ψ(n|n− 1)c.
(24)

Substituting Equations (15) and (20) into (24) gives:

Ψ0,0(n|n) = α2(n) + σ2
w − K0(n)[α2(n) + σ2

w],

Ψ0,0(n|n)− α2(n) = σ2
w −

[α2(n) + σ2
w]

2

α2(n) + σ2
w + σ2

v
,

Ψ0,0(n|n)− α2(n)
α2(n) + σ2

w
=

σ2
w

α2(n) + σ2
w
− α2(n) + σ2

w
α2(n) + σ2

w + σ2
v

,

Ψ0,0(n|n)− α2(n)
α2(n) + σ2

w
=

σ2
w

α2(n) + σ2
w
+

σ2
v

α2(n) + σ2
w + σ2

v
− 1,

Ψ0,0(n|n)− α2(n)
α2(n) + σ2

w
+ 1 =

σ2
w

α2(n) + σ2
w
+

σ2
v

α2(n) + σ2
w + σ2

v
,

∆Ψ(n|n) + 1 = J2(n) + J1(n),

(25)

where

∆Ψ(n|n) = Ψ0,0(n|n)− α2(n)
α2(n) + σ2

w
, (26)
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is the scalar a posteriori mean squared error, J2(n) and J1(n) are the robustness and
sensitivity metrics of the KF, given as [20,21]:

J2(n) =
σ2

w
α2(n) + σ2

w
, (27)

J1(n) =
σ2

v
α2(n) + σ2

w + σ2
v

. (28)

The KF-based SEAs in [20,21] address tuning of K0(n) using J2(n) and J1(n) metrics
for speech enhancement in t WGN condition as described next.

2.2. Impact of Biased K0(n) on KF-Based Speech Enhancement in WGN Condition

We analyze the shortcomings of existing KF-based SEAs [20,21] in terms of biased
interpretation of K0(n). For this purpose, we conducted an experiment with the utterance
sp05 (“Wipe the grease off his dirty face”) of NOIZEUS corpus ([1], Chapter 12) (sampled at
8 kHz) corrupted with 5 dB WGN noise [24]. In [20,21], a 20 ms non-overlapped rectangular
window was considered for converting y(n) into frames as:

y(n, k) = s(n, k) + v(n, k), (29)

where kε{0, 1, 2, . . . , N − 1} is the frame index, N is the total number of frames in an
utterance, and M is the total number of samples in each frame, i.e., nε{0, 1, 2, . . . , M− 1}.

In [20], So et al. first analyze K0(n) in the oracle case, where ({ai}, σ2
w) (p = 10) and σ2

v
are computed from each frame of the clean speech and the noise signal, s(n, k) and v(n, k).
It can be seen that K0(n) approaches 1 when there is speech presence of the noisy speech,
which passes almost clean speech to the output (e.g., 0.16–0.33 s or 0.9–1.06 s in Figure 1d,e).
Conversely, K0(n) remains at approximately 0 during speech absence of the noisy speech,
which does not pass any corrupting noise (e.g., 0–0.15 s or 1.8–2.19 s in Figure 1d,e). As
a result, the KF-oracle method produces enhanced speech with less residual background
noise as well as less speech distortion (Figure 1e).

In the non-oracle case, ({ai}, σ2
w) are computed from noisy speech, resulting in biased

({ãi}, σ̃2
w). Then, K0(n) in (21) using biased σ̃2

w is given by:

K̃0(n) =
α2(n) + σ̃2

w
α2(n) + σ̃2

w + σ2
v

. (30)

In [20,21], So et al. assumed that the impact of WGN in {ãi} is negligible. Thus, σ̃2
w

could be approximately estimated as: σ̃2
w ≈ σ2

w + σ2
v [20,21]. Substituting σ̃2

w ≈ σ2
w + σ2

v in
Equation (29) and re-arranging yields:

K̃0(n) =
α2(n) + σ2

w + σ2
v

α2(n) + σ2
w + 2σ2

v
. (31)

During speech pauses of y(n, k), s(n, k) = 0 gives α2(n) = 0 and σ2
w = 0. According

to Equation (30), K̃0(n) becomes biased around 0.5 (e.g., 0–0.15 s or 1.8–2.19 s in Figure 1d).
As a result, K̃0(n) leak a significant amount of residual noise in the enhanced speech, as
shown in Figure 1f.

In the non-oracle case, it is also observed that J2(n) ≈ 1 typically during speech pauses
of y(n, k) (e.g., 0–0.15 s or 1.8–2.19 s in Figure 1c). Therefore, the J2(n) metric is found to be
useful in tuning biased K0(n) as [20]:

K′0(n) = K̃0(n)[1− J2(n)]. (32)

Figure 1d reveals that K′0(n) ≈ 0 during speech pauses. However, K′0(n) is over-
suppressed during speech presence of y(n, k), resulting in distorted speech, as shown in
Figure 1g.
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Figure 1. Review of existing KF-based SEA: (a,b) spectrograms of the clean speech (utterance sp05)
and the noisy speech (corrupt (a) with 5 dB WGN), (c) J2(n) and J1(n) metrics, (d) oracle and
non-oracle K0(n) with adjusted K′0(n) and K′′0 (n), spectrogram of enhanced speech produced by:
(e) KF-oracle method, (f) KF-non-oracle method, (g,h) methods in [20,21].

To address this, So et al. proposed a J1(n) metric-based tuning of K̃0(n) [21]. It can be
seen from Figure 1c that J1(n) lies around 0.5 during speech pauses (e.g., 0–0.15 s or 1.8–
2.19 s), whereas it approaches 0 at speech regions (e.g., 0.16–0.33 s or 0.9–1.06 s). Therefore,
the tuning of K̃0(n) using the J1(n) metric is performed as [21]:

K′′0 (n) = K̃0(n)− J1(n). (33)

It can be seen from Figure 1d that K′′0 (n) is closely similar to the oracle K0(n), which
minimizes distortion in the enhanced speech (Figure 1h) as compared to Figure 1g.

Technically, the real-life noise (colored/non-stationary) may contain time varying
amplitudes, which impact ({ai}, σ2

w) significantly as opposed to negligible impact of WGN
in these parameters [20,21]. Therefore, the assumption of σ̃2

w 6= σ2
w + σ2

v made in [20,21] is
invalid for real-life noise conditions. Moreover, the existing methods [20,21] do not analyze
the impact of noise variance, σ2

v on K0(n). According to Equation (21), in addition to α2(n)
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and σ2
w, σ2

v is also an important parameter to compute K0(n) accurately. In light of these
observations, the methods in [20,21] are not applicable for speech enhancement in real-life
noise conditions. Therefore, we performed a detailed analysis of the biasing effect of K0(n)
on KF-based speech enhancement in real-life noise conditions.

2.3. Impact of Biased K0(n) on KF-Based Speech Enhancement in Real-Life Noise Conditions

To analyze K0(n) and its impact on KF-based speech enhancement, we repeated the
experiment in Figure 1, except that the utterance sp05 was corrupted with a typical real-life
non-stationary noise, babble [24], at 5 dB SNR. A 32 ms rectangular window with 50%
overlap ([25], Section 7.2.1) was considered for converting y(n) into frames, y(n, k) (as in
Equation (28)).

As shown in Section 2.2, in the oracle case, K0(n) also shows a smooth transition
between 0 and 1 depending on the speech absence and speech presence of noisy speech
(Figure 2c). Technically, during speech pauses of y(n, k), the total a priori prediction error
of the AR model, [α2(n) + σ2

w] = 0 (e.g., 0–0.15 s or 1.8–2.19 s in Figure 2d). Substituting
[α2(n) + σ2

w] = 0 in Equation (21)) gives K0(n) = 0, which in turn yields ŝ(n|n) = 0
(Equation (23)), i.e., nothing is passed to the output (e.g., 0–0.15 s or 1.8–2.19 s of Figure 2c,g).
Conversely, it was observed that [α2(n) + σ2

w] >> σ2
v in speech regions of y(n, k), for which

K0(n) is approaching 1 (e.g., 0.16–0.33 s or 0.9–1.06 s in Figure 2c). As demonstrated in
Section 2.2, a higher K0(n) enables the KF to produce enhanced speech with less residual
background noise as well as less distortion (Figure 2g).

In the non-oracle case, the biased estimates of ({ãi}, σ̃2
w) and σ̃2

v , resulted in [α̃2(n) +
σ̃2

w] ≈ σ̃2
v (e.g., 0–0.15 s or 1.8–2.19 s in Figure 2e). According to Equation (21), this condition

introduces around 0.5 bias in K̃0(n) (e.g., 0–0.15 s or 1.8–2.19 s in Figure 2c). During speech
presence of y(n, k), it is observed that σ̃2

v >> [α̃2(n) + σ̃2
w] (e.g., 0.16–0.33 s or 0.9–1.06 s of

Figure 2e), resulting in an underestimated K̃0(n) as compared to the oracle case (Figure 2c).
The 0.5 biased K̃0(n) leaks 50% residual noise to ŝ(n|n) particularly in silent regions
(Figure 2h). Additionally, the underestimated K̃0(n) in the speech regions introduce a
significant distortion in the enhanced (Figure 2h). In addition, J2(n) and J1(n) metrics
(Figure 2f) do not comply with the desired characteristics as found in WGN condition
(Figure 1c). Therefore, it is inappropriate to apply J2(n) and J1(n) metrics in Figure 2f for
tuning of the biased K̃0(n) (Figure 2c) using Equations (31) and (32).

In the AKF-RMBT method, the speech LPC parameters were computed from the
pre-whitened speech to utilize J2(n) metric for the tuning of biased K0(n) in colored noise
conditions ([22], Figure 5d). As in [20], J2(n) metric-based tuning of K0(n) still produces
distorted speech. In addition, the noise LPC parameters computed from initial speech
pauses keep constant during the processing of all noisy speech frames for an utterance. The
whitening filter was also constructed with the constant noise LPCs to pre-whiten each noisy
speech frame prior to compute speech LPC parameters. As a result, the tuning of K0(n) [22]
becomes irrelevant in conditions having time-varying amplitudes, such as babble noise.

Motivated by the shortcomings of [20–22], we propose a J2(n) and J1(n) metric-based
tuning of the KF gain, K0(n), for speech enhancement in real-life noise conditions.
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Figure 2. Biasing effect of K0(n): (a,b) spectrograms of the clean speech and the noisy speech (corrupt
sp05 with 5 dB babble noise), (c) K0(n) computed in oracle and non-oracle cases, (d,e) [α2(n) + σ2

w] and
σ2

v computed in oracle and non-oracle cases, (f) J2(n) and J1(n) computed from the noisy speech in (b),
spectrogram of enhanced speech produced by: (g) KF-oracle method and (h) KF-non-oracle method.

3. Proposed Speech Enhancement Algorithm

Figure 3 shows the block diagram of the proposed SEA. Firstly, y(n) is converted into
frames y(n, k) with the same setup as used in Section 2.3.

To carry out the tuning of K0(n) in real-life noise conditions, unlike biased J2(n) and
J1(n) metrics (Figure 2f), they should achieve similar characteristics that occur in the WGN
condition (Figure 1c). It can be achieved through improving the estimates of ({âi}, σ̂2

w) and
σ̂2

v as described in Section 3.1.
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Figure 3. Block diagram of the proposed KF-based SEA.

3.1. Parameter Estimation

In is known that ({ai}, σ2
w) are very sensitive to real-life noises. Since clean speech,

s(n, k), is unavailable in practice, it is difficult to accurately estimate these parameters.
Therefore, we first focused on noise estimation, v̂(n, k), for each noisy speech frame using
speech presence probability (SPP) method (described in Section 3.2) [26] to compute σ̂2

v .
Given v̂(n, k), σ̂2

v is computed as:

σ̂2
v =

1
M

M−1

∑
n=0

v̂2(n, k). (34)

To reduce bias in the estimated ({âi}, σ̂2
w) for each noisy speech frame, we computed

them from the corresponding pre-whitened speech, yw(n, k) using the autocorrelation
method [23]. The framewise yw(n, k) was obtained by applying a whitening filter, Hw(z)
to y(n, k). Hw(z) is given by [23]:

Hw(z) = 1 +
q

∑
j=1

b̂jz−j, (35)

where the coefficients, {b̂j} (q = 20) are computed from v̂(n, k) using the autocorrelation
method [23].

3.2. Proposed v̂(n, k) Estimation Method

The proposed noise estimation is performed in the acoustic domain using the SPP
method [26]. For more details about the SPP method, we refer the readers to [26]. However, we
briefly review the SPP-based noise estimation in this section. For this purpose, the noisy speech,
y(n) (Equation (1)) is analyzed frame-wise using the short-time Fourier transform (STFT):

Yk(m) = Sk(m) + Vk(m), (36)

where Yk(m), Sk(m), and Vk(m) denote the complex-valued STFT coefficients of the noisy
speech, the clean speech, and the noise signal, respectively, for time-frame index k and
frequency bin index mε{0, 1, . . . , 255}.

A Hamming window with 50% overlap was used in STFT analysis ([25], Section 7.2.1).
In polar form, Yk(m), Sk(m), and Vk(m) can be expressed as: Yk(m) = Rk(m)ejφk(m),
Sk(m) = Ak(m)ejϕk(m), and Vk(m) = Dk(m)ejθk(m), where Rk(m), Ak(m), and Dk(m) are
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the magnitude spectra of the noisy speech, the clean speech, and the noise signal, respec-
tively, and φk(m), ϕk(m), and θk(m) are the corresponding phase spectra. We processed
each frequency bin of the single-sided noisy speech power spectrum, R2

k(m), to estimate
the noise power spectrum, D̂2

k(m), where mε{0, 1, . . . , 128} contain the DC and Nyquist
frequency components. To initialize the algorithm, we considered the first frame (k = 0) of
R2

0(m) as silent, giving an estimate of noise power, D̂2
0(m) = R2

0(m). The noise PSD, λ̂0(m),
was also initialized as λ̂0(m) = D̂2

0(m). For k ≥ 1; using the speech presence uncertainty
principle [26], an MMSE estimate of D̂2

k(m) at mth frequency bin is given by:

D̂2
k(m) = P(Hm

0 |Rk(m))R2
k(m) + P(Hm

1 |Rk(m))λ̂k−1(m), (37)

where P(Hm
0 |Rk(m)) and P(Hm

1 |Rk(m)) are the conditional probability of the speech ab-
sence and the speech presence given Rk(m) at mth frequency bin.

The simplified P(Hm
1 |Rk(m)) estimate is given by (The simplification is a result of

assuming the a priori probability of the speech absence and presence, P(H0) and P(H1) as:
P(H0) = P(H1) [26].):

P(Hm
1 |Rk(m)) =

[
1 + (1 + ξopt) exp

{(
−

R2
k(m)

λ̂k−1(m)

)(
ξopt

1 + ξopt

)}]−1

, (38)

where ξopt is the optimal a priori SNR.
In [26], the optimal choice for ξopt is found to be 10 log10(ξopt) = 15 dB, and

P(Hm
0 |Rk(m)) is given by P(Hm

0 |Rk(m)) = 1− P(Hm
1 |Rk(m)). If P(Hm

1 |Rk(m)) = 1 occurs
at mth frequency bin, it causes stagnation, which stops updating D̂2

k(m) (Equation (37)).
Unlike monitoring the status of P(Hm

1 |Rk(m)) = 1 for a long time as reported in [26], we
simply resolve this issue by setting P(Hm

1 |Rk(m)) = 0.99 once this condition occurs prior
to updating D̂2

k(m).
It was observed that R2

k(m) was completely filled with additive noise during silent
activity, thus giving an estimate of noise power. Therefore, unlike updating D̂2

k(m) using
Equation (36) by an existing method [26], we achieved this differently depending on the
silent/speech activity of R2

k(m) (for each frequency bin m). Specifically, at mth frequency bin
(k ≥ 1), if P(Hm

1 |Rk(m)) < 0.5, R2
k(m) yields silent activity, resulting in D̂2

k(m) = R2
k(m);

otherwise, D̂2
k(m) is estimated using Equation (37). With estimated D̂2

k(m), λ̂k(m) is up-
dated as:

λ̂k(m) = ηλ̂k−1(m) + (1− η)D̂2
k(m), (39)

where the smoothing constant, η is set to 0.9.
The |IDFT| of Pv(m)ejφk(m) yields the estimated noise, v̂(n, k), where Pv(m) =√

λ̂k(m). To ensure the conjugate symmetry, the components of Pv(m) at mε{1, 2, . . . , 127}
are flipped to that of the mε{129, 130, . . . , 255} of Pv(m) before taking the |IDFT|. We
can justify the improvement of v̂(n, k) estimation using the SPP method [26] in terms of
analyzing the tuning parameters of KF in Section 3.3.

3.3. Proposed K0(n) Tuning Method

Firstly, we constructed KF with ({âi}, σ̂2
w) and σ̂2

v and extracted the tuning param-
eters as shown in Figure 4. It can be seen from Figure 4a that [α̂2(n) + σ̂2

w] achieves
similar characteristics as the KF-oracle method (Figure 2d). Unlike σ̃2

v in the non-oracle
case (Figure 2e), σ̂2

v becomes lower than [α̂2(n) + σ̂2
w], as usually occurred in the oracle

case (Figure 2d). The improvement of these parameters also enables J2(n) and J1(n) met-
rics (Figure 4b) to achieve quite similar characteristics as appear in the WGN condition
(Figure 1c). Therefore, J2(n) and J1(n) metrics (Figure 4b) are now eligible to dynamically
tune K0(n) in real-life noise conditions. However, our investigation reveals that the J2(n)
metric is useful in tuning K0(n) during speech pauses, since it is underestimated K0(n) dur-
ing speech presence of noisy speech [21]. On the contrary, since the J1(n) metric approaches
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0 in speech regions of noisy speech, according to eq. (32), it minimizes the underestimation
of K0(n). In light of these observations, for each sample of y(n, k), we incorporated the J2(n)
metric during speech pauses and the J1(n) metric during speech presence to dynamically
offset the bias in K̃0(n).
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Figure 4. Comparing the estimated: (a) [α̂2(n) + σ̂2
w], σ̂2

v and (b) J2(n), J1(n) metrics from the noisy
speech in Figure 2c.

The proposed tuning algorithm requires a speech activity detector that operates on
a sample-by-sample basis. However, the existing speech activity detector operates on
a frame-by-frame basis. In addition, the incorporation of any external speech activity
detector makes the proposed tuning algorithm a bit complex. To cope with the issues, we
studied and found that the KF parameters can be adopted as a speech activity detector
that operates on a sample-by-sample basis. Specifically, we found that [α̂2(n) + σ̂2

w] and
σ̂2

v can be adopted as a speech activity detector for each sample of y(n, k). For example,
during speech pauses, the condition σ̂2

v ≥ [α̂2(n) + σ̂2
w] holds (e.g., 0–0.15 s or 1.8–2.19 s

of Figure 4a. Conversely, [α̂2(n) + σ̂2
w] >> σ̂2

v is found in speech regions (e.g., 0.16–0.33 s
or 0.9–1.06 s of Figure 4a). Therefore, at sample n, if σ̂2

v ≥ [α̂2(n) + σ̂2
w], y(n, k) is termed

as silent and set the decision parameter (denoted by ζ) as ζ(n) = 0; otherwise, speech
activity occurs and ζ(n) = 1. Figure 5 reveals that the detected flags (0/1: silent/speech)
by the proposed method are closely similar to that of the reference (0/−1: silent/speech,
generated by visually inspecting the utterance sp05).
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Figure 5. Comparing the detected flags of Figure 2b to that of the reference corresponding to
Figure 2a.
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At sample n, if ζ(n) = 0, the adjusted K′0(n) in the proposed SEA is given by:

K′0(n) = K̃0(n)[1− J2(n)],

=

[
α̂2(n) + σ̂2

w
α̂2(n) + σ̂2

w + σ̂2
v

][
α̂2(n)

α̂2(n) + σ̂2
w

]
,

=
α̂2(n)

α̂2(n) + σ̂2
w + σ̂2

v
.

(40)

To justify the validity of K′0(n), Figure 6a shows the numerator and the denomina-
tor of Equation (40) computed from the noisy speech in Figure 2b. It can be seen that
α̂2(n) ≈ 0 during speech pauses (e.g., 0–0.15 s or 1.8–2.19 s of Figure 6a). According to
Equation (40), K′0(n) ≈ 0. Since [α̂2(n) + σ̂2

w + σ̂2
v ] >> α̂2(n) occurs during speech presence

(e.g., 0.16–0.33 s or 0.9–1.06 s of Figure 6a), it may be underestimated K′0(n) as in the WGN
experiment (Figure 1d). Thus, J2(n) metric-based tuning of K′0(n) in speech activity of
y(n, k) is inappropriate.
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Figure 6. K′0(n) responses in terms of: (a) α̂2(n) and α̂2(n) + σ̂2
w + σ̂2

v , and (b) [α̂2(n) + σ̂2
w]

2 and
[α̂2(n) + σ̂2

w + σ̂2
v ]

2, where the same experimental setup of Figure 2b is used.

As discussed earlier, we carried out tuning biased K0(n) using the J1(n) metric during
speech activity of y(n, k). However, our further investigation of the J1(n) metric-based
tuning in Equation (33) reveals that the subtraction of J1(n) from biased K0(n) may still
produce an underestimated K′0(n). To cope with this problem, at sample n, if ζ(n) = 1, we
found a more effective solution for tuning of biased K0(n) using the J1(n) metric as:

K′0(n) = K̃0(n)[1− J1(n)],

=

[
α̂2(n) + σ̂2

w
α̂2(n) + σ̂2

w + σ̂2
v

][
α̂2(n) + σ̂2

w
α̂2(n) + σ̂2

w + σ̂2
v

]
,

=
[α̂2(n) + σ̂2

w]
2

[α̂2(n) + σ̂2
w + σ̂2

v ]
2 .

(41)

To justify the validity of K′0(n), the numerator and the denominator of Equation (41)
are shown in Figure 6b. It can be seen that [α̂2(n)+ σ̂2

w + σ̂2
v ]

2 ≥ [α̂2(n)+ σ̂2
w]

2 during speech
presence of y(n, k) (e.g., 0.16–0.33 s or 0.9–1.06 s), which causes K′0(n) to approach 1.

To examine the performance of the proposed tuning algorithm in real-life non-stationary
noise conditions, we repeated the experiment in Figure 2. It can be seen from Figure 7a that
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K′0(n) is closely similar to the oracle K0(n). Specifically, it maintains a smooth transition at
the edges and the temporal changes in speech regions are closely matched to the oracle
K0(n). Conversely, the AKF-RMBT method [22] produces a significant underestimated
K0(n) in speech regions. Therefore, the reduced-biased K′0(n) in the proposed method is
more appropriate to mitigate the risks of distortion in the enhanced speech than that of
the AKF-RMBT method [22]. We also repeated the experiment in Figure 2 except for the
utterance sp05 which was corrupted by 5 dB colored (f16) noise. Figure 7b reveals that
the biasing effect is reduced significantly in K′0(n) and closely similar to the oracle K0(n).
However, the AKF-RMBT method [22] still produced underestimated K0(n) in speech
regions. In light of the comparative study, it is evident that the proposed method ade-
quately addresses the tuning of biased K0(n) both in real-life non-stationary and colored
noise conditions.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1b

0

0.2

0.4

0.6

0.8

1a

Figure 7. Comparing K0(n) obtained using KF-pracle, proposed, and AKF-RMBT [22] methods from
the utterance sp05 corrupted with 5 dB: (a) non-stationary (babble) and (b) colored (f16) noises.

4. Speech Enhancement Experiment
4.1. Corpus

For the objective experiments, 30 phonetically balanced utterances belonging to six
speakers (three male and three female) were taken from the NOIZEUS corpus ([1], Chapter 12).
The clean speech recordings had lengths of two sec to four sec depending on utterances ([1],
Chapter 12). We generated a noisy speech data set by mixing the clean speech with
real-world non-stationary (babble, street) and colored (factory2 and f16) noise recordings at
multiple SNR levels (from−5 dB to +15 dB, in 5 dB increments). This provided 30 examples
per condition with 20 total conditions. The street noise recording was taken from [27] and
the rest of the noise recordings were taken from [24]. All clean speech and noise recordings
in the noisy speech data set are single channel with a sampling frequency of 8 kHz.

4.2. Objective Evaluation

The objective measures were used to evaluate the quality and intelligibility of the
enhanced speech with respect to the corresponding clean speech. The following objective
evaluation metrics have been used in this paper:

• Perceptual Evaluation of Speech Quality (PESQ) for objective quality evaluation [28].
The PESQ score ranged between −0.5 and 4.5. A higher PESQ score indicates better
speech quality;

• Signal to distortion ratio (SDR) for objective quality evaluation [29]. The SDR score
ranged between −∞ and +∞. A higher SDR score indicates better speech quality;

• Short-time objective intelligibility (STOI) measure for objective intelligibility evalua-
tion [30]. It ranged between 0 and 1 (or 0 and 100%). A higher STOI score indicates
better speech intelligibility.
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4.3. Spectrogram Evaluation

We also analyzed the spectrograms of enhanced speech produced by the proposed and
the competitive methods to visually quantify the level of residual noise as well as distortion.
For this purpose, we generated a noisy speech data set by corrupting the utterance sp05
with 5 dB babble (non-stationary) and 5 dB f16 (colored) noises.

4.4. Subjective Evaluation

The subjective evaluation was carried out through a series of blind AB listening
tests ([5], Section 3.3.4). To perform these tests, we used the same noisy speech data
set (Section 4.3). In this test, the enhanced speech produced by six SEAs as well as the
corresponding clean speech and noise corrupted speech signals were played as stimuli
pairs to the listeners. Specifically, the test was performed on a total of 112 stimuli pairs (56
for each utterance) played in a random order to each listener, excluding the comparisons
for the same method.

The listener gave the following ratings for each stimuli pair: prefers the first or second
stimuli, which is perceptually better, or a third response indicating no difference was found
between them. For a pairwise scoring, 100% is given to the preferred method, 0% to the
other, and 50% for the similar preference response. The participants could re-listen to
stimuli if required. Ten English speaking listeners participated in the blind AB listening
tests. The average of the preference scores given by the listeners is termed the mean
preference score (%), which was used to compare the efficiency among the SEAs.

4.5. Specifications of the Competitive SEAs

The performance of the proposed SEA was carried out by comparing it with the
following benchmark SEAs (p : order of {ai}, σ2

w: the excitation variance of AR model, w :
analysis frame duration (ms), and s : analysis frame shift (ms)).

1. Noisy: No enhancement (speech corrupted with noise);
2. KF-oracle: KF, where ({ai}, σ2

w) and σ2
v are computed from the clean speech and the

noise signal, p = 10, w = 32 ms, s = 16 ms, and a rectangular window is used
for framing;

3. KF-Non-oracle: KF, where ({ai}, σ2
w) and σ2

v are computed from the noisy speech,
p = 10, w = 32 ms, s = 16 ms, and rectangular window is used for framing;

4. MMSE-STSA [9]: It used w = 25 ms, s = 10 ms, and Hamming window for framing;
5. AKF-IT [13]: AKF operates with two iterations, where initial ({ai}, σ2

w) and ({bj},
σ2

u) are computed from the noisy speech followed by re-estimation of them from the
processed speech after first iteration, p = 10, noise LPC order q = 10, w = 20 ms,
s = 0 ms, and rectangular window is used for framing;

6. AKF-RMBT [22]: Robustness metric-based tuning of the AKF, where ({ai}, σ2
w) and

({bj}, σ2
u) are computed from the pre-whitened speech and initial silent frames, p = 10,

q = 40, w = 20 ms, s = 0 ms, and rectangular window is used for framing;
7. MDKF-MMSE [17]: Modulation-domain KF, where ({ai}, σ2

w) is computed from the
pre-filtered speech using the MMSE-STSA method [9], p = 2, q = 4, w = 20 ms, s = 0
ms in modulation domain;

8. Proposed: Robustness and sensitivity tuning of the KF, where ({âi}, σ̂2
w) and σ̂2

v
are computed from the pre-whitened speech and estimated noise, p = 20, q = 20,
w = 32 ms, s = 16 ms, rectangular window is used for time-domain frames, and
Hamming window is used for acoustic frames.

5. Results and Discussion
5.1. Objective Quality Evaluation

Figure 8 shows the average PESQ score (found over all frames for each test condition
in Section 4.1) for each SEA. It can be seen that the KF-oracle method exhibits the highest
PESQ score for all test conditions. It is due to ({ai}, σ2

w) and σ2
v being computed from the



Signals 2021, 2 449

clean speech and the noise signal. The improvement of the average PESQ score for the
KF-non-oracle method is marginal as compared to the noisy one. The proposed SEA shows
a considerable PESQ score improvement compared to the benchmark methods across the
test conditions. The average PESQ score for the proposed method is also very similar to
that of the KF-oracle method. It is due to the reduced-biased Kalman gain obtained by the
proposed tuning algorithm being closely similar to that of the KF-oracle method (Figure 7).
Amongst the benchmark methods, MDKF-MMSE [17] shows relatively competitive PESQ
scores followed by AKF-RMBT [22] for all tested conditions (Figure 9a–d). On the other
hand, the AKF-IT method [13] exhibits reduced PESQ scores than other benchmark methods
across the test conditions due to suffering from distortion and musical noise in the enhanced
speech. In light of this comparative study, it is evident that the proposed method has
better quality with regard to enhanced speech than that of the competing methods for all
tested conditions.
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Figure 8. Average PESQ score comparison between the proposed and benchmark SEAs on NOIZEUS
corpus corrupted with: (a) babble, (b) street, (c) factory2, and (d) f16 noises for a wide range of SNR
levels (from −5 to 15 dB).
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Figure 9. Average SDR (dB) score comparison between the proposed and benchmark SEAs on
NOIZEUS corpus corrupted with: (a) babble, (b) street, (c) factory2, and (d) f16 noises for a wide range
of SNR levels (from −5 to 15 dB).

Figure 9 shows the average SDR (dB) score (found over all frames for each test
condition in Section 4.1) for each SEA. Like the earlier experiment in Figure 8, the KF-oracle
method shows an indication of the highest SDR score for all test conditions. Additionally,
the noisy one shows the lower SDR scores for all tested conditions. The proposed SEA
consistently demonstrates SDR score improvement from the competing methods across the
test conditions. Amongst the competing methods, the MDKF-MMSE [17] show relatively
competitive SDR scores for all tested conditions (Figure 9a–d). The noisy one shows the
lowest SDR scores for all tested conditions. In light of this comparative study, it is evident
that the proposed SEA exhibits less distortion in the enhanced speech than that of the
competing methods for all tested conditions.

5.2. Objective Intelligibility Evaluation

Figure 10 shows the average STOI score (found over all frames for each test condition
in Section 4.1). Like the PESQ score comparison (Section 5.1), the KF-oracle method
also achieves the highest STOI score for all tested conditions. The proposed method
consistently outperforms all competing methods across the tested conditions in terms of
STOI score improvements. The STOI score improvement by the proposed method is also
very similar to that of the KF-oracle method. Amongst the benchmark methods, MDKF-
MMSE [17] is found to be competitive with the proposed method for all tested conditions.
Conversely, the noisy one shows the lowest STOI scores for all tested conditions. In light of
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this comparative study, it is evident that the proposed method produces better intelligible
enhanced speech than the competing methods for all tested conditions.
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Figure 10. Average STOI score comparison between the proposed and benchmark SEAs on NOIZEUS
corpus corrupted with: (a) babble, (b) street, (c) factory2, and (d) f16 noises for a wide range of SNR
levels (from −5 dB to 15 dB).

5.3. Spectrogram Analysis of the SEAs

Figures 11 and 12 compare the spectrograms of enhanced speech produced by each
SEA for noisy speech data set (Section 4.2). Typically, the noise reduction is visibly improved
when going from the KF-non-oracle method to the KF-oracle method. Specifically, the
biased gain of the KF-non-oracle method passes a significant residual noise in the enhanced
speech (Figures 11c and 12c). Additionally, the poor estimates of the a priori SNR introduces
a high degree of residual noise in the enhanced speech produced by the MMSE-STSA
method [9] (Figures 11d and 12d). The degree of residual noise decreases in the enhanced
speech produced by the AKF-IT method [13] (Figures 11e and 12e). However, the residual
noise appears as musical noise. The enhanced speech also gets distorted due to processing
the noisy speech iteratively by AKF. The AKF-RMBT method [22] exhibits less residual
noise in the enhanced speech; however, it suffers from distortion due to the underestimated
Kalman gain (Figures 11f and 12f). The MDKF-MMSE method [17] produces less distorted
speech (Figures 11g and 12g) as compared to AKF-RMBT method (Figures 11f and 12f).
It can be seen that the proposed method produces enhanced speech with significantly
less residual background noise and speech distortion (Figures 11h and 12h) than MDKF-
MMSE [17] (Figures 11g and 12g). In addition, the enhanced speech produced by the
proposed method is closely similar to the KF-oracle method (Figures 11i and 12i). It is due
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to the reduced-biased Kalman gain of the proposed method, which is very similar to that
of the KF-oracle method.
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Figure 11. Comparing the spectrograms of: (a) clean speech (utterance sp05), (b) noisy speech
(corrupt sp05 with 5 dB babble noise) (PESQ = 2.10), enhanced speech produced by the: (c) KF-non-
oracle (PESQ = 2.18), (d) MMSE-STSA [9] (PESQ = 2.32), (e) AKF-IT [13] (PESQ = 2.26), (f) AKF-
RMBT [22] (PESQ = 2.42), (g) MDKF-MMSE (PESQ = 2.48), (h) proposed (PESQ = 2.55), and (i) KF-
nracle (PESQ = 2.61) methods.
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Figure 12. Comparing the spectrograms of: (a) clean speech (utterance sp05), (b) noisy speech
(corrupt sp05 with 5 dB f16 noise) (PESQ = 2.14), enhanced speech produced by the: (c) KF-non-oracle
(PESQ = 2.26), (d) MMSE-STSA [9] (PESQ = 2.39), (e) AKF-IT [13] (PESQ = 2.31), (f) AKF-RMBT [22]
(PESQ = 2.53), (g) MDKF-MMSE (PESQ = 2.58), (h) proposed (PESQ = 2.65), and (i) KF-oracle
(PESQ = 2.70) methods.

5.4. Subjective Evaluation by AB Listening Test

The mean preference score (%) comparisons for all methods are shown
in Figures 13 and 14. The non-stationary (babble) noise experiment in Figure 13 reveals that
the proposed method is widely preferred (73%) by the listeners to that of the benchmark
methods, apart from the clean speech (100 %) and the KF-oracle method (81%). Amongst
the benchmark methods, MDKF-MMSE [17] is most preferred (65%) with AKF-RMBT [22]
(60%). Although the AKF-IT [22] produced distorted speech, as confirmed by objective
PESQ, SDR, and STOI score comparison as well as spectrogram analysis, the listeners prefer
it (47%) over MMSE-STSA [9] (31%). The subjective testing implies that it was considered
as an improvement of noise reduction in the speech region than a distortion. The colored
(f16) noise experiment (Figure 14) also confirms that the proposed method achieves a
significant preference score (75%) compared to the benchmark methods, excepting the
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clean speech (100%) and the KF-oracle method (82%). Among the benchmark methods,
MDKF-MMSE [17] is found to be the most preferred (67%) with AKF-RMBT [22] (63%). In
light of the blind AB listening tests, it is evident that the enhanced speech produced by the
proposed method ensures the best perceived quality amongst all tested methods for both
male and female utterances corrupted by real-life non-stationary as well as colored noises.
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Figure 13. The mean preference score (%) comparison between the proposed and benchmark SEAs
for the utterance sp05 corrupted with 5 dB non-stationary babble noise.
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Figure 14. The mean preference score (%) comparison between the proposed and benchmark SEAs
for the utterance sp27 corrupted with 5 dB colored f16 noise.

6. Conclusions

Robustness and sensitivity metric-based tuning of the Kalman filter gain for single-
channel speech enhancement has been investigated in this paper. At first, the noise variance
was computed from the estimated noise for each noisy speech frame using a speech
presence probability method. A whitening filter was also constructed to pre-whiten each
noisy speech frame prior to computing LPC parameters. Then, the robustness and the
sensitivity metrics were incorporated differently depending on the speech activity of the
noisy speech to dynamically offset the bias in Kalman gain. The noise variance and the
AR model parameters were adopted as a speech activity detector. It is shown that the
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proposed tuning algorithm yields a significant reduced-biased Kalman gain, which enables
the KF to minimize the residual noise and distortion in the enhanced speech. Extensive
objective and subjective scores on the NOIZEUS corpus demonstrate that the proposed
method outperforms the benchmark methods in real-life noise conditions for a wide range
of SNR levels.
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