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Abstract: Wearable devices continuously measure multiple physiological variables to inform users of
health and behavior indicators. The computed health indicators must rely on informative signals
obtained by processing the raw physiological variables with powerful noise- and artifacts-filtering
algorithms. In this study, we aimed to elucidate the effects of signal processing techniques on the
accuracy of detecting and discriminating physical activity (PA) and acute psychological stress (APS)
using physiological measurements (blood volume pulse, heart rate, skin temperature, galvanic skin
response, and accelerometer) collected from a wristband. Data from 207 experiments involving
24 subjects were used to develop signal processing, feature extraction, and machine learning (ML)
algorithms that can detect and discriminate PA and APS when they occur individually or concurrently,
classify different types of PA and APS, and estimate energy expenditure (EE). Training data were
used to generate feature variables from the physiological variables and develop ML models (naïve
Bayes, decision tree, k-nearest neighbor, linear discriminant, ensemble learning, and support vector
machine). Results from an independent labeled testing data set demonstrate that PA was detected
and classified with an accuracy of 99.3%, and APS was detected and classified with an accuracy of
92.7%, whereas the simultaneous occurrences of both PA and APS were detected and classified with
an accuracy of 89.9% (relative to actual class labels), and EE was estimated with a low mean absolute
error of 0.02 metabolic equivalent of task (MET).The data filtering and adaptive noise cancellation
techniques used to mitigate the effects of noise and artifacts on the classification results increased the
detection and discrimination accuracy by 0.7% and 3.0% for PA and APS, respectively, and by 18% for
EE estimation. The results demonstrate the physiological measurements from wristband devices are
susceptible to noise and artifacts, and elucidate the effects of signal processing and feature extraction
on the accuracy of detection, classification, and estimation of PA and APS.

Keywords: signal processing; wristband data; machine learning; physical activity classification;
acute psychological stress detection

1. Introduction

Monitoring physical activity (PA) and acute psychological stress (APS) throughout daily
life is important in the management of chronic diseases because regular PA can promote
cardiovascular health, whereas episodes of APS can increase the risks of adverse cardiovascular
events. Wearable device sensors continuously measure multiple physiological variables to enable
self-monitoring of health and preventive medicine [1–6]. These signals provide valuable information
in real time and act as surrogates for reporting variations in the levels of hormones such as cortisol,
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lactate, and epinephrine, which cannot be measured in real-time, noninvasively, and in daily living,
to indicate PA and APS [7–12]. Physiological measurements are also useful in automated medical
intervention decisions in chronic diseases. For example, in diabetes, PA and APS may affect blood
glucose concentrations in opposite directions. Signals from a wearable device would complement the
information received from a continuous glucose monitoring device and provide advance information
of the presence of PA and/or APS, which will ultimately affect the glucose level, enabling better insulin
dosing decisions [6,9,13–16]. The convenience of noninvasive wearable sensors means that the devices
can be worn continuously in daily living to monitor the PA of users without hindering or limiting the
motions of the users. However, the signals from wearable devices such as wristbands are corrupted by
noise and artifacts. They require powerful signal processing algorithms to extract reliable information
from noisy data and eliminate the effects of artifacts.

The physiological variables collected from wearable devices have been useful in noninvasive
detection of PA and APS [7–11]. Recent developments in signal processing of wearable device
biosignals and machine learning (ML) algorithms enabled the integrated analysis of PA and APS
by enabling the detection and discrimination of concurrent incidences of PA and APS [17,18]. This was
made possible by clinical experiments designed to enrich the training data with various PA and
APS inducements, multiple physiological biosignals measured using a single convenient wearable
device, and recent advances in signal processing, feature extraction, and ML [17–21]. The recent
developments in signal processing are particularly important since noise and artifacts are routinely
encountered in real-world data, which can easily mask the differentiating features among the possibly
simultaneous incidences of PA and APS [19,22–26]. Despite the significant impact of signal processing
on the accuracy of the algorithms, the effects of signal processing on the performance of ML algorithms
is often not reported in studies on the detection and discrimination of PA and APS [17,18].

The role of signal processing is even more critical in discriminating between concurrent PA
and APS because they may result in similar responses in measurable physiological variables [17,18].
The psychological stressors prompt the activation of various physiological systems that result in
the overall stress response with the aim of restoring homeostasis [7,27,28]. The response to APS is
typically coordinated by the hypothalamus through the activation of the autonomic nervous system
and the pituitary and adrenal glands in the hypothalamus–pituitary–adrenal axis, resulting in the
release of stress hormones such as catecholamines and cortisol [27,28]. The stress hormones are
difficult to measure continuously in free-living ambulatory conditions [7]. This necessitated research
into surrogate biomarkers of APS, including readily measurable physiological biosignals such as
heart rate (HR), respiration rate, pupil diameter, skin temperature (ST), electrodermal activity (EDA,
also known as galvanic skin response (GSR)), blood volume pulse (BVP), electrocardiogram, and blood
pressure [7,11,13,29,30]. The validity of these conveniently measured physiological biosignals for
detecting APS has been demonstrated in several studies [7,11,13,19,29–31]. Previous works illustrated
that reliably discriminating between different types of APS is possible, including emotional anxiety
stress and mental stress [7,11,32,33]. Figure 1 illustrates the structure of use of biosignals for APS
detection, PA classification, and for various healthcare and public health research applications.

The proposed work consists of signals processing, feature extraction, data preparation, machine
learning algorithm development, and evaluation of results (Figure 2). To achieve this aim, we designed
experimental protocols to collect data, and we developed ML algorithms to detect APS in the presence
of PA, which is a challenging problem as the readily-measurable physiological biosignals used to
detect APS, such as HR and GSR, are also affected by PA [13]. The challenges in discriminating among
different types of APS during periods of possibly simultaneous occurrences of PA are not only due to
the overlapping responses in the physiological measurements, but also due to the noise and artifacts
in the biosignals measured from wearable devices, which necessitates effective data filtering and
adaptive noise cancellation (ANC) algorithms to extract and enhance the informative signal from the
measurements for use in ML algorithms [7,13,17–19].
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Figure 1. Flowchart of physiological and psychological state estimation using wristband biosignals.

Figure 2. Flowchart of proposed approach.

The practicality of simultaneous PA and APS detection extends beyond routine monitoring
of health. The detection and discrimination of simultaneous PA and APS can generate reliable
digital biomarkers of the physiological and psychological states of people for use in the treatment of
chronic conditions like diabetes and cardiovascular disease [34,35]. Diabetes treatment, in particular,
can significantly benefit from more accurate assessments of the PA and APS states of people with
Type 1 diabetes (T1D) [9,13–16]. People with T1D must administer exogenous insulin to compensate
for the loss of pancreatic insulin production and maintain their blood glucose concentration within
the desired safe range [36]. However, insulin requirements vary due to the type and intensity of
PA and the possibly concurrent incidence of APS [9,13–16,37]. This creates difficulties for people
with T1D in effectively regulating their glucose levels because PA and APS typically have divergent
effects on glucose levels [9,13,14,37]. Prolonged low- and moderate-intensity aerobic exercise causes a
reduction in glucose concentrations because of the increase in glucose use by the working muscles and
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a heightened sensitivity to insulin as muscle cells are more effective using any available insulin to take
up glucose during and after PA [9,14,37]. In contrast to PA, APS causes the release of neuroendocrine
hormones that stimulate the release of free energy and restricts the uptake of glucose into various
tissues, causing the blood glucose concentration to temporarily rise [38]. This can be problematic
for regulating glucose levels in people with T1D. Tasks considered routine by healthy individuals,
like training or recreational activity versus competitive sporting events, can cause glucose values to drift
out of the desired range and increase the risk of developing diabetes-related complications. Some of the
routine activities in everyday life, like running due to being late for important events, or undesirable
hindrances or disruptions in common tasks can also trigger APS, which may be easily masked by
the concurrent PA [13,17,18]. Appropriate signal processing and feature extraction can improve the
accuracy of discriminating between physical activity and psychological stress. The necessity of feature
extraction in ML is well established [31]. The development of signal processing techniques to handle
the noise and artifacts in the measured physiological biosignals from wearable devices is an active
research area [19,22–26].

Motivated by the above considerations, in this work, we studied the effects of data filtering and
adaptive noise cancellation techniques on the accuracy of detecting and discriminating PA and APS,
and quantifying the PA intensity using a variety of ML algorithms and physiological measurements
collected from a wristband. We demonstrate that effective signal processing and feature extraction are
important to ensure high accuracy for ML algorithms (naïve Bayes, decision tree, k-nearest neighbor,
linear discriminant, ensemble learning, and support vector machine) to discriminate among different
types of individual or concurrent incidences of PA and APS and quantify the intensity of the PA
through estimates of energy expenditure (EE). The PA and APS classification provides users with
important information on the individual or concurrent simultaneous occurrences of physiological
and psychological stressors that they are experiencing, and EE provides an assessment of the physical
exertion. The results show that the proposed signal processing techniques increase the detection and
discrimination accuracy for PA and APS and decrease the EE estimation error.

2. Materials and Methods

2.1. Data Collection

Twenty-four subjects participated in 207 different experiments, which consisted of three different
physical states (PS) (sedentary state (SS), and two different exercises: treadmill run (TR) and stationary
bike (SB)) and three psychological states (non-stressful (NS) and two different APS inducements:
exciting-anxiety stress (EAS) and mental stress (MS). Experiments were conducted at the Illinois
Institute of Technology under an Institutional Review Board (IRB)-approved protocol. The types of
APS inducements were determined based on a literature review of APS inducement research and
consultations with a psychologist at the University of Illinois at Chicago. SS activities were separated
into three categories based on different APS inducements: SS–non-stress (SS-NS) experiments involved
subjects watching a video, resting at home, laying down without APS inducement, and reading a
book; SS–mental stress (SS-MS) experiments consisted of multiplications of two-digit numbers under
time constraints [11,39,40], solving puzzles, taking IQ or Stroop tests [11,41,42], and playing chess;
SS–exciting-anxiety stress (SS-EAS) experiments included watching thriller/horror movies [11,43,44],
taking a class exam that did not involve mathematical calculations (to reduce MS) [45], participating in
research meetings with advisor, making a presentation to an audience, and playing a video game while
sitting [44,46]. TR experiments were conducted on a treadmill while running at a speed in the range
of 2.5 to 7.0 mph. The speed was determined by the desired speed of the subject. The TR activities
were separated into three categories based on different APS inducements: TR-NS experiments were
conducted during TR exercise while listening to calming music or watching natural videos; TR-EAS
experiments consisted of watching surgery or car-crash videos during TR exercise; TR-MS experiments
were conducted by asking for the mental multiplication of two-digit numbers under time constraints
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while running on the treadmill [11,39,40]. APS inducements during stationary bike exercise were
similar to implementations in the TR-APS protocol. Information on the experiments is presented in
Table 1 and Figure 3.

Table 1. Experiments conducted for physical activity (PA) and acute psychological stress (APS)
data collection.

Different Physical State with Various APS Inducements

Physical Number of Number of Duration Duration After
Activity Experiments Subjects (min) Class Balancing (min)

Resting 89 10 3172 2141

Treadmill 57 20 2164 2141

Stationary Bike 61 19 1713 2141

Sedentary State Experiments with APS Inducement

APS Number of Number of Duration Duration After
Type Experiments Subjects (min) Class Balancing (min)

Non-Stress 28 6 846 1057

Excitement 29 9 1129 1057

Mental Stress 32 6 1197 1057

Treadmill Experiments with APS Inducement

APS Number of Number of Duration Duration After
Type Experiments Subjects (min) Class Balancing (min)

Non-Stress 28 20 1162 407

Excitement 12 12 676 407

Mental Stress 17 8 326 407

Stationary Bike Experiments with APS Inducement

APS Number of Number of Duration Duration After
Type Experiments Subjects (min) Class Balancing (min)

Non-Stress 29 19 891 296

Excitement 24 12 585 296

Mental Stress 8 7 237 296

Figure 3. Overview of physiological and psychological state estimation using wristband biosignals
(two-layer tree classification approach. 1st layer: Physical state (PS) classification; 2nd layer: APS
classification for each PS).

EE is the total amount of energy an individual uses to maintain essential body functions and
the energy expended as a result of PA. The gold standard measurement of EE is indirect calorimeter.
However, collecting these measurements is uncomfortable, inexpensive, and practical for daily life
usage. Previous studies showed that EE can be estimated with wearable devices using biosignals such
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as heart rate. However, estimating EE is a still challenging task, though it is a valuable metric for
quantifying the intensity of physical activities. We collected data during TR and SB exercises to develop
models that can predict the EE using only wristband biosignals. A subset of the experiments for APS
and PS model development was used for collecting data for EE estimation. During these experiments,
an indirect calorimeter (COSMED K5 wearable metabolic measurement system, COSMED Srl, Italy [47])
data were collected in addition to wristband data. The indirect calorimeter is a gold standard EE
measurement that was used as the target output value for training the ML algorithms with the inputs as
the wristband data. Sixteen hours of data were collected from 59 experiments with 15 subjects (Table 2).

Table 2. Experiments conducted for energy expenditure (EE) data collection.

Data Collection for EE Model Development (VO2 Mask + Wristband)

Physical Activity Number of Experiments Number of Subjects Minutes

Treadmill 22 6 304

Stationary Bike 37 9 656

2.2. Signal Processing

In this work, a single non-invasive wrist-worn device, the Empatica E4 wristband (Empatica E4,
Empatica Inc., Cambridge, MA, USA [48]) was used. The E4 is capable of recording and streaming the
photoplethysmogram (PPG) signal, reporting blood volume pulse (BVP) at a frequency of 64 samples/s,
data from a triple-axis accelerometer (ACC) measured at a frequency of 32 samples/s, heart rate derived
from the BVP signal using a propriety algorithm and reported at a frequency of 1 samples/s, and ST
and GSR recorded at a frequency of 4 samples/s. In this section, signal processing methods are
introduced for the five different biosignals (ACC, HR, BVP, GSR, and ST).

2.2.1. Blood Volume Pulse

Since the PPG is highly susceptible to noise and motion artifacts, the PPG signal requires denoising
and the ACC data are used as a reference signal to remove the motion artifacts. We used three different
signal processing techniques to obtain the denoised PPG signal from the raw PPG data (Figure 4).

Figure 4. Overview of photoplethysmogram (PPG) signal processing.

Both the raw ACC and PPG signals were normalized within the [−1,1] range. The ACC data were
upsampled to obtain the same sampling frequency with the PPG data. Cross-correlation analysis was
used to determine the delay between the ACC and the PPG signals. A time-delay of approximately
1 s was found between the ACC and the PPG data, where the highest correlation value occurred
at a lag of 73 samples, and with a sampling frequency of the PPG and upsampled ACC signals of
64 Hz, the time-delay was found to be approximately 1.1 s. The same band-pass filter was applied
to both the ACC and PPG readings. Physiologically, the HR in humans varies between 30 and
210 bpm (0.5–3.5 Hz) except for extraordinary situations. Several publications consider the 0.5–3.5 Hz
frequencies as cut-off frequencies of a band-pass filter [12,49], which was also used for our band-pass
filter design. After considering several different methods such as Butterworth, Chebyshev Type I/II,
and Elliptic filter, a 4th-order Butterworth band-pass filter was designed with the selected cut-off
frequencies. The band-pass filter yielded a smoother signal by eliminating most of the noise. However,
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motion artifacts can still exist after the band-pass filter because its frequency can be inside the pass-band
region (0.5–3.5 Hz). Therefore, additional steps were considered to filter out the artifacts from the signal.

Adaptive noise cancellation (ANC) is a commonly used approach for PPG signal processing [50,51].
Several different algorithms have been proposed for ANC, including the recursive least-squares filter
and the least-mean-squares filter. Nonlinear recursive least-squares (NRLS) filters were used in this
work for ANC. We used ANC involving NRLS filtering to remove the motion artifacts in the BVP
signal. Since the motion artifacts are related to the movement of the users, and hence the ACC signals,
we use the ACC data as the reference signal in the ANC algorithm. In the proposed approach, the ACC
readings and the BVP signals are first processed through a band-pass filter to remove frequencies
that are not physiologically reasonable. This band-pass filter removes all frequencies that are not
representative of the underlying heart rate variations. After only the physiologically meaningful range
of frequencies are retained in both the accelerometer and blood volume pulse signals, NRLS is used to
remove the motion artifacts in the BVP signal. Since motion artifacts may arise due to movements in
different dimensions, we use the three-axis ACC data. We sequentially remove the motion artifacts
that are associated with the x-, y-, and z-axis of the ACC signals though the NRLS algorithm applied
in series. The NRLS algorithm [51] consists of Volterra series expansion, which provides additional
non-linear terms to handle the non-linearity of motion artifacts. The parameters include the filter
length (M), forgetting factor (λ), covariance matrix (P), and weight matrix (w), which are specified as
6, 0.999, 1000 × I, and 0, respectively. Figure 5 illustrates the structure of ANC using NRLS. The PPG
signal is highly correlated with the ACC readings when motion artifacts are present, and the ANC is
applied three times in series for the x, y, and z axes, resulting in the signal with significantly reduced
motion artifacts.

Equations (1)–(5) describe the mathematical representation of adaptive filter implementation,
with e(k) as an enhancement signal; U as the accelerometer measurements; s(k) as the ideal signal,
which does not contain any noise; d(k) as motion artifacts or noise desired to be removed; and d′(k)
as the noise estimates from adaptive filter. The adaptive filter tries to minimize d(k)− d′(k) using
Equations (1)–(5), to obtain a signal as close as possible to s(k), and the filtering equations are as follows:

e(k) = s(k) +
(

d(k)− d′(k)
)

(1)

α(k) =
λ−1P(k− 1)U(k)

1 + λ−1UT(k)P(k− 1)U(k)
(2)

ω(k) = ω(k− 1) + α(k)e(k) (3)

P(k) = λ−1
(

1− α(k)UT(k)
)

P(k− 1), P(0) = γIM (4)

d′(k) = ω(k)TU(k) (5)

The detailed diagram for noise cancellation with an adaptive filter is presented in Figure 5.
ANC presents a useful solution for PPG signal processing. However, ANC only provides

good results when ACC readings correlate with the PPG signal, which occurs generally during
motion artifacts caused by physical activity. Thus, some additional noise may still remain after ANC.
Decomposition algorithms (wavelet decomposition, empirical mode decomposition, and singular
signal decomposition) are able to break down signals into different constituent signals at different
sub-frequencies. Some sub-frequency sets may be related to additional noise, which can be easily
eliminated from the signal. Wavelet decomposition was used in this work for further removing noise
from the PPG signal processing [12,51,52]. In this work, the Symlets 4 wavelet function was used with
4 decomposition levels for denoising the PPG signal.
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Figure 5. Noise cancellation and artifact removal with nonlinear recursive least-squares (NRLS)
adaptive filter.

The efficacy of the ANC and denoising algorithms was evaluated using a ground-truth
measurement. A few experiments were conducted with the bioPLUX (bioPLUX, PLUX Wireless
Biosignals SA, Portugal [53]), which is a finger-worn device. The bioPLUX collects PPG data at a 1 kHz
frequency compared to the 32 Hz frequency of the Empatica E4. The bioPLUX is worn on a hand held
constant to reduce motion artifacts and interference, and the data from the bioPLUX were used as a
ground-truth to evaluate the improvement made by the PPG filtering and artifact removal algorithm.
Data were collected from the other wrist with Empatica E4 during TR without any restrictions in
movement. The results of the signal processing algorithms were compared with raw Empatica E4 BVP
measurements, the Empatica E4 BVP data processed with the proposed technique, and the bioPLUX
measurements as the ground-truth data. Figure 6 presents an example of the improvement in the
raw BVP signal achieved with the proposed method. The time frame (5 s) was scaled with common
up-sampled frequency (64 kHz) and data were normalized to the [0–1] range. The processed signal
significantly enhanced the signal quality.

Figure 6. Blood-volume pulse (BVP) signal processing improvements after signal processing
implementations (During treadmill (TR) exercise).

2.2.2. Other Biosignals

The Savitzky–Golay (SG) filter was used for denoising the ACC [54], ST [55], HR [11], and GSR [55]
measurements, whereas the BVP signal was processed to remove artifacts and noise. The process of
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tuning the filtering parameters involves iterative trial-and-error while maximizing the classification
accuracy. Different values for the order and frame length were evaluated to find the best filter
parameters based on the classification outcomes. After tuning the parameters of the SG filter, the order
and frame length parameters were determined for the measurements as: ACC (order = 7 and frame
length = 15), ST (5 and 9), HR (5 and 9), and GSR (5 and 11). Signal-to-noise ratio (SNR) is a measure
that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio
of signal power to the noise power, often expressed in decibels. Higher numbers generally mean a
better specification, since there is more useful information (the signal) than unwanted data (the noise).
The SNR is calculated as:

SNR = Psignal/Pnoise, (6)

where Psignal denotes the average power of the signal and Pnoise denotes the average power of the noise.
We calculated the SNR values for each signal before and after the specified signal processing algorithms.
A randomly selected data set was analyzed through the filtering algorithms and the improvements
were assessed. The findings showed that SNR of the processed signals were consistently higher than
raw measurements (overall SNR values improved 57% (absolute percentage changes)), which showed
that the signal cleaning algorithms improve the signal quality by reducing the noise in the signals.

2.3. Feature Extraction and Dimensionality Reduction

A total of 866 primary features were extracted from the five biosignals measured by the wristband
device. The features were generated from each one-minute epoch of data. We generated statistical
and mathematical features for each variable, including mean, standard deviation, median, quartiles,
mean-of-squared values, maximum, minimum, range, slope, first derivative, second derivative, ratio of
maximum to minimum values, sum of absolute values, mean of absolute values, interquartile range,
coefficient of variation, autoregressive parameters, wavelet decomposition coefficients, signal-to-noise
ratio (SNR), skewness, kurtosis, correlations between biosignals, mean normalized frequency, power,
magnitude of frequency response, and Fourier transform(Figure 7 and (Table 3)) [11]. These features
constitute the primary features and were computed for each variable, yielding 866 primary features.
The secondary features were computed as the ratio of primary features from two different biosignals,
which yielded 1350 secondary features. The illustration of 10 different commonly-used extracted
features from GSR measurements is presented Figure 7. Since the denoised BVP signal significantly
eliminates motion artifacts and provides peaks that are accurate (Figure 6), the denoised BVP values
were used in feature extraction. Secondary features were obtained by the ratio of primary features to
each other, which can indicate some physiological and psychological states. For example, the ratio
of ACC to GSR can be useful in discriminating APS from PA because GSR increases during APS
while ACC measurements maintains the same level. Finally, 2216 different features were obtained
by combining the primary and secondary features. Features were normalized to give each feature
variable an equal weight, and principal component analysis (PCA) and partial least squares (PLS) were
conducted for feature dimension reduction [56].

The same pool of feature variables was used for PS classification and EE estimation (Table 4).
Most of the extracted features are highly correlated with each other (such as median of HR and mean
of HR). Highly correlated features do not provide additional information for ML algorithms, and their
use may add bias to similar attributes, leading to poor estimation and classification accuracy. PCA is
used to reduce the dimensionality of extracted features [57]. This facilitates reducing the number of
variables used for training the models, resulting in principal components being retained that capture
the informative variation from the feature variables to avoid the risk of overfitting. The first 275
principal components were used as the inputs of each ML algorithm. We varied the number of
principal components that were retained when building the models while observing the accuracy
of a validation data set. Our analysis showed that retaining 275 principal components resulted in
the highest accuracy. Increasing the number of principal components beyond 275 resulted in no
improvement in classification accuracy, but the computational requirements increased due to the larger
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number of inputs to the models. For EE estimation, PLS regression was used to reduce the features to
a smaller set of latent variables that are most correlated with the EE.

Figure 7. Example feature extraction for galvanic skin response (GSR) (illustration of common statistical
and mathematical features such as minimum, quartiles, mean, and slope).

Table 3. List of extracted primary features (BVP-Pr: Processed BVP signal). (*ACC: Magnitude of
ACC-X, ACC-Y, and ACC-Z; **ACC: Total number of extracted features from ACC-X, ACC-Y, ACC-Z,
and ACC).

Biosignal Feature Number of Features

ACC-X Statistical Features (SD, mean, median, quarterlies, ...) ** ACC: 225
ACC-Y Mathematical Features (Slope, derivatives related, max-min, BVP-Raw: 148
ACC-Z max/min, absolute summation, absolute inverse cosine, zero-cross, BVP-Pr.: 148
* ACC difference/ratio of 1st and 3rd quarterlies, mean/SD, mean/median, HR: 98
BVP-Raw autoregressive all-pole model parameters, logarithm related features, ST: 111
BVP-Pr. wavelet decomposition coefficients, signal-to-noise ratio (SNR),...) GSR: 136
HR Moment Features (Central (different orders), kurtosis, skewness)
ST Frequency Domain (Amplitude and location of peak frequency,
GSR mean normalized frequency, power, magnitude, FFT features,...)

Correlations between other biosignals (Coefficients of
(ACC-X, GSR),...), (ACC-X, ACC-Y), (ST, HR), (ACC-X, GSR), ...)
Ratio of some fundamental features (SD ACC-X / SD ACC-Z),... Total: 866

BVP Heart Rate Variability Features (low frequency, high frequency,
very low frequency, ultra low frequency, LF/HF, number of peaks,...)

GSR Data Specific Features (mean energy, variance of local peaks,
ST total energy response, mean amplitude of local peaks,

low frequency, high frequency, very low frequency, LF/HF)

Due to the lack of physical exertion, the SS experiments were longer in duration than the other
experiments, which caused an imbalance among the classes. Since imbalances in class sizes may result
in bias and poor classification accuracy, a combination of up-sampling (adaptive synthetic sampling
(ADASYN) [58]) and down-sampling methods were used. The impact of upsampling the minor class
is reduced by simultaneously downsampling the major class by retaining the unique samples as
determined by the similarity measure of k-means clustering. We also studied the effect of different
levels of upsampling the minor class on the accuracy of the physical state and acute psychological
stress classification results. We found that the highest accuracy was achieved with 25% upsampling of
the minor class. After balancing the data set, 2141 min of training data were obtained for each of the
SS, TR, and SB activities. In addition, 1057 min of data were obtained for each of NS, EAS, and MS
experiments during the SS; 407 min of data were obtained for each of NS, EAS, and MS experiments
during SB exercise; and 296 min of data were obtained for NS, EAS, and MS experiments during TR
exercise. The final data set sizes of the balanced class sizes after upsampling and downsampling are
reported in Table 1 (Column 5).
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Table 4. Example of dominant features.

Feature Name p-Value Classification/Estimation

SD of ACC/Mean of ACC ≤0.01 PS Classification
Maximum of ST/Maximum of GSR ≤0.01 APS-SS Classification
Mean of HR ≤0.01 APS-TR Classification
Total Energy Response of GSR ≤0.01 APS-SB Classification

Zero cross of BVP 0.49 (correlation) EE Estimation

2.4. Machine Learning Algorithms

We normalized the biosignals before generating the features to ensure that the absolute
magnitudes of some variables did not bias the feature generation. After the features were generated,
we normalized the feature variables to ensure each feature variable had equivalent weight in the
principal component analysis for dimension reduction. Five different ML models were developed
using the normalized latent variables, including the PS classification model, the APS classification
model during SS activities, the APS classification model during TR activities, the APS classification
model during SB activities, and the EE estimation model. Data were randomized and separated into a
training (85%) and testing (15%) data set . The training data set is used for model development and
hyperparameter optimization. The testing data set is used to report the final ML outcomes. Various
ML algorithms were tested for classification, including, naïve Bayes (NB), k-nearest neighbor (k-NN),
decision tree (DT), ensemble learning (EL), support vector machine (SVM), and linear discriminant
(LD). Additionally, Gaussian process regression (GPR) was used for EE estimation model development.
The k-NN, EL, and SVM models achieve better accuracy relative to the other models. The use of
neural network (NN) or deep learning (DL) techniques is an active research area, though these
techniques typically require a sufficient number of training samples to appropriately determine the
model parameters. Therefore, the performance of NN/DL approaches is limited ftoor the relatively
smaller data sets employed in biomedical and health research. The algorithms used in this work are
introduced briefly in the following subsections.

2.4.1. k-Nearest Neighbor

We used hyperparameter optimization to determine the distance [59], which is the cosine distance
metric, to compare relative distances between the feature variables of the testing data with those of
the training data. Based on optimization results, 10 neighbors with the shortest sorted distances were
identified as being representative of each class. We assigned the class label to the new data according
to the most common class within the 10 closest training samples.

2.4.2. Support Vector Machine/Regression

SVM has the advantage of easy adaptation to feature-based classification approaches for feature
variables with nonlinear relations [60]. SVM functions are defined by determining a separating
hyperplane in the high-dimensional feature space that best distinguishes two classes during the
training stage. The determined separating hyperplane is used online with testing data to assign a
class to the test data sample based on the feature variable inputs [60]. We used both SVM and SVR to
determine PS and estimate EE [60].

2.4.3. Ensemble Learning

EL uses trained multiple learners—in this case, multiple DT—to achieve higher accuracy than the
individual models can achieve alone. Different methods are used to establish an EL model, including
the boosting and bagging method [61]. Hyperparameters optimization helps to select the best method
with the optimum number of learning cycles, learning rate, and minimum leaf size. We developed an
EL model to both classify PS and estimate EE [61].
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2.4.4. Linear Discrimination

LD uses features to create a linear model. LD finds a linear combination of features that
characterizes or separates two or more classes of objects or events. It is unable to capture nonlinearity.
Physiological responses may contain some nonlinearities that cannot be handled by a linear model.
However, LD shows better performance in small data sets and with relatively small numbers of
iterations for hyperparameter optimization training.

2.4.5. Gaussian Process Regression

Gaussian process regression (GPR) is a stochastic statistical technique that seeks a multivariate
normal distribution within random variables from the feature space domain. GPR measures the
similarity between points (the kernel function) to predict the value from training data.

2.4.6. Other ML Algorithms

DT and NB are other popular ML algorithms that did not perform well in this work. NB models
are based on statistical information and compute the variance and mean of the selected subset of
feature variables for a specific number of clusters. We computed the Gaussian and kernel probability
density for each feature and computed posterior probability values for the clusters. The computed
posterior values were compared to determine the classification. DT generates a predictive model that
can be used as a classification or regression model. DT algorithms are highly affected by variations in
data, which causes a lack of robustness.

2.4.7. Hyperparameter Optimization

The various hyperparameters for the different ML techniques were optimized with Bayesian
optimization (expected improvement acquisition function) to achieve the best classification
accuracy [62]. Table 5 lists the hyperparameters for each ML algorithm. A large number of iterations
were performed for each ML algorithm using 10-fold cross-validation techniques.

Table 5. List of optimized hyperparameters for the machine learning (ML) algorithms (PS: physical state
classification; APS: acute psychological stress; SS-APS: APS classification in sedentary state; TR-APS:
APS classification in treadmill run; SB-APS: APS classification on stationary bike; SVM: support vector
machine; DT: decision tree; k-NN: k-nearest neighbor; LD: linear discriminant; NB: naive Bayes; EL:
ensemble learning

ML Algorithm Hyperparameter (s) PS SS-APS TR-APS SB-APS

SVM Kernel Scale 0.90 0.46 30.11 0.01
Box-Constraint 0.19 0.090 122.38 737.2

DT Minimum Leaf Size 1 7 9 8

k-NN Number of Neighbors 1 10 7 2
Distance Function cosine Spearman correlation correlation

LD Delta 3.86 × 10−5 2.1 × 10−5 0.01 0.0002
Gamma 0.005 0.0662 0.51 0.22

NB Distribution Name normal normal kernel normal
Width — — 0.0472 —

EL Learning Rate 0.9027 0.001 0.82 0.9504
Number of Learner 490 16 222 477
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3. Results

3.1. Physical State Classification and Psychological Stress Detection

The classification accuracy was calculated with following formula, where true positives (TPs),
true negatives (TNs), false positives (FPs), and false negatives (FNs) define the accuracy as:

Accuracy(%) = (TP + TN)/(TP + TN + FP + FN). (7)

The various ML algorithms were tested for PS classification. The EL algorithm achieved the
best classification accuracy at 99.3% (Figure 8a). The accuracies reported are based on 963 min
(approximately 16 h) of testing data (15% of the whole data). The results are presented with a confusion
matrix (Figure 8a). Various ML algorithms, SVM, LD, DT, NB, and k-NN, yielded accuracies of 99.0%,
97.7%, 96.6%, 95.6%, and 89.5%, respectively.

The ML algorithms were tested for APS classification (NS, EAS, and MS) during SS activities.
The LD algorithm achieved the best accuracy with 98.3% (Figure 8c). The accuracies reported are based
on of 473 min (approximately 8 h) of testing data (15% of the whole data), and are presented using a
confusion matrix (Figure 8c). Various ML algorithms, SVM, LD, NB, DT, and k-NN, yielded accuracies
of 97.6%, 97.7%, 94.0%, 92.6%, and 88.3%, respectively.

The same ML algorithms were also tested for APS classification (NS, EAS, and MS) during TR
exercise. The LD algorithm achieved the highest accuracy with yielding 96.7% accuracy (Figure 8b).
The accuracies reported are based on 180 min (approximately 3 h) of testing data (15% of the whole
data) and are presented in a confusion matrix (Figure 8b). Various ML algorithms, k-NN, EL, SVM,
NB, and DT, yielded accuracies of 95.5%, 94.4%, 89.4%, 88.8%, and 84.4%, respectively.

Figure 8. Confusion matrix for PS and APS classification: (a) PS classification with SVM, (b) APS
classification during TR exercise with SVM, (c) APS classification during SS activities with EL, and (d)
APS classification during SB exercise with k-NN.

The same ML algorithms were also tested for APS classification (NS, EAS, and MS) during SB
exercise. The EL algorithm achieved the highest accuracy at 83.2% (Figure 8d). The accuracies reported
are based on of 131 min (approximately 2 h) of testing data (15% of the whole data) and are presented
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in a confusion matrix (Figure 8d). Various ML algorithms, LD, SVM, DT, NB, and k-NN, yielded
accuracies of 81.6%, 80.9%, 71.6%, 70.2%, and 60.3%, respectively.

3.2. Energy Expenditure Estimation

Estimation error was evaluated using mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE), which are computed as follows:

MAE(MET) =
1
n
∗

n

∑
i=1

∣∣yi − ŷi
∣∣ , (8)

RMSE(MET) =

√
1
n
∗

n

∑
i=1

(yi − ŷi)2, (9)

MAPE(%) =
100%

n
∗

n

∑
i=1

∣∣∣∣∣ (yi − ŷi)

yi
,

∣∣∣∣∣ (10)

where yi and ŷi for i := {1, . . . , n} denote the actual and predicted values of the EE, respectively.
EE estimation performance was evaluated with 144 min of testing data (15% of the whole data).

The estimated values were compared with the indirect calorimeter data. A very low estimation
error was achieved with the k-NN algorithm: 0.59% MAPE, 0.02 metabolic equivalent of task (MET)
MAE, and 0.06 MET RMSE. Figure 9 illustrates testing data set estimation versus indirect calorimeter
measurements. The different algorithms performed significantly differently. The Gaussian process
algorithm performed significantly worse with the following estimation error: 29.3% MAPE, 1.66 MET
MAE, and 2.09 MET RMSE.

Figure 9. EE estimation (separate data set).

4. Discussion

This paper presents an application for obtaining psychological and physiological states from
the signals of a wearable device that can be used in everyday life—a wristband. The performance of
several signal processing algorithms and ML methods were assessed. k-NN, NB, and DT performed
worse than the other algorithms because these algorithms require more data. However, SVM, LD,
and EL produced more accurate performance since they can work with a relatively small amount data
with a low risk of overfitting.

The GPR is a powerful ML model; however, it requires a large amount of data. For this reason,
in our EE estimation model, it had a large estimation error. SVM, EL, and k-NN achieved similar
results that were significantly better than those of the other ML techniques considered.
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The signal processing algorithm denoised the wristband PPG signal and removed the artifacts to
clearly show the peaks, enabling an accurate estimation of HR. Signals from wristband devices
are corrupted with artifacts caused by arm and wrist motion during most physical activities.
The developed algorithm improved HR estimation during PA (Figure 6). The contributions of signal
processing to accuracy enhancements were evaluated by comparing processed and raw biosignals for
the same implementation of various ML algorithms used in this work. Signal processing improved
classification accuracies by 0.7% to 4.5%. It also significantly improved the EE estimation. Table 6
presents the improvements with the use of filtered data.

During SS activities, NS was distinguished from other types of APS with a high accuracy (97.7%;
Figure 8). However, during exercise, NS could not be discriminated as accurately from other types
of APS (92.9–74.4%; Figure 8). The accuracy decreased because exercise and APS can affect some
biosignals such as HR. Similarly, both APS and exercise increase HR.

Filtering improves signal quality by smoothing the signals and reducing the amount of noise,
sharp and sudden changes, and outliers. Features are extracted from both filtered and raw data.
Features with filtered data represent reasonable distributions in a limited range scale with fewer
outliers, which is crucial because features are used for the design of all ML algorithms. The raw BVP
signal is also used for feature extraction because motion artifacts can help capture the type of PA and
discriminate PA from APS. Figure 10 illustrates the improvements with filtering for various biosignals.
Signal processing algorithms also improve the classification and estimation outcomes. Filtered signals
performed better by up to 3% for APS classification and 18% for EE estimation (Table 6).

Figure 10. Filtering and signal processing improvements for raw biosignals: (Upper Left) BVP signal
processing improvements during TR exercise, (Upper Right) ST data filtering result during SB exercise,
(Lower Left) GSR data filtering result SB exercise, and (Lower Right) feature extraction example
comparison with and without signal processing for ACC data during SS activities. (Blue circles:
improvements where there are visible abrupt changes).
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Table 6. Signal processing effects on accuracy improvements. MAE: mean absolute error; RMSE:
root-mean squared error; MAPE: mean absolute percentage error.

ML Algorithm Raw Biosignals Processed Biosignals
Best Testing Accuracy (%) Best Testing Accuracy (%)

PS Classification 98.6 99.3
APS Classification SS 96.2 98.3
APS Classification TR 93.3 96.6
APS Classification SB 79.4 83.2

ML Algorithm Raw Biosignals
Estimation Error

Processed Biosignals
Estimation Error

EE Estimation (MAPE %) 0.72 0.59
EE Estimation (MAE (MET)) 0.04 0.02
EE Estimation (RMSE (MET)) 0.13 0.06

We analyzed the effect of each sensor modality on the classification accuracy. In this analysis,
we excluded the feature variables derived from ACC, GSR, HR, BVP, and ST measurements, and built
the classification models with the retained measurements only, which included the PS, APS-SS,
APS-TR, and APS-SB classifications. The results showed a decrease in classification accuracy when any
individual measurement variable was removed, thus demonstrating the advantage of the multisensor
fusion method in improving the classification accuracy (Figure 11). The different modalities of sensing
physiological variables provide various contributions to the classification accuracy. For example,
the galvanic skin response measurements contribute significantly to improving the psychological stress
during biking relative to the other biosignals. The accelerometer signals contribute to improving the
physical state classification.

Figure 11. Relative (all biosignals) classification accuracy changes with excluded biosignals for each
classification type.

One limitation of the current work is that the data collected were not sufficient to develop
advanced deep learning models; because of this limitation, we found that other machine learning
techniques performed better than the deep learning approaches. More data are needed to appropriately
train the advanced deep learning models and these results should not be considered for assessing deep
learning models.

Our research focused on identifying the effects of physical activity and acute psychological stress
on the glucose–insulin dynamics of people with Type 1 diabetes. Due to insufficient insulin secretion,
people with Type 1 diabetes must administer exogenous insulin to regulate their blood glucose levels.
The amount of insulin dose to administer depends on the physical and psychological state of the
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subject. The algorithms developed in this work will enable real-time assessment of the physical and
psychological stressors experienced by people with Type 1 diabetes and how their insulin requirements
vary based on these factors.

5. Conclusions

Signal processing and ML algorithms were used on five different biosignals reported by a
single wristband to detect, classify, and quantify physical activities and acute psychological stress.
The signals processed for noise and artifact elimination were used for feature extraction, feature
reduction, and feature use in the development of various ML models. The ML models are able to
accurately detect and identify the characteristics of PA and APS and estimate EE. The improvements in
the accuracy for detecting and characterizing PA and APS and their concurrent occurrence improves
the feasibility of using this information in treatment decisions systems of chronic diseases such as
automated insulin dosing decisions in diabetes.
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ADASYN Adaptive Synthetic Sampling Approach
APS Acute Psychological Stress
BVP Blood-Volume Pulse
DT Decision Tree
EAS Exciting-Anxiety Stress
EE Energy Expenditure
EL Ensemble Learning
GSR Galvanic Skin Response
GPR Gaussian Process Regression
HR Heart Rate
k-NN k-Nearest Neighbor
LD Linear Discrimination
LR Linear Regression
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MET Metabolic Equivalent of Task
ML Machine Learning
MS Mental-Stress
NB Naïve Bayes
NS Non-Stress
PCA Principal Component Analysis
PLS Partial Least Squares
PPG Photoplethysmogram
PS Physical State
RMSE Root Mean Square Error
SB Stationary Bike
SG Savitzky–Golay
ST Skin Temperature
SS Sedentary State
SVM Support Vector Machine
TR Treadmill
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