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Abstract: This study investigates the potential of fluorescence imaging in conjunction with an original,
fused segmentation framework for enhanced detection and delineation of brain tumor margins. By
means of a test bed optical microscopy system, autofluorescence is utilized to capture gray level
images of brain tumor specimens through slices, obtained at various depths from the surface, each
of 10 µm thickness. The samples used in this study originate from tumor cell lines characterized
as Gli36ϑEGRF cells expressing a green fluorescent protein. An innovative three-step biomedical
image analysis framework is presented aimed at enhancing the contrast and dissimilarity between
the malignant and the remaining tissue regions to allow for enhanced visualization and accurate
extraction of tumor boundaries. The fluorescence image acquisition system implemented with
an appropriate unsupervised pipeline of image processing and fusion algorithms indicates clear
differentiation of tumor margins and increased image contrast. Establishing protocols for the safe
administration of fluorescent protein molecules, these would be introduced into glioma tissues or cells
either at a pre-surgery stage or applied to the malignant tissue intraoperatively; typical applications
encompass areas of fluorescence-guided surgery (FGS) and confocal laser endomicroscopy (CLE). As a
result, this image acquisition scheme could significantly improve decision-making during brain tumor
resection procedures and significantly facilitate brain surgery neuropathology during operation.

Keywords: fluorescence imaging; imaging of cancer margins; Fluorescence-guided surgery (FGS);
confocal laser endomicroscopy (CLE); glioblastoma multiforme (GBM); unsupervised segmentation
tools; fusion of cluster-based segmentation schemes; Otsu thresholding; entropy-based thresholding;
mean shift clustering
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1. Introduction

Cancer is one of the most common causes of death worldwide with millions of cases
being diagnosed every year. Therapy and identification of cancer constitute one of the
most prominent research fields in the international community, with numerous innovative
approaches being developed for early diagnosis and efficient management of the disease.
Surgical removal of the primary cancer with or without adjuvant therapy constitutes
the standard of care for the disease. Upon tumor resection, the medical expert who is
performing the operation can form an abstract visual picture of the major area of malignant
tissue but not the “edges” (points formulating its boundary) at a microscopic level, which
might be penetrating into the surrounding region of non-malignant tissue area [1]. To
ensure the adequate removal of the cancerous tissue, the protocol requires removing
enough normal tissue to achieve a “clean margin” while maintaining the functionality
and formation of the organ. In addition, tumor margins are routinely assessed post-
operatively for pathological conditions to ensure that the tumor was effectively eliminated.
A major reason is that incompletely resected margins require re-excision, causing additional
corporal and psychological encumbrance to the patient. Moreover, the medical expert also
takes into consideration the small, yet aggravating possibility of local recurrence in treated
patients triggered by miss-detected marginal regions of the tumor during pathological
sampling [2]. Therefore, except for tumor detection, it is of paramount importance to trace
and further examine the accurate position and structural composition of the cancerous
tissue segments so as to facilitate efficient excision, while, in parallel, making certain that,
firstly, healthy tissue is not damaged and, secondly, the possibility of cancer recurrence
is sufficiently decreased (at least in terms of unsuccessful surgery or surgical failures).
Existing imaging modalities, such as positron emission tomography (PET) and magnetic
resonance imaging (MRI), experience difficulties in precisely discriminating cancer from
normal tissue at the tumor margins. However, it is essential that this specific limitation
is resolved promptly, as guided surgery requires the proper detection of tumor margins
and identification of its morphological characteristics intraoperatively. Hence, for resection
of malignant tissue, developing a competent framework for demarcating tumor margins
non-invasively could prove extremely beneficial in clinical practice. It may both facilitate
efficient removal of cancer via surgical procedures and prevent the disease from occurring
again [2,3].

Brain tumors are considered rather rare yet fatal cancers with intrinsic difficulties in
identifying health risks and determinant conditions in the overall community. Several
of these kinds of malignancy are by nature refractive to treat due to their position in the
brain. Surgery solutions can be adopted for low-grade tumors, while chemotherapy and
radiotherapy could serve as possible choices upon visible malignant tissue remaining after
surgical procedures. For higher-grade disease, a combination of these approaches could
be utilized in therapy plans. Yet, all three treatment options sustain increased risk for
long-term morbidity of patients and insufficient cure of the disease. Methodologies for
early identification and diagnosis of brain tumors are fundamental to prevent destruction
or deterioration of brain cells due to disease evolution or therapy side effects. The key step
for developing such methods lies in studying and deeply understanding the mechanisms
beyond brain tumor angiogenesis and growth. Nervous system tumors (including brain
and other types) are the 10th leading cause of death for both genders. Based on epidemio-
logical predictions, it is estimated that 18,020 adults, namely, 10,190 male and 7830 female,
lost their lives from malignant brain and central nervous system (CNS) tumors in 2020.
Another important statistical finding is that the 5-year survival rate for patients who suffer
from these types of cancer is nearly 36%, while the 10-year survival rate is almost 31%,
which decreases with increasing age. At younger ages, i.e., for populations between fifteen
to thirty-nine years old, the 5-year survival rate is almost 71%. The 5-year survival rate for
people over forty years old drops to 21%. However, survival rates are dependent on several
factors, such as genetic, environmental, immunological, biochemical, and biological factors,
including the location and kind of spinal cord or brain tumor. For instance, environmental
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conditions are considered as potential risk factors for carcinogenesis of brain tumors by
means of radiation exposure, poisonous agents (N-nitroso composites, plant protection
products), atmospheric pollution, and electromagnetic radiation through radio waves.
However, for certain contributing factors, there is no definite scientific evidence to advocate
their correlation. On the other hand, 5% of cerebral tumors are linked to various hereditary
cancer predisposition syndromes. People with these disorders inherit a germline mutation
in a tumor suppressor gene. Although the relationship between hereditary genetic factors
and brain tumors has been established, greater efforts should be focused on identifying
the underlying genes. Finally, immunological, biological, and biochemical factors such as
exposure to infections, viruses, and allergens, may be among the risk factors for develop-
ing brain tumors, although more studies validating such hypotheses are imperative [3].
Glioblastoma multiforme (GBM) is the most frequent and aggressive malignant primary
brain tumor in people over 18 years old and is classified, together with other types of
tumors, in the general class of gliomas. Several studies demonstrate that more complete
resection of these tumors leads to improved outcomes for patients [4–7], and, thus, many
approaches are being implemented to improve the extent of tumor resection. In clinical
trials, Stummer and coworkers [8] have demonstrated that image-guided resection of GBM
results in more accurate removal of tumorous tissue, as well as higher survival rates and
improved living standards for patients. The first in vivo trials for image-guided surgery in
GBM using an administered probe were performed by the group of V. Ntzichristos [9,10],
indicating that multispectral optical methodologies achieve high-resolution quantitative
imaging of tissue and cancer biomarkers. Similarly, the work of van Dam [11] supports the
potential benefits of intra-operative optical imaging, showing that the use of fluorescence
imaging achieves certain and case-sensitive detection of tumor tissue in real-time mode
during surgery, enabling the detection of remarkably increased malignant lesions com-
pared to those that could have been detected by visual observation. Cutter et al. [12] used
animal models of GBM, which demonstrated that imaging probes can be added topically
to the resection cavity and elaborate the tumor margin. The majority of the non-invasive
near-infrared fluorescent (NIRF) imaging probes constructed so far are based on a consen-
sus sequence of peptides to operate/behave as an enzyme substrate that enables probe
activation. Cutter and her team [12] utilized fluorescently quenched activity-based probes
(ABP), built on tiny molecule suicide inhibitors of tumor-associated proteases. Several
studies emphasized the efficiency and utilization of NIRF probes. They proposed this
particular topology for the detection of overexpressed tumor-associated markers [13] and
the imaging of tumor-expressed proteases in tissue culture, as well as in tumors that were
hypodermically implanted in mice [14].

The main contribution of this study is the application of tumor-margin identification
for enhanced and user-friendly visual inspection of brain tissue along with efficient guid-
ance of tumor removal. Thus, we do not aim to adopt or develop complex and advanced
image processing concepts but mainly focus on the potential of the proposed system
(hardware and software) through preliminary laboratory assessments in this area, due
to its low cost, simplicity, and time-effective extraction of results. Specifically, this paper
addresses the potential of a digital fluorescence imaging system (custom-made design,
not a commercially utilized product) supported by an adaptive segmentation pipeline,
with the aim of enhancing the imaging and contrast of tumor brain regions. Brain cancer
cells were irradiated by an Argon laser operating at 488 nm and connected to the micro-
scope. Output optical data (auto-fluorescence images) were acquired and treated utilizing
unsupervised clustering in conjunction with adaptive thresholding algorithms, without
any prior knowledge of the sample data. By utilizing the image intensity distribution in
three complementary ways and fusing the processing results, the designed system can be
viewed as an efficient, user-independent tool for assisting image-guided surgery, providing
increased penetration depth and efficiency in locating the tumor margins and area. In this
mode, enabling the surgical resection of invasive tumor tissues without causing significant
damage to healthy tissue (proposed system follows a non-invasive approach since no
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straightforward contact between the illumination source and the tissue sample/patient
is required), via the accurate specification and extraction of the tumor margins, would
yield more effective supplementary therapy and extend patient survival. Focusing on the
efficacy of brain tumor resection, the implemented technical and algorithmic framework
could be a compact screening and guidance tool, enabling fast, clear identification and the
removal of margin-penetrating cells, which could play a key role in future operational and
treatment assessments, especially in combination with molecular imaging probes targeting
brain tumor markers. The processing unit of the system addresses the joint incorporation
of different forms of structural information hidden within image samples via a direct
procedure that can be easily understood and adopted by the medical expert. Indeed, the
proposed imaging modality enables the facile and non-detrimental application to tissues,
in conjunction with accurate and near-instant activation of fluorescence probe, constituting
a cost-effective and powerful tool for near real-time visualization and identification of
tumor-associated markers during surgery.

After the introduction of the aims, novelty, and contribution of the current study, a
detailed review of the relevant scientific research is presented in Section 2 in support of the
adoption of the proposed optical system design. Section 3 describes the basic concepts of
the experimental setup, while Section 4 presents the brain tumor image processing steps.
Section 5 illustrates the results of the proposed tumor identification procedure, emphasiz-
ing the basic conclusions and prospects. The last section (Conclusions) summarizes the
description of the proposed unsupervised learning fluorescence imaging system along
with the outcome and potential of the presented work.

2. Literature Review

Optical coherence tomography (OCT) is one the most extensively studied technologies
for the identification of tumor margins. This approach facilitates the extraction of informa-
tion about tumor margins during surgery in real-time mode, enabling inspection/scanning
of foci of the cancerous area or tumor cells that have spread to a different region than their
origin (metastasized cancer). One of the most notable works in this research field addresses
image-guided surgery (IGS) of breast cancer using OCT [15]. The specific methodology
utilizes optical “ranging” of near InfraRed (IR) wavelengths to extract structural informa-
tion in the spatial domain and increased imaging resolution at the microscopic/cellular
level (at the order of microns). This is achieved via constructing cross-sectional maps in
the two-dimensional image space based on the physical phenomenon of the interaction
of light with an illuminated surface (optical backscattering). Many other studies demon-
strate OCT as an efficient framework for the delineation of boundaries between normal
and diseased breast tissue, utilizing techniques for the evaluation of human breast tissue
through processing and analysis in frequency (Fourier transform) and spatial domain [16].
Another direction for assessments lies in the 3D volumetric data acquisition of human
breast cancer tumor margins and axillary lymph nodes by rotating and retracting an OCT
needle-probe below the tissue surface during imaging [17]. Despite the high resolution and
efficiency in discriminating normal from cancerous tissue, the limited image penetration
depth achieved (2–3 mm) has restricted the utilization of OCT as a real-time imaging
modality. In addition, quantitative and objective assessments are based on the subjective
interpretation of the acquired image by a specialized and well-trained medical expert.
Similarly, optical radiomic signatures, extracted from corresponding optical data (optical
coherence tomography images), led to enhanced identification of melanoma, with unique
contrast and specificity [18].

The concept of elastic scattering spectroscopy (ESS) was used in the ultra-violet
(UV)-visible spectral bands [19] and constitutes one of the earliest studies attempting
to evaluate and characterize the boundaries of cancerous breast tissue samples through
the application of optical spectroscopy. An analogous attempt was performed in [20] to
examine the extent of cancer removal through surgical operations applying the technology
of inelastic scattering of monochromatic light (Raman spectroscopy). Although these
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techniques are quite prone to morphological alterations at both sub-cellular and cellular
plane (microscopic level) and enable efficient discrimination of different tissues states via
their light fingerprints, their small effective illumination-source-to-detector separation
limits the ability to sense the presence of malignant tissue up to 1–2 mm from the surface. A
group of researchers from MIT, in particular, a team from the GRH Spectroscopy Laboratory,
have developed a mobile scanning system (spectroscopic device incorporating a fiber-optic
probe) and properly formulated to evaluate tumor margins intraoperatively; the portable
scanner is based on two principles, namely intrinsic fluorescence spectroscopy (IFS) and
diffuse reflectance spectroscopy (DRS) [21].

Fluorescence-based image acquisition and analysis methods have facilitated both the
accurate demarcation of the infiltrating contour of tumors in real-time and in vivo mode
and the evaluation of their histological characteristics. For instance, confocal laser endomi-
croscopy (CLE) enables the in vivo extraction of brain tissue optical data (fluorescent-based
images) with highly increased resolution (at the cellular level), as accomplished in optical
biopsies. On the other hand, the principle of fluorescence-guided surgery (FGS) is adopted
in applications where improved visualization quality of tumor margins is required so that
the extent of cancerous tissue removal in surgical operation increases. A systematic study
of several means for fluorescence image-guided glioma surgery, based on preclinical and
clinical assessments, is reported in [22].

In other works, photo-acoustic imaging was also used for potential intraoperative
tumor margin detection [23]. Photo-acoustic tomography (PAT) has been utilized for
breast cancer imaging, brain imaging, and other applications. Even though the limited
penetration depth of the technique can be overcome by utilizing microwaves or radiowaves,
ultrasounds sustain intense artifact effects upon the reflection of signals from gas to liquid
structures and gas to solid ones due to differentiations in acoustic impedances. In addition,
ultrasounds suffer from considerable signal attenuation and corruption (phase distortion)
in dense/compact structures (thick bones properties), such as the human skull. As a further
observation, such acoustic signals are characterized by a decreased ability to efficiently
penetrate through gas hollows (such as lung tissues and/or brain tumors). Finally, in
order to efficiently detect ultrasonic waves, direct communication/connection of the sensor
module (transducer) and the biological structure (tissue sample) is required.

In [24], the authors investigated the feasibility of the multispectral dye-enhanced
polarized light imaging method to delineate non-melanoma tumor margins, a tissue type
where regions of increased hemoglobin concentration and dye absorption need to be
isolated. This work successfully distinguished and identified the tumor margins using the
specific imaging modality.

Apart from the imaging modalities mentioned above, nanoscale structures are also
used to enhance margin detection. For example, nanotechnology-based contrast agents
enhance optical imaging methods and aid in margin detection. Gold nanoparticles (GNPs)
are particularly suited for this purpose as they absorb and scatter light strongly and
the presence of gold metal intensifies the signal greatly. These gold nanoparticles are
coupled with a dye and used in Raman spectroscopy and other optical spectroscopic
techniques to produce the surface-enhanced Raman spectroscopic (SERS) effect. Near
IR lasers and fluorescence detectors are also combined to record the Raman signals and
measure fluorescence in the presence of gold nanoparticles, which concentrate in tumor
regions. Due to their nano size, they can easily penetrate blood vessels that are leaky due to
the tumor and get trapped in the edge of these tumors as such blood vessels are dominant in
tumor edges. This effect enhances margin detection enormously. Similar studies introduced
the use of gold nanoparticles in NIR narrow-band imaging (NIR NBI) [25], utilizing two
lighting emitting diodes (LEDs) with wavelengths at the green and NIR range to illuminate
the GNP infiltrated blood vessels. A charge-coupled device (CCD) captures the reflected
illumination signal from the sample. In the corresponding results, the gold nanoparticles
clearly demarcated the tumor margins, demonstrating the potential of this technology in
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intraoperative detection. Targeted gold nanoparticles that deliver a fluorescent payload to
tumors have also been used to demarcate the tumor from normal tissues [26].

During the last decade, Giakos et al. [27–30] have extensively worked on a number
of approaches for the differentiation of healthy and cancerous cells, introducing label-free
NIR–IR polarimetric diffuse reflectance-based cancer detection methodologies in conjunc-
tion with a wavelet and fractal analysis. Visualizing the interaction of IR with healthy and
malignant (cancerous) lung cells through polarimetry under diffuse reflectance geometry,
in connection with polarimetric exploratory data analysis (pEDA) [29] enables the devel-
opment of robust and competent diagnostic tools. Image and signal generation through
the determination of the polarization states of light proves quite effective and sustains
specific benefits for a wide variety of identification and classification tasks and applica-
tions, mostly based on the intrinsic nature of optical backscattering to provide increased
contrast in varying polarization conditions. As a result, under backscattered geometry,
multiple kinds of early-stage malignancies (cancer) could be discriminated, considering
and quantifying their unique diffuse reflectance polarimetric signatures. Another related
method uses polarimetric discrimination of the wavelet-fractal domain for histological
analysis of monolayer lung cancer cells [31,32]. Wavelet polarimetric evaluation of healthy,
squamous carcinoma, and adenocarcinoma lung tissue cell lines proves quite promising
and reliable in accurately and robustly classifying cells as healthy or cancerous ones, in
conjunction with proper discrimination between malignant cells originating from different
types of lung cancer [32].

In order to provide efficient interfaces to medical doctors and guide them to easily fo-
cus on affected regions, imaging modalities must be supported by digital image processing
and segmentation schemes, especially in the case of biomedical applications, as medical
images suffer from low contrast and noise. Thus it is of paramount importance to select
appropriate and application adaptive approaches in order to increase contrast, decrease
information loss and artifacts from captured image data. Histogram-based techniques
constitute a common yet quite effective tool for medical image enhancement, finding
numerous applications and algorithmic modifications in international literature for many
years [33,34]. The latest advances in magnetic resonance (MR) image enhancement include
metaheuristics and particle swarm optimization (PSO). Rundo et al. [35,36] proposed an
automatic global thresholding and segmentation framework based on genetic algorithms
(GAs), confirming through MRI data that there is an underlying bimodal distribution of
pixel intensities. The principal idea lies in calculating the optimal threshold (best solution)
under an evolutionary computational approach that better discriminates the two Gaussian
distributions, formulating a bimodal pixel intensity representation function (histogram) in
a medical image sub-region. Acharya and Kumar introduced an efficient particle swarm
optimized histogram equalization scheme to automatically extract optimal threshold for
texture identification of regions through an iterative approach under a fitness function
that combines different performance metrics [37]. The main limitation of such approaches
is the increased computational and algorithmic design complexity along with increased
overall processing time. Machine learning and computational intelligence approaches are
outside the scope of the present study, as we focus on developing a framework that is easy
for medical experts to use and set up and can be adopted in real- or near real-time image
analysis applications.

Clustering constitutes a widely-established methodology for statistical image analysis,
based on assigning groups of pixels into classes (clusters) based on a distance index/metric
(intensity similarity and topological proximity), so that the topological inter-cluster similar-
ity and the extra-cluster separability are increased. The selection of the optimal clustering
scheme and algorithmic setup (namely, the feature definition, the initial cluster centers
or seed points, the distance function to be adopted, or the number of dominant classes)
depends on the input dataset origin and type along with the application requirements. The
classic k-means and the mean shift algorithms constitute two fundamental frameworks for
image classification and decomposition. The first one (known as “k-means clustering”) [38]
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is an iterative approach that aims to divide a set of data samples (pixel intensities in the
case of images) into K groups (clusters) by exploiting the data-driven probability density
function in the topology of the feature space. The algorithm converges to a preset number
K of clusters in the data distribution, but the quality of the extracted outcome and classifi-
cation performance are strongly affected and controlled by the initialization condition and
the number of clusters a priori defined. The mean shift (MSH) technique (known as “mean
shift clustering”) [39,40] is considered an identical solution to overcome the previously
mentioned key drawback of k-means clustering. MSH is a robust, statistical, nonparametric
detection methodology that works in the density distribution space. Its basic ideas lie in
determining and controlling the mode (the highest density of data points) adaptation in
terms of a kernel-weighted mean value (average) estimate of data points (observations)
within a region of movement (sliding smoothing window). The computational procedure
is performed iteratively until convergence to a global or local solution (local density mode)
according to a well-defined and carefully selected stopping criterion.

Another type of segmentation technique that directly utilizes the intensity distribu-
tion of data (histogram) defines thresholds for classes based on certain discrimination
criteria. Otsu thresholding has been one of the standard thresholding techniques used for
segmenting an image into two key principal regions (object and background classes) [41].
It is based on the Gaussian modeling of each histogram mode as a natural model of the
probability distribution function of a physical object. The margin of the Bayesian detection
error of a bi-modal joint distribution defines the appropriate threshold, as a balance point
between the misdetection probabilities of the two classes. Notice that the approach can
be easily extended to the multiclass case by modeling a multi-modal data distribution
and defining the appropriate threshold between consecutive pairs of Gaussian models.
On similar grounds, entropy-based thresholding exploits the Shannon entropy [42] of
distribution in each histogram mode and interprets the maximization of the thresholded
image entropy as indicative of maximum information transfer [43].

These techniques were used in this study to threshold the fluorescence images and dis-
criminate the cancerous regions from the healthy area of the brain tissue; Otsu’s approach
is selected because it calculates histograms in a probabilistic manner and produces instant
segmentation results under the assumption of the normality of illumination without any
prior knowledge of the image properties. In addition, we employ the mean shift procedure
in order to refine the specification of image modes within the data distribution and regulate
the derivation of empirical probability density functions. As a complementary function,
entropy thresholding is also selected to address the information content and interaction
of classes. The latter scheme has proven effective in locating sharp discontinuities (edges)
within an image in a robust and flexible way, overcoming the sensitivity to noise and
time complexity of gradient-based edge detectors utilizing first and second-order deriva-
tives [44]. We expect that this efficiency will be beneficial for the accurate separation of
healthy and tumor tissue regions, with well-defined borders, for real-time image-guided
surgery. For the efficient segmentation of fluorescence tissue images addressing the sen-
sitivity close to the class borders, we implement the fusion of the previous approaches
by means of the union of their results. In particular, the entropy-based result is more
closely examined for the discrimination of small cancerous formations in the healthy tissue,
whereas the combination of individual results is enhanced by mathematical morphology
into closed sections for deriving the gross total area of cancer. These established segmenta-
tion approaches were adopted for the proposed fused algorithmic scheme, considering the
following conditions:

(a) We propose a technique to be directly utilized in laboratory assessments, so that the
algorithmic procedures become familiar and easily manipulated by medical experts,
simulating their own form of processing of microscopy samples.

(b) The nature of the input fluorescent images is not appropriate for region-based segmen-
tation, because they do not express tumors as compact regions; as a result, edge-based
techniques cannot be favored for the identification of tumor borders, as no clear
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connected contours can be determined along the tumorous segments of the tissue
sample under examination.

(c) The proposed approach aims at a time-efficient tumor visual inspection methodology,
not a complete, advanced, and “from scratch” image processing framework. In this
context, supervised segmentation and machine learning-based schemes are beyond
the scope of the present study.

3. Proposed Tumor Visualization and Identification Framework

This study operates on tissue autofluorescence imaging principles, an optical data
acquisition framework that has recently shown promise as a diagnostic modality. Optical
fluorescence microscopy is a promising technique for high-quality histological imaging, as
it does not harm the tissue samples and saves time and labor [29]. In this experiment, the
most common fluorophores within the tissue absorb blue light and re-emit a portion of this
radiation at higher wavelengths (green) as a fluorescence signal. Typically, autofluorescence
arises from different kinds of fluorophores in the tissue, such as proteins and enzymes; it
is sensitive to both morphological, biochemical, and metabolic changes associated with
tissue pathologies. Segmentation and enhancement of the obtained images are necessary
for the accurate and unsupervised distinction of the tumor margins, even more so, if the
background and the object in the image are not very well demarcated due to intensity
and texture differences. An unsupervised method aims to minimize errors subjectivity
introduced by human intervention/supervision.

Optical fluorescence optical data (microscopy images) depicting brain tumor slice
samples were acquired via an imaging system designed with a Zeiss laser scanning mi-
croscope (LSM), setting up magnification at 5×. The overall experimental arrangement is
shown in Figure 1.

Samples of human Gli36ϑEGRF glioblastoma cell lines expressing green fluorescent
protein are used throughout this study. Biological material (tumor cells) comes in the form
of 10 µm tissue slices, which were cut beginning from the initial 2 mm of the former brain
section. The dataset includes five slides (each one with three sections), which correspond
to the distance (depth) of the slice with respect to the starting point of the anterior brain
section (beginning from 10 µm and ending to 150 µm, in slices of 10 µm size). The
tumor is positioned on the top boundary of these slices, containing cells that express
a green fluorescent protein (GFP). Fluorescence imaging modality is utilized for cancer
identification, based on the fact that specific biomarker fluorophores are expressed at a
substantially more intensive level in tumor cells with respect to healthy ones, enhancing
imaging quality for discrimination purposes. Specifically, brain tumor samples were
examined using 488 nm Argon laser attached to the microscope; blue light, after passing
through a dichroic lens, is incident on the sample inducing green-light auto fluorescence.
Diffuse reflectance-auto-fluorescent images are acquired in the “green” spectral range
(specific wavelength band selected at 530 nm); while the reflected illumination blue light
is blocked with a green-pass filter, set in front of the receiver photomultiplier. Captured
images were then processed using unsupervised clustering in conjunction with adaptive
thresholding algorithms.
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Figure 1. The optical fluorescence microscopy arrangement.

The samples were a gift from Dr. EA Chiocca [45] and prepared from cloning of
human Gli36 cells. The cell lines were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) (solution contains 4.5 g/L glucose, L-glutamine) supplemented qq2 with 10%
concentration in fetal bovine serum (FBS), penicillin levels at 180 U/mL, streptomycin
values at 180 mg/mL, and a level of 0.45 mg/mL for amphotericin B (all reagents were
developed from Gibco, Invitrogen Corporation). By nature, specific cells overexpress
the vIII mutant forms of the estimated glomerular filtration rate (EGFR) gene and have
been extensively used for in vivo studies, because they grow rapidly in rat brains. For
this purpose, the cell lines were injected into the brain of athymic female nude (nu/nu)
mice (6–8 weeks old at the time of surgery), which were grown and preserved at the
Animal Resource Center (installations at Case Western Reserve University) in agreement
with corresponding institutional policies (CWRU IACUC Animal Experimental Protocol:
2009-0019). Regarding the procedure for brain tumor implants, the animal population was
anesthetized and glioblastoma cells were deposited in the right striatum at a slow rate of
1 mL/min and at a depth of 23 mm from the dura. Post imaging brain slices were fixed in a
solution medium of 4% paraformaldehyde, 30% sucrose protected, and physically firmed in
optimum cutting temperature compound (OCT) for cryostat sectioning (instrument model
Leica CM3050S). Tissue sections were acquired sequentially at 10 or 25 mm cut directly onto
slides and preserved at −80 ◦C until manipulation. In order to be visualized via probes,
biological material was heated to room temperature for a time interval of 10 min, washed
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in phosphate buffer solution (PBS) and cover slipped with fluorescent mounting media.
As a final step, fluorescent microscopy images were acquired and analyzed performing an
unsupervised clustering framework combined with adaptive thresholding techniques.

The proposed tumor identification and visualization pipeline of algorithms are shown
in Figure 2. It is based on a three-step framework run in sequential mode, i.e., image
processing/segmentation, image fusion, and image refinement modules, each one with
a unique contribution to information mining. To quantitatively evaluate the detection
accuracy of our fluorescence tumor imaging and identification system, a ground truth
image was generated, superimposing the assigned tumor margins marked by a medical
expert on the raw fluorescence sample image. Since the accurate detection of tumor margins
is impossible, even with dense sampling and biopsy, the validation of the extracted results
is performed based on a closed and compact region approximation of the overall tumor
surrounding contour produced by the pathologist. Thus, we should note here that the
following study is semi-quantitative, as it is affected by the qualitative judgment of the
expert. Thus, our evaluation at this stage considers the agreement between the algorithmic
and the medical perspectives on the significant tumor area, its extent, and structure. As
already mentioned, assurance about the local condition can only be provided by selective
biopsy. In our study, the biopsy was performed at three specific small areas in the region of
strongest fluorescent response (this biopsy was guided by the proposed imaging modality),
which verified the tumorous nature of all tested sites.
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Figure 2. Schematic representation of the discrete steps in the tumor identification and visualization pipeline.

The algorithmic identification (segmentation) procedure, the first step of the proposed
tumor visualization pipeline, is initiated by performing median filtering (3 × 3 window
size) on the original fluorescence image in order to eliminate speckle noise, possibly intro-
duced during the image acquisition procedure. The image processing module is gradually
performed in three discrete stages run in parallel: an initial estimation of tumor region is
performed by applying the Otsu thresholding technique; meanwhile, an enrichment step
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takes place via the entropy thresholding approach, which introduces information regarding
the background area and refined borders of the cancerous region. At the third branch of the
image processing module, the smoothed key segments (those that differentiate most from
the background) of the tumor margins are estimated performing the mean shift clustering
methodology to the fluorescence sample image. The second step (image fusion module) of
the proposed overall scheme proceeds with fusing the results of the three individual image
processing techniques applied in the first step and enables us to form the binary mask
containing pixels that are active (non-zero intensity value) in more than one segmented
images, resulting to a robust estimation of the “strong and consistent components” of
tumor margins, i.e., the pixels that are detected as tumor belonging ones by at least two
of the three adopted segmentation techniques. The final step of the overall pipeline of
algorithms proceeds by applying mathematical morphology (image closing and region
filling) to the fused quantized image, acting as a noise/outliers filter, filling out holes and
refining borders, and derives the reconstructed geometry of the overall cancerous area as a
closed and compact region, illustrating the potential for numerical computations regarding
the tumor size, area, shape, and depth.

The notion of “Otsu thresholding” was initially introduced as a non-parametric and
unsupervised approach based on the assumption that an image is formulated by pixels from
two principal classes (background region and foreground one containing the object/scene
of interest), indicating that the image can be represented via a bimodal histogram [46].
Having established this image model, the method defines an optimal threshold value,
under an iterative calculation procedure, in order to binarize the image. The threshold
value is adaptively determined so that the intra-class divergence (variability between data
points belonging to one class) is minimized and, at the same time, the inter-class deviation
(differentiation between individuals of the two distinct classes) is maximized. This con-
dition imposes efficient segmentation of the image, because the variance is considered a
reliable index for determining the homogeneity of a region. The intra-class divergence is
determined as the weighted sum of the variances within any of the two dominant classes,
with “weight” representing the a priori likelihood of that particular class. On the contrary,
the inter-class variance reaches its maximum by initializing a “starting point” value (thresh-
old) and repeatedly updating it to attain the maximum differentiation between the two
pixel distributions.

Another thresholding technique exploited in this study is based on information theory
and Shannon entropy maximization. Entropy can be considered as an index that repre-
sents the uncertainty of a random variable, thus it quantifies the information present in
a dataset or a message [47]. The principal objective of this approach is to partition the
image histogram (pixel intensity values considered as the probability distribution) into two
different (independent) distributions via the determination of an optimal threshold value
that maximizes the randomness of both image region classes, and, thus, enriched informa-
tion content can be extracted [48,49]. Let P1, P2, ..., Pn be the probability distributions of
different pixel intensity values (levels of grey) represented within the image. Let “s” be the
threshold value determined for binarizing the image (binary image segmentation). Thus,
two independent classes (probability distributions) are outlined; the first one corresponds
to pixel intensities varying from 0 to “s” and the second one representing grey levels
from “s+1” to “n”. Let these sets be defined as A and B, respectively, according to the
following representation:

A :
{

P1

Ps
,

P2

Ps
, . . . ,

Ps

Ps

}
, B :

{
Ps+1

1− Ps
,

Ps+2
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, . . . ,
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}
, Ps 6= 0 and Ps 6= 1 (1)

The entropy values are defined as follows [50]:
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Note that the term in the parenthesis in equation 2 encodes the entropy of one part
{P1, P2, P3, ..., Ps} of the original distribution {P1, P2, P3, ..., Ps} and should be represented
by Hs, for simplicity, and, thus, the quantity H(A) takes the following form:

H(A) = ln Ps +
Hs

Ps
(3)

In a similar way,

H(B) = −
n

∑
s+1

pi
1− Ps

ln
pi

1− Ps
= ln(1− Ps) +

Hn − Hs

1− Ps
(4)

where Hn refers to the entropy of the original distribution.
The total entropy of the two individual distributions is defined by ψ(s) and is given as:

ψ(s) = H(A) + H(B)= ln Ps(1− Ps) +
Hs

Ps
+

Hn − Hs

1− Ps
(5)

The value of “s” that maximizes entropy value (maximum information retrieved) then
accounts for the optimal threshold.

The third segmentation technique employed in our proposed algorithmic scheme,
the mean shift clustering, attempts to extract complementary information at a different
level of data organization by closely analyzing the probability distribution of the sam-
ple fluorescence image. This method has been developed on the grounds of statistical
clustering as applied in a feature space of the image itself. These features may reflect
the intensity distribution (1D histogram space) alone or in combination with the spatial
pixel distribution (defining a 3D space), or even the color distribution (in a 3D space). The
principal motivation beyond mean shift clustering is the modeling and approximation of
input data points as an empirical probability density function, according to which a large
number of neighboring samples in feature space (dense regions) are translated into local
maxima or modes (most frequent value met in a set of data points) of the corresponding
statistical representation (distribution). For every individual (data point) in the processed
population, a gradient ascent process is iteratively applied to the locally estimated density
until the algorithm converges to an optimal solution. The data points associated with the
same stationary point (mode) formulate dominant regions within the image (clusters that
contain pixels close to each other and with similar intensity values).

In our application, the mean shift approach operates in the 1D space of intensities.
It initially defines a window around each point in the space of intensities and calculates
its mean as the “center of gravity” based on the included intensities. In the second step,
it translates (“shifts”) this midpoint (center of the current window) to the mean value
and repeats the procedure until the stopping criterion is met (convergence is achieved).
Conceptually, in each step of the iterative calculations, the window shifts to a denser region
of grayscale intensities, until it approximates a local maximum of the total distribution
function. This iterative scheme repeatedly assigns every pixel (intensity point) to a class
center (mean point) and intuitively calculates the number of dominant regions (segments)
within the input signal/image via the final number of the cluster-centroids determined.

The principal concepts of the mathematical background of the mean shift algorithm
are briefly presented below. Kernel density estimation can estimate the density function of
a random variable in a non-parametric mode. A kernel ϕ(x) is a non-negative function of a
multidimensional feature vector, with which the vector is integrated over the domain of
its definition.

This is usually implemented as a Parzen window with its kernel K() representing
a rectangular window operating in the space of the n data points {x1, x2, . . . , xn} and a
bandwidth parameter h notation that sustains the physical meaning of the window size
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indicator. The corresponding kernel density estimator for a given set of d-dimensional
points (features) is given as:

f̂ (x) =
1

nhd

n

∑
i=1

K
(

x− xi
h

)
(6)

where h (bandwidth parameter) defines the radius of the kernel. The sample mean (distri-
bution density) around a point x using K is computed as:

m(x) = ∑i xiK(xi − x)
∑i K(xi − x)

(7)

According to the mean shift approach, the vector x is moved to m(x) and the process is
repeated until convergence. This iterative movement of x can be interpreted as a gradient
ascent on the density contour:

∇ f̂ (x) =
1

nhd

n

∑
i=1

K′
(

x− xi
h

)
(8)

where K′() denotes the derivative of K(). Using the specific kernel form

K
(

x− xi
h

)
= C·k

(
‖ x− xi

h
‖

2)
(9)

where C is a constant and setting g(x) = −k′(x) as the derivative of the selected kernel
profile, we finally obtain the summarized formulas-definitions:
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(10)

where, the first quantity is proportional to the density estimate at x computed with a new
kernel (G(x) = Cg g(||x||2). Equation (10) indicates that the mean shift is proportional
to the local gradient estimate at point x obtained with kernel K, so that it can represent a
path that directs the solution to a stationary point of the estimated density, i.e., a mode of
the distribution (or a cluster centroid). It can be observed that the mean shift movement is
quick/long for low-density regions (valleys of the corresponding density distribution) but
slow/short as term x draws near a mode (until it finally approximates zero value upon
coincidence of the point with the mode). The unique quantity of the MSH algorithm to be
initially adjusted by the user is bandwidth parameter h, representing the fixed window
size to be examined around each data point. This algorithmic parameter is intuitive and
application-dependent [51]. Another drawback of MSH is the low speed of convergence
(especially in cases of high-resolution color images), but substantial research effort has
been devoted to speed-ups and improvements.

At this point we can define a contour plot for each algorithmically defined image,
denoting the borders of cancer areas detected. These areas essentially form small clusters
of tumors affecting the healthy tissue and, as such, they can be used as topological markers
for obtaining samples for biopsy. The result of entropy thresholding appears to be most
appropriate for such purposes, as explained in the results section. However, to increase our
confidence in the definition of cancer areas, we fuse the results of individual segmentation
schemes. Our assumption for fusion is that if a pixel is “active” (value 1 in the binary
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output image, yet the background is set to zero value) in two or more segmentation
techniques, then this point is assigned with an increased probability of belonging to the
tumor section since corresponding pixel information is examined and validated in more
than one segmented image of the fused pipeline. Thus, the proposed segmentation mask is
derived from the cancer pixels detected in at least two of the three segmentation masks.
At the final stage of processing, morphology operators are applied to the output binary
mask to derive a compact region representing our gross estimate of the tumor spread with
filled gaps and connected components. For the requirements of this study, we utilize the
morphological operators of “image closing” with a disk structuring element of radius 19
and “flood-filling” of 8-neighbor connectivity, in order to refine the overall tumor region
and fill in the holes within the extracted region of interest. A detailed analysis of the
mathematical morphology and the corresponding operators can be found in [52]. This solid
estimate of the tumor can be further analyzed for shape and size calculations, providing
additional topographic information to the medical expert.

4. Results and Discussion

In order to perform qualitative and quantitative assessments of the efficiency of the
proposed framework, ground truth information was determined by a medical expert, who
manually marked the tumor region external boundaries on each fluorescent image sample
of the dataset. The overall region included in the ground-truth-determined margins is
considered as the ground truth binary mask, which was used to calculate the segmentation
performance metrics to be depicted in the following subsections. As true positive (TP)
pixels we consider the pixels of the binary mask extracted via the proposed segmentation
pipeline that are active in the ground truth tumor margin region (intersection of estimated
tumor mask with ground-truth one), as true negatives (TN) the pixels of the calculated
binary mask that have been successfully classified as non-belonging to the tumorous area
(background area that does not intersect with either of the two masks), as false positives
(FP) the image positions that are active in the estimated tumor margin but are not present
in the medical expert’s evaluation mask (non-intersection of estimated tumor mask with
ground-truth mask), and as false negatives (FN) we consider the pixels of the ground
truth tumor mask that have not been included in the estimated tumor region. The overall
consideration is more clearly illustrated in Figure 3.

The results of Section 4 are articulated into four subsections: (a) Methodological
Efficiency at Various Depths of Observation; (b) Efficiency of Image Processing Tools;
(c) Evaluation of Detection Results; and, (d) Qualitative and Quantitative Comparisons
with Other Segmentation Techniques.
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Figure 3. Schematic representation of notations for performing qualitative and quantitative assessments on image
segmentation performance.

4.1. Methodological Efficiency at Various Depths of Observation

In order to assess the effectiveness of fluorescence imaging at different depths of
penetration, we designed an experiment to view the same tissue slice at depths of 10 µm,
40 µm, 60 µm, and 120 µm preserving comparable spatial resolution (zoom level). This
was done by adjusting a square window (blue borders) at the same horizontal and vertical
coordinates in each image. The images presented in Figure 4 were examined by a medical
expert to assess the similarity of regions and also assign distinct tumor regions of interest.
Three areas of tumor concentration are depicted at depth 10 µm, which are indicated by the
colored arrows in Figure 4. The same regions are tracked over different depths allowing
the evaluation of their growth/penetration patterns. The first area (blue arrow) shows
significant penetration up to 40 µm, whereas the second region (pink arrow) penetrates
deeper up to 60 µm. The third region (green arrow) appears to be the most aggressive
tumor formation; it spreads to the right and penetrates all the way to 120 µm. Based on
the assessment of the clinician, the fluorescence imaging technique has a good capacity to
encode the structure of the tumor and its borders at various depths of penetration. The
subsequent enhancement by image processing approaches is expected to clearly reveal
the topological characteristics of the tumor and enable quantitative measurements of
its structure.
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preserve the substantial tumor region information.

4.2. Efficiency of Image Processing Tools

For a qualitative comparison of the proposed thresholding-based segmentation tech-
nique with other standard methods in order to estimate the amount and kind of information
to be retrieved and could be indicative for the pathology expert; a set of results from various
thresholding methods is illustrated in Figure 5. The original test image is at 10 µm slice
depth. The following are brief descriptions of the methods used for comparison:

• Minimum thresholding—assumes a bimodal histogram like the Otsu method and uses
a running average method (of window size 3 × 3) until 2 maxima are met.

• Intermodes thresholding—also assumes a bimodal histogram and uses a running average
to calculate two maxima. The threshold is selected as the average of these two maxima.

• IsoData thresholding—divides the image into object and background classes using an
initial threshold. The next step is to calculate the average of the pixels below and
above the threshold value. The mean of these values is calculated in order to update
the threshold. The process is repeated until the threshold value is higher than the
composite average [53].

• Li thresholding—uses Li’s “minimum cross entropy” [54,55], forming a reconstruction
of the image distribution.

• Shanbhag thresholding—assumes the image consisting of two fuzzy sets with each pixel
assigned a membership function of belonging to one of the two classes (object and
background). The segmentation is determined by the frequency of occurrence in each
set [56].
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Figure 5. A comparison of various thresholding-based image segmentation techniques for the image of slice depth 10 µm: (a)
entropy thresholding (selected method), (b) minimum thresholding, (c) intermodes thresholding, (d) IsoData thresholding,
(e) Li thresholding, (f) Shanbhag thresholding. The blue curve indicates the borders of brain tissue depicted in the image.

The tissue border origin is indicated with a blue color, implying that the area under
the marked curve reflects brain tissue. The tumorous cell locations are represented by
high-intensity (white) segments, while the remaining (grey) area constitutes healthy tissue,
discriminated from the cancerous area in terms of its decreased intensity. We notice that the
minimum, intermodes, and Shanbhag thresholding approaches have missed a remarkable
amount of information related to the tumor region (upper bright section of the image)
because they have completely eliminated the background regions representing the healthy
brain and intermediate tissue. In the IsoData result, the estimated cancerous section has
been significantly increased with true positive pixels, yet the content of information is
inferior to that of the entropy thresholding technique. In addition, the second class of pixels
(corresponding to tissue background) has been eliminated as it is of limited importance.
Finally, the method of entropy thresholding sustains a better signal to background ratio
and improved contrast with respect to Li thresholding. Among the algorithmic schemes,
entropy thresholding has proven efficient for the identification of brain tumors in several
images tested and is the method selected for further consideration.

4.3. Evaluation of Detection Results

Figures 6–10 illustrate the raw fluorescence images containing the brain tissue in
various slice depths (10 µm, 30 µm, 60 µm, 100 µm, 120 µm, and 150 µm) along with
the estimated tumor margins after the application of the proposed unsupervised learn-
ing segmentation scheme, using the three-step imaging algorithm. The ground truth
marked tumor borders designed by the medical expert are superimposed in each image
and highlighted with a red-colored curve, constituting the expert approximation to be
attained and reflecting a base of quantitative measurements of the accuracy of our proposed
scheme. The algorithmically derived area in each figure is indicated by the compact white
regions, discriminating the cancerous cell segments from the remaining tissue and the
background. The estimated tumor borders and tumor segments are presented at several
stages of processing. The results from the individual segmentation approaches are first
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presented, revealing the different aspects of information that can be extracted. The ex-
tracted binary mask representing the overall brain tumor region is depicted as a compact
white area corresponding to the geometrical topology of the cancerous tissue. Finally,
the algorithmically derived tumor borders are depicted with a blue color, so they can be
compared with the expert borders and used as quantitative metrics of the identification
efficiency. Notice that both the geometry and the dimensions of the tumorous area have
been reliably reconstructed, emphasizing the potential of the proposed fluorescent imaging
system. We note the efficiency of the mean shift clustering sub-procedure to filter out the
non-tumorous segments, enhancing the segmentation and margin identification accuracy.
The geometry of the cancerous brain tissue has also been correctly reconstructed. At this
stage, we can also emphasize the efficiency of the entropy thresholding procedure to derive
contrast-enhanced cancerous particles. The contour map of the fluorescence image after
this processing step is depicted in Figure 8c. The cancerous cells (bright red color segments)
have been accurately assigned and depicted within the ground truth tumor borders. In
addition, outside the marked tumor area, the method has also assigned tumorous kernels,
which are not significant in the present tumor formation but may be considered suspicious
for subsequent examination.

Figure 9 depicts our results at a rather large depth of 100 µm. Along with this exper-
iment, Figure 9b demonstrates the efficiency of Otsu thresholding to provide an initial
estimation of the region of interest. This process reveals the cancerous cells within the
marked area of interest, but also introduces many other small structures throughout the
image, which are due to small intensity deviations and do not reflect information of interest.
These structures are eliminated by the subsequent procedure mean shift segmentation. Fur-
thermore, the entropy thresholding in Figure 9c again captures cancerous cells of interest
(bright red color segments) with good correspondence to the expert margins. Figure 10
depicts the expert and approximated tumor borders superimposed on two fluorescence
images at depths 120 µm and 150 µm, respectively. It is important to note how the appear-
ance of irregularly shaped cancerous regions appear in different slice depths, exemplifying
how difficult it is for a pathologist or a surgeon to form an accurate estimation of tissue
status and tumor spread. The proposed segmentation methodology proves robust and
accurate in identifying geometry and dimensions of brain tumors and margins in different
tissue slice depths from the captured fluorescence images, emphasizing the potential of the
proposed fluorescent tumor visualization and identification framework.

Looking at Figures 6–10 it could be pointed out that the proposed approach tends
to over- or under-estimate the region of interest (ROI). The overall conclusion extracted
through the testing procedure is that the effect of mis-segmentation of ROI mainly de-
pends on the structure of tissue and the spread/geometry of the tumor over it. Under-
segmentation occurs for the complex shape of the overall tumor region border, charac-
terized by irregular contour curves that morphological operators cannot follow. On the
contrary, over-segmentation is observed when the borders between the tumor region (up-
per segment of the image) and normal tissue (lower part of the image) are unclear, meaning
that increased intensity values are contributed by the upper limit of the normal tissue
region. Due to the fact that no prior knowledge of image content is requested, the structur-
ing element utilized for the application of mathematical morphology remains fixed in the
proposed framework (we focus on the totally unsupervised pipeline) and does not totally
adjust to the tumor margins of each image sample. Future improvements to the proposed
segmentation pipeline could investigate an adaptive calculation procedure for determining
optimal setup (size and shape of structuring element) of morphological operators to be
utilized at the image refinement stage.
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Figure 6. Fluorescence images containing the brain tissue at 10 µm slice depth along with the ground truth tumor margins
(red-colored boundary): (a) Original image, (b) processed image after applying Otsu thresholding to original image,
(c) processed image after applying entropy-based thresholding to the original image, (d) processed image after performing
mean shift clustering on the original image, (e) binary mask after fusion of the three segmentation results, and (f) ground
truth (red) and estimated (blue) tumor margins superimposed on the original fluorescence image after the application of the
proposed unsupervised learning segmentation scheme.
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Figure 7. Fluorescence images containing the brain tissue at 30 µm slice depth along with the ground truth tumor margins
(red-colored boundary): (a) Original image, (b) processed image after applying Otsu thresholding to the original image,
(c) Processed image after applying entropy-based thresholding to the original image, (d) processed image after performing
mean shift clustering on the original image, (e) binary mask after fusion of the 3 segmentation results and, (f) ground truth
(red) and estimated (blue) tumor margins superimposed on the original fluorescence image after the application of the
proposed unsupervised learning segmentation scheme.
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Figure 8. Fluorescence images containing the brain tissue in 60 µm slice depth along with the ground truth tumor margins 
(red-colored boundary): (a) Original image, (b) processed image after applying Otsu thresholding to original image, (c) 
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Figure 8. Fluorescence images containing the brain tissue in 60 µm slice depth along with the ground truth tumor margins
(red-colored boundary): (a) Original image, (b) processed image after applying Otsu thresholding to original image,
(c) Contour map of the processed image after performing entropy-based thresholding on the original image, (d) processed
image after performing mean shift clustering on the original image, (e) binary mask after fusion of the 3 segmentation
results, and (f) ground truth (red) and estimated (blue) tumor margins superimposed on the original fluorescence image
after the application of the proposed unsupervised learning segmentation scheme.



Signals 2021, 2 325
Signals 2021, 2 FOR PEER REVIEW  21 
 

 

 
Figure 9. Fluorescence images containing the brain tissue in 100 µm slice depth along with the ground truth tumor margins 
(red-colored boundary): (a) Original image, (b) Processed image after applying Otsu thresholding to original image, (c) 
contour map of the processed image after performing entropy-based thresholding on the original image, (d) processed 
image after performing mean shift clustering on the original image, (e) binary mask after fusion of the 3 segmentation 
results, and (f) ground truth (red) and estimated (blue) tumor margins superimposed on the original fluorescence image 
after the application of the proposed unsupervised learning segmentation scheme. 

Figure 9. Fluorescence images containing the brain tissue in 100 µm slice depth along with the ground truth tumor margins
(red-colored boundary): (a) Original image, (b) Processed image after applying Otsu thresholding to original image,
(c) contour map of the processed image after performing entropy-based thresholding on the original image, (d) processed
image after performing mean shift clustering on the original image, (e) binary mask after fusion of the 3 segmentation
results, and (f) ground truth (red) and estimated (blue) tumor margins superimposed on the original fluorescence image
after the application of the proposed unsupervised learning segmentation scheme.
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the application of the proposed unsupervised learning segmentation scheme on the image of Figure 10a, and (d) ground 
truth (red) and estimated (blue) tumor margins superimposed on the original fluorescence image after the application of 
the proposed unsupervised learning segmentation scheme on the image of Figure 10b. 
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Figure 10. Fluorescence images containing the brain tissue at 120 µm and 150 µm slice depth along with the ground truth
tumor margins (red-colored boundary): (a) Original image at 120 µm slice depth, (b) original image at 150 µm slice depth,
(c) ground truth (red) and estimated (blue) tumor margins superimposed on the original fluorescence image margins after
the application of the proposed unsupervised learning segmentation scheme on the image of Figure 10a, and (d) ground
truth (red) and estimated (blue) tumor margins superimposed on the original fluorescence image after the application of the
proposed unsupervised learning segmentation scheme on the image of Figure 10b.

At this stage, we can also emphasize the efficiency of the entropy thresholding proce-
dure to derive contrast-enhanced cancerous particles. The contour map of the fluorescence
image after this processing step is depicted in Figure 8c. The cancerous cells (bright red
color segments) have been accurately assigned and depicted within the ground truth tu-
mor borders. In addition, outside the marked tumor area, the method has also assigned
tumorous kernels, which are not significant in the present tumor formation but may be
considered suspicious for subsequent examination.

From the qualitative results presented, a key observation is that images processed
utilizing clustering-based segmentation demonstrate increased contrast compared to raw
ones. Otsu thresholding enhanced the differences between the foreground (tumor mar-
gins) and the background (healthy and remaining tissue), facilitating the segmentation
procedure. Entropy thresholding also provided promising results, enabling the accurate
definition of tumor borders via edge enhancement and efficiently identifying the object
pixels, depicted in the high density of the 3D intensity maps shown. Finally, mean shift
clustering smoothens image data, providing additional information from the probabilistic
distribution of the fluorescence samples, complementing the final result, and removing
possible outliers introduced through the thresholding procedure. The contour maps were
also plotted for the images obtained using entropy thresholding, for an enhanced visual
comparison. The binary mask obtained by fusing all three techniques and filling any gaps
via mathematical morphology is also shown for visualizing the entire tumor boundary. It
is also interesting to note that the tumor can be considered as the bright region positioned
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at the top of the image and the high intensity (intensity = 1) points depicted in the 3D
intensity map of the image histogram.

The proposed test bed fluorescence imaging system proves quite robust, being capable
of recognizing extremely irregular-shaped tumors, in an unsupervised and almost real-
time manner and without any prior knowledge of the tissue properties, serving as a very
helpful assisting tool for the pathologist. In addition, the improved contrast produced by
the entropy thresholding process enables more accurate differentiation of the tumor area
from the remaining tissue and, in conjunction with the result of Otsu thresholding, filters
out the ambiguous pixels present in the union area between the ROI (Region of Interest)
and the background. Subsequently, the mean shift clustering sub-procedure enables the
derivation of quite clear and smooth tumor margins. Finally, it should be emphasized
that the binary mask constructed via segmentation fusion and morphology refinement
does not underestimate the cancerous region but rather enriches it with additional depth
penetration, providing adequate information regarding its geometrical formulation and
setting the prerequisites for complete tumor resection.

In order to further support the information and outcomes of the previous figures
and analysis, statistical texture results were calculated, pertaining to the raw brain tumor
images obtained by fluorescence microscopy in lower tumor slice depths (10 µm, 40 µm, and
40 µm) and the corresponding processed images via the proposed three-step segmentation
approaches. Table 1 summarizes statistical texture parameters, namely contrast, correlation,
energy, homogeneity, skewness, kurtosis, entropy, and standard deviation, calculated for
the images to quantify their texture properties.

Table 1. Statistical quantification of image texture for different segmentation results.

Image Contrast Correlation Energy Homogeneity Skewness Kurtosis Entropy Std. Deviation

10 µm Original 0.621 0.8596 0.3572 0.8616 0.0286 20.9983 5.0294 34.9634

10 µm—Otsu
thresholded 0.994 0.7865 0.8167 0.9552 0.0229 27.0335 2.4751 43.7297

10 µm—Entropy
thresholded 1.8217 0.6992 0.8274 0.9623 0.0177 29.2198 1.5077 56.5694

10 µm—Mean shift
Segmented 1.0430 0.7824 0.8739 0.9746 0.0192 27.9363 1.6581 52.2174

30 µm Original 0.6152 0.8381 0.2244 0.8008 0.0203 11.620 5.2582 49.252

30 µm—Otsu
thresholded 0.8270 0.7257 0.7125 0.9252 0.0194 17.0752 2.9147 54.4028

30 µm—Entropy
thresholded 1.7456 0.6650 0.7933 0.9615 0.0151 19.236 1.5958 66.1713

30 µm—Mean shift
Segmented 1.1012 0.7822 0.8275 0.9650 0.0179 18.3914 1.9194 62.8654

40 µm Original 0.3457 0.8073 0.4200 0.8712 0.0277 18.994 4.7985 36.1215

40 µm—Otsu
thresholded 0.9510 0.7452 0.7412 0.9142 0.0196 20.1411 3.2974 55.1103

40 µm—Entropy
thresholded 1.575 0.6352 0.9023 0.9803 0.0123 28.666 1.9651 58.412

40 µm—Mean shift
Segmented 1.1139 0.8022 0.9159 0.9845 0.0159 22.7491 1.9418 51.9204

The texture is the pattern or spatial arrangement of different pixels possessing different
intensity levels, describing the structure of the object in the image. The texture of an image
is generally not uniform due to the variations in intensity levels and the spatial relationship
of pixels, which are characterized by the smoothness/roughness or uniformity of the
object in the image. Texture can also vary due to the differences in the reflectance of the
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surface being imaged. The texture of an image region can vary if it has different local
statistics with respect to its intensity levels. Different texture metrics indicate different
image properties/characteristics quantifying the textural information of the surface via
the distribution of the pixel intensities and the involving statistics. A detailed description
of the texture analysis and the theoretical and mathematical background can be found
in [57,58]. Regarding the calculation of the standard deviation metric, this is performed
on the intensity values of the original images within the regions (logical AND operation,
i.e., only pixels of the original image that are “active” within the segmentation result)
extracted by the corresponding segmentation techniques examined. If zi is a random
variable indicating an intensity level contained in an image with L being the total number
of intensity levels and p(zi) is the probability of occurrence of that intensity level, then
p(z), where z ranges from z1 to zL, is the intensity histogram of the image, viewed as the
probability density function. The expression for the mean or average intensity (mz) is given
as follows:

mz =
L−1

∑
i=1

zi p(zi) (11)

The general expression for the nth statistical moment of the mean (µn) is formulated as:

µn =
L−1

∑
i=1

(zi −mz)
n p(zi) (12)

The standard deviation (σ) corresponding to the pixel intensity distribution correlates
to the average contrast and can be calculated using the second-order statistical moment
(µ2), as the variance (σ2) of a distribution is given by the second moment.

σ =
√

µ2(z) =
√

σ2 (13)

Looking at Table 1, we can see that entropy thresholding produces the highest con-
trast in examined cases but mean shift segmentation and Otsu thresholding also provide
good contrast. This trend can also be seen in the first to fourth-order statistics. Entropy
thresholding results possess increased entropy (lower value), indicating a larger amount
of information that can be interpreted as a higher number of object pixels detected. The
standard deviation between the resulting pixels is also higher for entropy thresholding
compared to Otsu and mean shift segmentation. Nevertheless, all three techniques segment
the image efficiently. The mean shift segmentation algorithm eliminates noise entirely and
only the cancer region can be seen. This can also mean that it might have missed certain
pixels pertaining to the tumor/object, even though it has the least amount of noise.

As the final step of evaluating the potential of the proposed tumor visualization and
delineation system, a comparison has also been made between the texture features of the
background (normal tissue) and those of the tumor, as defined by a pathology expert on
the one tissue sample available in our study. This shows that texture features can be used
to characterize cancerous tumors to differentiate them from normal healthy tissue.

Comparing the statistical texture parameters of the area selected from the tumor region
and from the normal tissue region (Table 2), we can clearly see the trend in the difference
between the two. The texture features of cancer differ markedly from those of normal
tissue in terms of examined texture information metrics. The tumor region is brighter and
possesses higher contrast than normal tissue. The entropy of the cancer part is also much
higher in all cases than the normal tissue, as is the case with the standard deviation and
kurtosis. This indicates that the intensity of the tumor region is more concentrated towards
a certain value (demonstrated by the small amount of skewness or higher kurtosis). The
normal tissue region is also more homogenous and “even” compared to the tumor region.
The statistical quantification of texture shown above demonstrates that it can be used as a
metric to characterize cancer and differentiate it from healthy tissue.
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Table 2. Comparison of statistical texture features of tumor and normal regions.

Image Contrast Correlation Energy Homogeneity Skewness Kurtosis Entropy Std. Deviation

10 µm tumor 0.8605 0.9110 0.0782 0.7396 0.0087 2.9945 7.5119 114.7772

10 µm normal 0.2345 0.4860 0.3664 0.8827 0.0532 2.2848 5.1972 18.7808

30 µm tumor 1.0422 0.8850 0.0546 0.7037 0.0083 2.5526 7.7284 120.6932

30 µm normal 0.2786 0.4538 0.3052 0.8611 0.0396 1.9403 5.4884 25.2802

40 µm tumor 1.0965 0.8406 0.0755 0.7065 0.0104 3.4550 7.4370 96.1131

40 µm normal 0.3542 0.3240 0.2705 0.8235 0.0426 2.3261 5.4435 23.4819

60 µm tumor 1.2161 0.8373 0.0662 0.6838 0.0092 2.9578 7.6068 108.2671

60 µm normal 0.4129 0.2522 0.2800 0.8042 0.0326 2.0038 5.7292 30.7130

100 µm tumor 1.0020 0.8704 0.0774 0.7195 0.0098 3.4370 7.4428 101.7404

100 µm normal 0.2929 0.4249 0.3084 0.8556 0.0442 2.3936 5.2471 22.6216

120 µm tumor 0.7467 0.8694 0.1385 0.7653 0.0127 5.0570 7.9839 78.7948

120 µm normal 0.3060 0.4122 0.2848 0.8473 0.0412 2.1896 5.4521 24.2514

150 µm tumor 1.1291 0.8496 0.0616 0.6841 0.0090 2.8176 7.6219 111.5111

150 µm normal 0.3916 0.2236 0.3157 0.8133 0.0321 1.8078 5.6469 31.1538

4.4. Qualitative and Quantitative Comparisons with Other Segmentation Techniques

To further validate the efficiency of the proposed unsupervised tumor-margin iden-
tification scheme, we compared our methodology in both qualitative and quantitative
means with two other state-of-the-art segmentation approaches; the first method attempts
to extract the tumor segments based on texture estimation and analysis utilizing the range
filter [59], while the second reference method is based on the supervised k-means clus-
tering scheme. The parameter k (number of clusters) of the algorithm was selected equal
to 3, under the assumption that the fluorescence image is divided into three main areas,
including the tumor region, healthy tissue region, and background. It is worth mentioning
that our approach does not require specification of the number of regions of interest, which
is automatically estimated via the mean shift clustering procedure.

Figure 11 illustrates qualitative results by comparing the extracted images from the two
reference schemes and the proposed approach on the same fluorescent image sample. Our
method outperforms the other two in preserving the key information of the tumor region,
while filtering out possible outliers originating from the ambiguity of intensity on the
borders of healthy and tumorous tissue regions. In particular, texture analysis (Figure 11c)
results in over-segmentation of cancerous tissue, whereas k-means clustering (Figure 11b)
produces outliers at the margins of healthy tissue, which causes over-segmentation of the
final tumor mask.

The quantitative results of the comparison between the proposed methodology and
the reference methodologies are summarized in Table 3. The estimated tumor margins, as a
binary mask derived from each technique, are compared with respect to the ground truth
borders overlaid by the medical expert who evaluated the fluorescence tissue samples.
Classification metrics of success, including accuracy, precision, recall, specificity, dice
coefficient (DC), and intersection over union (IoU) [60], are calculated (on the image dataset
derived from the one tissue sample at difference slice depths) in order to evaluate the
efficiency of our approach and justify its potential over other techniques in effectively
classifying tumor areas and identifying their borders.
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Figure 11. Qualitative comparison results for the segmentation procedure between the proposed methodology and two
reference approaches (texture analysis and k-means clustering): (a) Original fluorescence image sample at slice depth
100 µm, (b) segmentation result of k-means clustering on the original image sample, (c) segmentation result of range filtering
on the original image sample and (d) segmentation result of the proposed technique on the original image sample.

Focusing on the performance estimation depicted in Table 3, we can easily conclude
that our unsupervised segmentation scheme based on the fusion of principal techniques
remains robust for the entire range of the image dataset, outperforming the reference
methodologies in the rate of detection of tumor margins and rate of filtering out healthy
tissue segments. Even though more extensive experimentation is needed, this result indi-
cates that the proposed approach can achieve effective demarcation of tissue abnormalities,
which is essential for disease diagnosis, prognosis, surgery, and treatment.
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Table 3. Quantitative comparison results for the segmentation procedure between the proposed methodology and two
reference approaches (texture analysis and k-means clustering).

PROPOSED
METHODOLOGY

SAMPLE
DESCRIPTION Accuracy Precision Recall Specificity Dice

Coefficient
Intersection
over Union

10 µm 0.978 0.967 0.926 0.992 0.915 0.843

30 µm 0.947 0.973 0.842 0.990 0.895 0.810

40 µm 0.925 0.841 0.850 0.948 0.886 0.795

60 µm 0.970 0.916 0.941 0.978 0.940 0.887

100 µm 0.975 0.951 0.953 0.982 0.955 0.914

120 µm 0.956 0.852 0.875 0.971 0.890 0.802

150 µm 0.949 0.842 0.934 0.952 0.921 0.854

TEXTURE
SEGMENTATION

SAMPLE
DESCRIPTION Accuracy Precision Recall Specificity Dice

Coefficient
Intersection
over Union

10 µm 0.937 0.859 0.869 0.957 0.911 0.836

30 µm 0.943 0.983 0.843 0.993 0.912 0.838

40 µm 0.921 0.839 0.838 0.948 0.889 0.800

60 µm 0.964 0.914 0.910 0.978 0.942 0.890

100 µm 0.950 0.911 0.898 0.968 0.931 0.871

120 µm 0.929 0.765 0.846 0.946 0.893 0.807

150 µm 0.892 0.781 0.789 0.926 0.852 0.742

K-MEANS
CLUSTERING

SAMPLE
DESCRIPTION Accuracy Precision Recall Specificity Dice

Coefficient
Intersection
over Union

10 µm 0.954 0.937 0.856 0.983 0.915 0.843

30 µm 0.935 0.951 0.823 0.982 0.895 0.809

40 µm 0.912 0.793 0.845 0.932 0.886 0.795

60 µm 0.932 0.726 0.953 0.927 0.940 0.886

100 µm 0.959 0.902 0.946 0.964 0.955 0.913

120 µm 0.940 0.803 0.829 0.961 0.890 0.801

150 µm 0.928 0.779 0.910 0.932 0.921 0.853

5. Discussion

An unsupervised and time-efficient tumor visualization and delineation framework
was presented for effective guidance during the tumor removal step. The key findings of
this study indicate that fluorescent imaging has a clear discrimination capability for tumor
margins based on the particularly different optical properties of cancerous tissue. In the
current study, a green fluorescent protein was added exogenously allowing for high detec-
tion and discrimination of cancer from normal tissue. Fluorescence optical imaging enables
high-resolution illustration of tissue surfaces and it is easily applied for laboratory assess-
ments without requiring the tissue to be stained or sliced. Image contrast was enhanced
substantially by the effective unsupervised learning segmentation scheme performed by
the authors, producing results in a short time (extracting the output fused image and tumor
area binary mask in an average time of 3.4 secs under a Windows 10 workstation with
Intel (R) 8-Core (TM) i5-8300H CPU@2, 30 GHz and 8 GB RAM specifications) and incorpo-
rating information from different levels of analysis, both in image intensity and probability
distribution, without any user intervention. The adopted mean shift clustering, Otsu, and
entropy-based thresholding approaches were followed by a fusion of the resulting images
from these three techniques. This was used to create a binary mask indicating the tumor
region and morphology, which can be further used to extract the tumor region from the
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original fluorescence image using overlapping. The presented fluorescent imaging and
fused segmentation system prove extremely capable of discriminating cancerous regions
from the remaining tissue and accurately approximating the tumor margins in an almost
real-time mode, revealing the potential to be utilized as an efficient, unsupervised, and
user-friendly assisting tool for image-guided surgery. The implemented equipment and
software enabled the clear identification of the brain tumor margin-penetrating cells and
reconstructed the geometrical topology of the tumor extent, offering the capability for
numerical measurements regarding the shape, size, area, and depth of cancerous tissue
segments and assisting the medical expert in a more detailed diagnosis and targeted treat-
ment. Combining fluorescence imaging with molecular probes targeting tumor-specific
markers and advanced image segmentation procedures, the outcome of the presented
method could be significantly enhanced and more extensively validated on a larger dataset,
further justifying the application of the proposed technique in laboratory assessments.
Establishing protocols for safe administration of fluorescent molecules, these would be
introduced into glioma tissues or cells either before surgery or applied to the tumor in-
traoperatively; typical applications encompass the areas of fluorescence-guided surgery
(FGS) and confocal laser endomicroscopy (CLE). As a result, the specific imaging modality
could remarkably improve decision-making protocols in the course of operations for brain
tumor resection and significantly facilitate brain surgery neuropathology during an opera-
tion. Today, surgical operations are still primarily conducted under white light endoscopy;
therefore, in addition to white-light imaging, fluorescence cameras or surgical microscopes
can be used including both wavelength-specific excitation sources, such as lasers, LEDs,
or filtering of a polychromatic light source or combinations of these approaches together
with wavelength-specific imaging detectors [61]. Several challenges remain that can be
addressed holistically in terms of the imaging hardware, photophysics of dyes, and tissue
composition. Any digital imaging system (optical, X-ray, gamma-ray) must be quantum
noise limited (Poisson limited); equivalently, quantum noise must prevail over the elec-
tronic noise of the system to avoid non-linearities. In the case of molecular imaging, the
intensity and quality of the acquired signals are critical factors for the efficient utilization
of fluorescence throughout image-guided surgery procedures. It is imperative that the
fluorescence intensities in surgically challenging tissue structures are increased enough so
that they can be systematically separated from neighboring tissue components and large
signal-to-background ratio levels are achieved. In addition, light absorption and scattering
from endogenous molecules are key characteristics that prevent fluorescent emissions from
penetrating through tissue. Therefore, dye excitation at the maximum level and increased
emission detection performance are of extreme significance. The extent of fluorescent
emissions is also significantly affected by photophysical properties, namely, the absorption
coefficient, i.e., the measure of the distributed light absorption in a dye, and the quantum
yield, i.e., an index that represents the capability of a dye to transform absorbed light into a
fluorescent emission. As a result, different tissues exhibit different background signals, due
to the presence of different endogenous dyes, such as flavins, flavoproteins, collagen, and
elastin, nicotinamide adenine dinucleotide (NAD)+hydrogen (H) (NADH), and other redox
controllers. Again, high fluorescence intensities in surgically challenging anatomies would
minimize the detrimental background signals, by maintaining high-signal-to-background
ratios. In the end, fluorescence-guided surgery is predominantly applied as a methodology
to delineate tissue pathologies or anatomies at or quite close to the tissue surface, a factor
that mitigates some of the above complexities.

6. Conclusions

The test bed fluorescence imaging system of this study implemented with an appro-
priate unsupervised pipeline of image processing and fusion algorithms indicates clear
demarcation of the tumor boundary and substantial image contrast. Establishing proto-
cols for safe administration of fluorescent protein molecules, these would be introduced
into glioma tissues or cells either before surgery or applied to the tumor intraoperatively;
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typical applications relate to the areas of fluorescence-guided surgery (FGS) and confocal
laser endomicroscopy (CLE). As a result, this imaging technology could critically improve
intraoperative decision-making procedures during brain tumor resection and significantly
facilitate brain surgery neuropathology throughout an operation.
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