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Abstract: Ray tracing is a frequently used method for acoustic simulations, valued for its calculation
speed and ease of use. Although it is fast, there are no fully ray tracing-based real-time simulation
methods or engines. Under real-time restrictions, ray tracing simulations lose precision and the
variance inherent in the random simulation method has too much impact on the outcome. In this
paper, an algorithm called iterative ray tracing is presented that reduces the negative effects of real-
time restrictions by iteratively improving the initial calculation and increasing the precision over time.
In addition, new estimates of the expected value and variance of ray tracing simulations are presented
and used to show the iteration steps in the new algorithm reduce variance, while maintaining
the expected value. Simulations using iterative ray tracing are compared to measurements and
simulations using the classical ray tracing method, and it is shown that iterative ray tracing can be
used to improve precision over time. Although more testing is needed, iterative ray tracing can
be used to extend most ray tracing algorithms, in order to decrease the adverse effects of real-time
restrictions.

Keywords: acoustic ray tracing; real-time acoustics; geometrical acoustics

1. Introduction

Ray tracing is one of the most common methods of acoustic simulations [1] and is
used in popular commercial acoustic simulation software [2–4]. Among its advantages are
its relatively low computational load and its close relationship to geometrical acoustic (GA)
models for sound propagation [1,5,6]. The relatively low computational load means that
ray tracing is a good candidate for acoustic simulations in virtual reality (VR) and other
real-time applications. Additionally, acoustic ray tracing can be used to unlock the extreme
computational capabilities of modern Graphics Processing Units (GPUs) for the purpose of
acoustic simulations [7,8]. The ray tracer used in this study is implemented to run on the
GPU.

Today, there exists a range of acoustic simulation software aimed at VR and acoustically
immersive experiences. The most precise simulation tools achieve their accuracy by solving
the wave equation for low frequencies, but cannot be considered fully real-time, as they rely
on computing at least parts of the acoustic response in advance [9,10]. On the other hand,
some tools aimed primarily at entertainment purposes, such as video games, can be very
fast, but are found to be of questionable physical accuracy [11]. In between these extremes,
there are at least two applications relying on geometrical acoustics that are capable of real-
time simulation. One is developed at the Technical University of Aachen (RWTH Aachen),
and called Room Acoustics for Virtual Environments (RAVEN) [12]. It implements image
source, ray tracing, and radiosity techniques. A second example is EVERTims [13], which is
an open-source solution that combines an image sources with a statistical model for the late
reverberation. Image source modelling is computationally efficient if a low order of image
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sources is used, which explains their prevalence in real-time modelling techniques. In
EVERTims, the order of image sources is increased over time, thus refining the simulation
data. As of yet, there is no real-time acoustic simulation software relying only on ray
tracing, despite its popularity as an element of room acoustic simulation software [2,3].

If an acoustic application is to be perceptually real-time, the simulated sound field must
respond to changes in the virtual environment sufficiently fast. There is no firm consensus
on what should be considered “sufficiently fast”, but values in the range of 20–60 ms are
called interactive in the literature [13,14]. The actual time limit depends on the actions of the
listener and their attention, and a hard bound is, thus, hard to define. Within this time limit,
the sound field must be updated to account for any changes in the environment. Depending
on what these changes entail, the sound field update may consist only of impulse response
filtering or the calculation of a completely new simulation [12]. The variations in time
requirements indicate that there is a need for more adaptive simulation strategies.

Ray tracing is a prevalent room acoustic simulation tool, and the term defines both
the model for sound propagation (geometrical acoustics) and the calculation method. The
sound field is modelled as a set of plane waves, and typically only the energy content of
the waves are considered [1,5]. With these assumptions, the sound field can be described as
an infinite set of energy particles whose behavior is well-defined. This model for the sound
field is called geometrical acoustics [6], and in the case of ray tracing, the acoustic field is
estimated by Monte Carlo sampling of the energy particles (or rays) [15].

Monte Carlo methods are a class of simulation methods that rely on random sampling
to calculate something that may be deterministic in nature. In the case of room acoustic
simulations, the impulse response is defined by the wave equation and the space under
consideration and is, thus, deterministic. It is estimated using random samples of energy
particles and their paths. In practice, this means calculating the potential propagation paths
for a large set of rays and determining their energy levels over time. As the rays intersect
the position of the sound receiver, their energy is recorded and added to an estimate of
the energetic impulse response. By sampling a large number of random ray paths, the
deterministic impulse response can be estimated. Frequently, the impulse response is
estimated in a given subset of positions, leading to a spatial discretization.

Although the impulse response is deterministic, the ray tracing simulation method
itself is random. Consequently, the simulation outcome can be described by its statistical
properties. The expected value of a simulation is the energetic impulse response defined
by the geometrical acoustics model. The variance of the simulation outcome describes
how much it may differ between calculations, and it can be used to gauge how accurate
the calculation is. As is typical for Monte Carlo simulation methods, the expected value
is independent of the number of samples whereas the variance decreases as the number
of samples increase [16]. Since the variance should be minimized, it is often desirable to
use as many rays as possible. However, the higher the number of rays, the higher the
computational load and the longer the simulation time. Although the expected value
and variance of ray tracing simulations typically cannot be calculated outright, accurate
estimates provide insight into the simulation tool itself and can be used as a tool to evaluate
simulation parameters, such as the number of rays used.

The lack of a real-time ray tracing option for acoustic simulations, despite its popularity,
shows that there is a need for algorithms that allow for faster calculation. On the other
hand, the simulation accuracy and precision should be maintained as far as possible, and
it has been noted that the real-time limitations vary depending on the situation. A more
flexible ray tracing simulation algorithm can be used to fill in both of these gaps.

In this paper, a ray tracing algorithm is presented, which allows for greater flexibility in
finding the balance between simulation speed and precision. The algorithm, called Iterative
ray tracing , can mitigate the issues caused by small sample sizes in ray tracing simulations
when speed cannot be compromised with. It iteratively improves the simulation result
until maximum precision is reached. The algorithm itself is easy to combine with other
methods for improving the performance of ray tracers.
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The algorithm is statistically equivalent to classical ray tracing. This is shown by
developing a novel theoretical estimate of the expected value and variance of the energetic
impulse response produced by ray tracing under diffused conditions. These estimates
improve on earlier versions [14] by fully accounting for the randomness involved in ray
tracing, and are compared to results from real simulations to ensure that they are accurate.

The following sections presents and explains iterative ray tracing, as well as formulates
the novel estimates of the expected value and variance. From this foundation, the accuracy
of the estimates are shown, and the functionality of the algorithm is demonstrated. This is
followed by a brief discussion and conclusion.

2. Iterative Ray Tracing: Introduction

In real time acoustic simulation, the sound field presented to the listener should adapt
to changes in the environment sufficiently fast that no delay can be perceived. When the
listener, or user, is moving quickly through the simulated space or interacting with the
environment in acoustically relevant ways (e.g., making noise, changing the environment
by opening doors or similar), the real time requirement can be very restrictive. On the
other hand, the user may, at times, refrain from interacting at all with the environment,
instead remaining in one place and perceiving the surrounding space. In such situations,
the time limit becomes almost irrelevant. Iterative ray tracing aims at improving the tools
for finding a balance between these two extremes.

In the context of ray tracing, restrictive time limits impact the number of rays that
can be used in the simulation. Reducing the number of rays does not change the expected
outcome of the simulation, but it can increase variance to the point where the result is not
usable. When the time limit imposes an upper bound on the number of rays that negatively
affects the reliability of the simulation result, while not rendering it unusable, a possible
solution is to iteratively improve the simulation result. In this way, the simulation can offer
excellent precision, while still generating simulation results quickly enough to comply with
real-time restriction [13]. This is the idea behind iterative ray tracing.

The calculated impulse response can be iteratively improved in cases when the simu-
lated space has not changed since the last time frame. In other cases, the impulse response
is no longer accurate and should be discarded. In the context of ray tracing, an intuitive
way of improving the simulated impulse response is by increasing the number of rays. In
iterative ray tracing, this is achieved by adding the results from a new ray tracing simu-
lation to the existing, still accurate, impulse response. When the ray tracing simulations
are configured in the right way, this is statistically equivalent to performing one single ray
tracing simulation with a number of rays equal to the sums of the two separate simulations.

A flowchart illustrating the algorithm is shown in Figure 1. The ray tracing and
auralization frameworks are presented as grey boxes, and their specific implementations
are not considered. In this algorithm, the ray tracing engine is assumed to continuously
produce impulse responses. New impulse responses (grey oval) are passed to the iterative
algorithm, which is responsible for determining what to do next (yellow rhombus). If the
acoustic field has changed significantly since the last frame, the newly produced impulse
response is passed directly to auralization. If it has not, it is combined with the existing
impulse response which may, in turn, consist of the result of multiple previous calculations,
and then it is passed to the auralization engine. The combination of impulse responses is a
central part of the iterative ray tracing algorithm. The conditions under which it can be
performed and how it should be implemented are described in Section 3.2.
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Figure 1. Flowchart illustrating the suggested algorithm. The ray tracer runs continuously, producing
new simulated impulse responses (grey oval) as often as possible. For each new impulse response,
the iterative algorithm determines whether the sound field has changed significantly or not since
the last impulse response (yellow rhombus). If it has not, the simulation result is used to iteratively
improve the existing impulse response. If it has, the simulation result is taken as a new impulse
response. The final chosen impulse response is then passed on to the auralization engine.

The iterative algorithm is responsive to the events in the environment, in that speed is
prioritized when needed and higher quality calculations are provided when possible. In
general, when a fully new calculation is performed, it coincides with some significant event
in the environment, which, in turn, may distract the listener from possible momentary
acoustic variations, due to sample size [17]. On the other hand, when a listener is stationary
and inactive, the sound simulation is reliable and realistic.

When implementing this algorithm, a central aspect is determining the criteria for
when a new simulation is needed. When particular events occur, such as a door opening or
closing, it can be straightforward to determine whether it has occurred and the simulation
should be updated. In many cases, such as the user moving to a new location, the situation
is less clear. Typically, a human standing still is not entirely still, but makes very small
movements, due to both breathing and heart beats. Such movements should not lead to the
previous simulation being discarded, as they do not cause audible changes to the sound
field. On the other hand, if the simulation is only updated when audible changes occur, the
updates are naturally audible, rather than imperceptible.

In practice, this leads to a spatial discretization. Its resolution depends on how
acoustically homogenous the simulated space is. The Nyquist–Shannon sampling theorem
suggests a spatial resolution of about 4 cm, given a maximum frequency of 4 kHz, but
research findings suggest that the human hearing’s spatial resolution for room acoustic
variations is less fine [18,19]. Accurate estimates of the appropriate spatial resolution are
yet to be determined, but are likely to be on the order of 20–75 cm. The spatial discretization
can be based on the distance to the most recently calculated impulse response.

In the following section, it is shown that the iterative ray tracing algorithm can be im-
plemented such that it has the same expected value and variance as the classical algorithm.

3. Expected Value and Variance of Ray Tracing Simulations

Iterative ray tracing relies on the fact that separate ray tracing simulations can be
combined to reduce variance while maintaining the expected value. By studying the
expected value and variance of impulse responses generated by ray tracing, as well as
their sums, this prerequisite can be evaluated. While it is not possible to derive a general
closed-form expression, estimates can be formed by making some strong assumptions on
the distribution of sound energy in the simulated space. In this section, such estimates
are formed for both classical and iterative ray tracing. The discussion in this section is
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applicable to ray tracers in general and is specific to the iterative algorithm only when
specified.

While the estimates of the expected value and variance of ray tracing simulations
exist [14], they do not take the full stochastic nature of Monte Carlo simulations into account.
This leads to a significant simplification of the expressions and associated calculations,
but may also have a significant impact on the accuracy of the estimates. The estimates
derived in this paper do not rely on such assumptions and are, consequently, more formally
accurate. They may, therefore, lead to an increased understanding of the behavior of ray
tracing simulations and may be used to evaluate the accuracy of the earlier, simplified
expressions. The derived expressions are compared both to earlier estimates and to real
simulation outcomes, to evaluate their accuracy.

Theoretical estimates of the expected value and variance of a ray tracing simulations
are a useful tool in learning more about ray tracing simulations, but can, in general, not
be used as a tool to study the real sound field. In particular, the estimated variance only
relates to the simulation outcome and not the real sound field in any way. Since ray tracing
is a Monte Carlo simulation method, the expected result of a ray tracing simulation is the
impulse response predicted by the GA model. However, the theoretical estimate of the
expected value of the impulse response relies on strict assumptions on the sound field,
which are generally never fulfilled in real spaces. Consequently, the expression for the
expected value should not be used as a substitute for a real ray tracing simulation. In this
paper, it is used to compare the expected value of different simulation configurations.

The most central assumption in the derivation of the estimates below is the assumption
of diffuseness. In this context, a diffused sound field is a sound field which is described
entirely by its statistical properties. Real sound fields can be more or less diffused, where a
more diffused sound field has a more even distribution of sound energy with little to no
net flow of acoustic energy. In less diffused sound fields, there is at least some net flow
of acoustic energy caused by properties of the surrounding space itself. When making
general estimates of the sound energy, no information is known about the space and the
assumption of diffuseness becomes a best-guess of the distribution of sound energy. Since
the expressions derived in this paper should be generally applicable, it is assumed that the
sound field is sufficiently diffused to be described by its statistical properties.

Under some circumstances, the assumption of diffuseness is not fulfilled. In particular,
in the very early parts of the impulse response, the sound field is not diffused. Immediately
when a sound impulse is emitted, there is a concentration of sound energy at that position,
and the sound field cannot be described as diffused before some amount of diffusion has
occurred. Other factors that affect the level of diffuseness are the simulated space and the
amount of surface scattering. In general, very geometrically regular spaces, low surface
scattering, or very unevenly distributed absorption can lead to a sound field that is highly
non-diffused. In these cases, the estimates derived in this section are less accurate.

Finally, some comments are made regarding frequency dependence and scattering
and absorption parameters. In general, the behavior of low and high frequency acoustical
waves differ significantly and this is typically implemented in ray tracers by frequency-
dependent surface absorption and scattering. In the derivation of the expected value and
variance, however, it is assumed that the sound field is diffused for all frequencies. A
consequence of this is that the scattering parameter, which would normally relate to the
amount of diffuseness in the sound field; however, is not considered in the calculations
below. In terms of the absorption coefficient, the assumption of diffuseness ensures that an
average absorption coefficient for the walls of the enclosure is adequate. It is, consequently,
assumed to be constant for all surfaces in the sequel. In terms of frequency dependence, the
theoretical estimates derived in this paper, thus, only takes it into account in the definition
of surface and air absorption coefficients.
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3.1. Classical Ray Tracing Simulation: Expected Value and Variance

In this section, an estimate is derived for the expected value and variance of the
energetic impulse response found by ray tracing simulation. The energetic impulse is
discretized in the time domain and contains the energy detected at the listener position for
each time step. The expected value and variance is, consequently, also defined for each time
frame. It is assumed that the ray tracing simulations take place in a closed volume, where
acoustic energy is lost only by surface or air absorption. It is further assumed that surface
absorption is constant and non-zero, to ensure that the acoustic energy decays over time.

We find that in time step k, the energy detected Ek can be described as

Ek =
N

∑
j=1

ij,kej,k, (1)

where ij,k is the number of times ray j intersects the detector in time interval k, and ej,k is the
energy of ray j in time interval k. N is the total number of rays in the simulation. Note that
the energy of each ray is assumed to be constant during the full time step. This assumption
is acceptable if the time step ∆t is sufficiently small.

If all rays are generated the same way, with constant energy and a randomly generated
direction, they have identical distribution, and the expected values E

[
ij,k

]
and E

[
ej,k

]
are constant for all values j. Furthermore, it is assumed that ij,k and ej,k are mutually
independent. This is true if the energy of each ray is unrelated to how likely it is to be
found close to the detector. For example, this assumption would not necessarily hold if the
detector is placed close to several absorptive surfaces, as rays close to absorbers are more
likely to have lower energy. Since we consider the sound field to be diffuse; however, we
can assume that ij,k and ej,k are independent. We can then write the expected value E[Ek]

E[Ek] = E
[

N

∑
j=1

ij,kej,k

]
=

N

∑
j=1

E
[
ij,k

]
E
[
ej,k

]
= NE

[
ij,k

]
E
[
ej,k

]
. (2)

The number of times a given ray intersects the detector in a given time interval, ij,k, is

Poisson distributed. In fact, ij,k ∈ Po
(

n̄ Sd
S ∆t

)
, where Sd is the surface area of the detector

(given by 4πr2
d if it is modelled as a sphere with radius rd), S is the total surface area of the

modelled space, and n̄ is the average rate of reflection for a ray. In a diffused field, n̄ = cS
4V ,

where V is given by the volume of the space and c is the speed of sound [6]. This yields, for
expected value E and variance V,

E
[
ij,k

]
= V

[
ij,k

]
= n̄

Sd
S

∆t = ī, (3)

where the detection rate ī has been introduced to simplify the expressions. It is the expected
number of times a ray hits the detector in a single time step. Note that ī is independent
of j, as has already been discussed, but also independent of time k. In most ray tracing
simulations, rays are eventually terminated and no longer detectable once their energy
falls below some threshold. The detection rate should, thus, tend to zero over time. In the
later parts of the impulse response, assuming a constant detection rate ī may lead to an
inflated estimate of the detected energy, as compared to the results of the simulation. If the
energy threshold for termination is set sufficiently low in the simulation, this does not have
a significant impact on the accuracy of the estimate.

The energy of each ray, ej,k, decreases over time as energy is absorbed from surface
reflections and air absorption. The latter is assumed to be deterministic, whereas energy
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absorbed from surface reflections depend on the number of reflections a given ray has
undergone. It is found that

ej,k = e0e−γck∆t(1− α)mj,k = e0ak(1− α)mj,k , (4)

where e0 is the initial energy of an emitted ray, α is the absorption parameter of the walls
of the enclosure (here assumed to be constant), e−γck∆t = ak accounts for air absorption,
and mj,k is the number of surface reflections ray j has undergone at time step k. Since the
number of reflections depends on the random ray path, it is stochastic and the energy
is also stochastic. The number of reflections a ray has undergone at a given time is a
Poisson process and mj,k ∈ Po(n̄k∆t). Accordingly, E

[
mj,k

]
= V

[
mj,k

]
= n̄k∆t = m̄k,

where the expected number of reflections a given ray has undergone at time k, m̄k, has been
introduced. This number increases as k increases, but is, again, independent of j.

The ray energy ej,k is stochastic, as it depends on the path of the given ray, which
is randomly generated. However, in a completely diffused sound field, the rays would
be evenly distributed in space and have equal energy. It is, thus, possible to assume that
the energy decay of each ray is deterministic and determined by models for diffused
sound decay in enclosures, so that mj,k , m̄k and V

[
ej,k

]
= 0. With this assumption, the

mathematical operations become significantly more simple and compact, and it has been
used in previous derivations [14]. In this paper, the stochastic nature of the energy levels
is, instead, dealt with by introducing a Taylor expansion. Either of these solutions are
approximations that introduce some level of uncertainty.

As mentioned, the ray energy is a function of a stochastic variable in our model,
ej,k = ej,k

(
mj,k

)
. An estimate of E

[
ej,k

]
can be formed by using a Taylor expansion about

the expected value of mj,k. The general expression for the second order Taylor expansion of
the expected value of a function of a stochastic variable E[ f (x)] about the expected value
of x = µ is:

E[ f (x)] ≈ E
[

f (µ) + f ′(µ)(x− µ) +
1
2

f ′′(µ)(x− µ)2
]
= f (µ) +

1
2

f ′′(µ)V[x], (5)

using the fact that E[x− µ] = 0 and V[x] = E
[
(x− µ)2

]
.

Inserting ej,k = ej,k

(
mj,k

)
for f and using E

[
mj,k

]
= V

[
mj,k

]
= m̄k, we obtain

E
[
ej,k

]
≈ e0ak(1− α)m̄k +

1
2

e0ak(1− α)m̄k ln2(1− α)m̄k. (6)

We define the dimensionless constant α̂ = ln(1− α) and insert Equations (3) and (6)
into Equation (2), obtaining

E[Ek] = NE
[
ij,k

]
E
[
ej,k

]
≈ Ne0ak ī

(
eα̂m̄k +

eα̂m̄k

2
α̂2m̄k

)
. (7)

This is an estimate of the expected energy in the energetic impulse response produced
by a ray tracer. If Ne0 = 1 ⇔ e0 = 1

N , the total energy emitted in the impulse is 1, and
the impulse response is normalized. For this case, we set E[Ek] = Ek. When the initial ray
energy is determined this way, the expected value is independent of the number of rays;
additionally, the impulse response neither amplifies nor diminishes sounds emitted in the
space.

The variance of the energetic impulse response can be estimated using a Taylor expan-
sion in a similar way. Firstly, we note that its variance can be calculated by

V[Ek] = V
[

N

∑
j=1

ij,kej,k

]
= N

(
V
[
ij,k

]
V
[
ej,k

]
+V

[
ij,k

]
E2
[
ej,k

]
+V

[
ej,k

]
E2
[
ij,k

])
, (8)



Acoustics 2023, 5 327

if we assume that COV[Ek, El ] for all k 6= l, or that they are mutually independent. Since
the distribution of ij,k is known from Equation (3), we find that V

[
ij,k

]
= ī, E2

[
ij,k

]
= ī2

Using our earlier approximation of E
[
ej,k

]
, we determine

E2
[
ej,k

]
≈ e2

0a2
keα̂2m̄k

(
1 + α̂2m̄k +

1
4

α̂4m̄2
k

)
. (9)

In addition, an estimate of E
[
e2

j,k

]
needs to be constructed. This is achieved by Taylor

expansion,

E
[

f 2(x)
]
≈ E

[
f 2(µ) + 2 f (µ) f ′(µ)(x− µ) + 2

(x− µ)2

2

(
f ′2(µ) + f (µ) f ′′(µ)

)]
= f 2(µ) +

(
f ′2(µ) + f (µ) f ′′(µ)

)
V[x].

(10)

Using ej,k = ej,k(mj,k), E
[
mj,k

]
= V

[
mj,k

]
= m̄k and Equation (9), an estimate of the

variance V
[
ej,k

]
is found as

V
[
ej,k

]
≈ e2

0a2
keα̂2m̄k

(
m̄kα̂2 − α̂4

4
m̄2

k

)
(11)

Finally, Equations (9) and (11) are inserted into Equation (8) to arrive at an estimate
for V[Ek]:

V[Ek] = N
(
V
[
ij,k

]
V
[
ej,k

]
+V

[
ij,k

]
E2
[
ej,k

]
+V

[
ej,k

]
E2
[
ij,k

])
≈ Ne2

0a2
keα̂2m̄k ī

(
1 + 2m̄kα̂2 + īm̄kα̂2 − α̂4

4
m̄2

k ī
) (12)

This is an estimate of the variance of the energetic impulse response produced by ray
tracing simulations. Reviewing the expression, it seems that the total variance increases as
the number of rays N increases. If we, instead, consider the normalized impulse response
Ek, the case when the product Ne0 = 1⇔ e0 = 1

N , we find that

V[Ek] =
1
N

a2
keα̂2m̄k ī

(
1 + 2m̄kα̂2 + īm̄kα̂2 − α̂4

4
m̄2

k ī
)
=

1
N

Vk, (13)

where Vk has been introduced for the factor of the variance that is independent of the
number of rays. The total variance, thus, decreases as the number of rays increase.

In conclusion, an estimate for the expected value and variance of the outcome of
acoustic ray tracing simulations has been derived, as shown in Equations (7) and (12).
When the initial ray energy e0 is set, so that Ne0 = 1, the expected value is independent of
and the variance is inversely proportional to the number of rays.

In order to show that the iterative ray tracing algorithm can be used to further decrease
variance, while maintaining the expected value, it is reviewed in the following section.

3.2. Iterative Ray Tracing: Expected Value and Variance

In this section, the estimates of the expected value and variance of the iterative ray
tracing algorithm are derived. From those estimates, the method for combining the impulse
responses from distinct ray tracing simulations is more closely defined to ensure that the
iterative ray tracing algorithm has the desired expected value and variance. It is shown that,
using the method presented in this paper, the iterative ray tracing algorithm has the same
expected value as the classical algorithm. Initially, only the combination of two simulations
are considered. The results are then generalized to multiple simulations.
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Consider the sum of two separate simulations, each consistent with the expression
for the energetic impulse response in Equation (1). In general, the variables related to the
secondary simulations are denoted as ·∗, and variables from the iterative algorithm are
marked with an I. The expected value for the detected energy in each time step using the
iterative algorithm, EI

k, then becomes

EI
k =

N

∑
j=1

ij,kej,k +
N∗

∑
l=1

i∗l,ke∗l,k. (14)

For the expected value and variance, it is known that

E[x + y] = E[x] +E[y],
V[x + y] = V[x] +V[y] + 2COV[x, y],

(15)

where COV denotes the covariance. Since the initial ray tracing step is generated ran-
domly in the same way as the initial simulation, the expressions derived in Equations (7)
and (12) can be used to determine the expected value and variance of the secondary sum
in Equation (14). Regarding the covariance, it describes how the random variations in the
two simulations are connected. When the two simulations are randomly and independently
initialized, the covariance term can generally be discarded. It is, consequently, important to
ensure that, for example, the same random seed or ray generation pattern is not used for
both simulations.

We find that, using Equations (14), (7), and (12)

E
[

EI
k

]
≈Ne0ak ī

(
eα̂m̄k +

eα̂m̄k

2
α̂2m̄k

)
+ N∗e∗0 ak ī∗

(
eα̂m̄∗k +

eα̂m̄∗k

2
α̂2m̄∗k

)
,

(16)

V
[

EI
k

]
≈Ne2

0a2
keα̂2m̄k ī

(
1 + 2m̄kα̂2 + īm̄kα̂2 − α̂4

4
m̄2

k ī
)

+ N∗e∗20 a2
keα̂2m̄∗k ī

(
1 + 2m̄∗k α̂2 + ī∗m̄∗k α̂2 − α̂4

4
m̄∗2k ī∗

)
.

(17)

If the simulated space has not changed significantly between the two simulations, it
can be assumed that ī ≈ ī∗ and m̄k ≈ m̄∗k . This mean that the expected number of times a
given ray hits the detector ī and the expected number of reflections a ray has undergone
at time k, m̄k is the same in the two simulations. Using this assumption, we can express
Equations (16) and (17) as

E
[

EI
k

]
≈ (Ne0 + N∗e∗0)ak ī

(
eα̂m̄k +

eα̂m̄k

2
α̂2m̄k

)
= (Ne0 + N∗e∗0)Ek, (18)

V
[

EI
k

]
≈
(

Ne2
0 + N∗e∗20

)
a2

keα̂2m̄k ī
(

1 + 2m̄kα̂2 + īm̄kα̂2 − α̂4

4
m̄2

k ī
)
=
(

Ne2
0 + N∗e∗20

)
Vk, (19)

where Ek, the expected value of the normalized impulse response and Vk, and the portion
of the variance that is independent of the number of rays (see Equation (13)) has been
reintroduced.
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The results presented above can easily be generalized to the case where more than two
simulations are used, and we find that for the νth iterative step,

E[Ek,ν] =

(
ν

∑
κ=1

Nκe0,κ

)
Ek, (20)

V[Ek,ν] =

(
ν

∑
κ=1

Nκe2
0,κ

)
Vk. (21)

In the case of a single simulation, the initial ray energy is typically set so that Ne0 = 1,
as this produces an impulse response that is normal, in the sense that it does not artificially
amplify or diminish sound energy. When this is the case, E[Ek] = Ek. Since the iterative ray
tracing algorithm should not change the expected outcome of the simulation, the resulting
summed impulse response Ek,ν in Equation (20) must be normalized by ∑ Nκe0,κ or the
total emitted energy in all simulations.

We find that

E
[

1
∑ν

κ=1 Nκe0,κ
Ek,ν

]
=

1
∑ν

κ=1 Nκe0,κ
E[Ek,ν] = Ek. (22)

Now, we consider the variance of the normalized iterative impulse response.

V
[

1
∑ν

κ=1 Nκe0,κ
Ek,ν

]
=

1
∑ν

κ=1 N2
κ e2

0,κ
V[Ek,ν] =

1
∑ν

κ=1 N2
κ e2

0,κ

ν

∑
κ=1

Nκe2
0,κVk. (23)

The underlying theory behind iterative ray tracing comes from Monte Carlo simula-
tion theory, which states that the simulation precision increases as the number of samples,
or rays, increases. However, this relies on the samples being identically distributed. Con-
sequently, the initial energy should be constant for all rays, e0,κ = e0. Inserting this into
Equation (23) gives

V
[

1
∑ν

κ=1 Nκe0,κ
Ek,ν

]
=

1
∑ν

κ=1 Nκ
Vk. (24)

Here, the variance decreases by the total number of rays in all iteration steps. This is
equivalent to the behavior in the classical algorithm and is the suggested method for this
algorithm.

In conclusion, if multiple ray tracing simulations are run independently for the same
space using the same initial ray energy, the sum of their results normalized by the total
emitted energy has the same expected value and variance as a single ray tracing simulation
using the total number of rays emitted in all simulations.

4. Method

In this section, the methods used to test the iterative ray tracing algorithm and the
estimated expected value and variance are described. As a first step, the space used for
digital simulations and measurements is described. The measurements are described, as
well as the simulation setups used. Finally, the implementation of the ray tracer, post-
processing of the results, and some timing tests are commented.

4.1. Measurement and Simulation Space

The space used for measurements and simulations was the lower chamber in the
impact sound lab at the Division of Engineering acoustics, Lund University (see Figure 2).
The space has an approximate volume of 95 m3 and a mid-frequency reverberation time of
about 1.3 s. During the measurements, a suspended acoustic ceiling of porous absorbers
was mounted in the center of the ceiling. This common acoustic treatment generally leads
to a sound field with a net flow of acoustic energy towards the ceiling. This reduces the
diffuseness in the sound field.



Acoustics 2023, 5 330

The space is rectangular, indicating that there should be strong and clear influences
from eigenfrequencies in the low frequency range. Since ray tracers, in general, do not take
resonance into account, the simulation results are expected to be relatively poor in the low
frequency range. The Schroeder frequency can be used as a lower bound of the cut-off
between these two cases, and it is found to be approximately 234 Hz [14]. In this project,
especially the frequency bands centered on 125 Hz and 250 Hz are expected to be affected
by resonances.

Acoustic impulse response measurements were obtained for validation of the ray tracer.
Measurements were performed based on the international standards for room acoustic
measurements [20] and have been previously described in 2021 [15]. An exponential sweep
were used to obtain impulse response measurements. The measurements were performed
using the open-source software REW version 5.19 (https://www.roomeqwizard.com/,
accessed on 5 October 2022). A laptop with the software installed was connected to
an Audio 8 DJ soundcard from Native instruments (Berlin, Germany) (https://www.
native-instruments.com/en/, accessed on 5 October 2022), which connected to a Brüel
& Kjær amplifier type 2734 (Hottinger Brüel & Kjær, Virum, Denmark) (https://www.
bksv.com/en/transducers/acoustic/sound-sources/power-amplifier-2734, accessed on 29
August 2021). The amplifier fed the excitation signal to a dodecahedral loudspeaker. As
a microphone, a Brüel & Kjær 2270 Sound Level Meter and Analyzer (Hottinger Brüel &
Kjær, Virum, Denmark) (https://www.bksv.com/en/instruments/handheld/sound-level-
meters/2270-series/type-2270-s, accessed on 5 October 2022) was used. A total of eight
configurations were measured, two source positions and four listener positions, which
are marked in Figure 2b. Due to technical and practical limitations, the sound source was
located closer to the floor than what is prescribed in the standards.

(a)

(b)

Figure 2. Photograph of a measurement setup (a) in the space measured in this project, although
the suspended ceiling of acoustic absorbers was not installed at the time of this picture. Note that
the speaker depicted is semi-dodecahedral, whereas the speaker actually used was dodecahedral.
(b) shows the digital model of the same space with source (circular) and listener (small squares)
positions marked.

4.2. Simulation Setups

Simulations were performed in the model space using both a classical ray tracer
and using the iterative algorithm. Two main sets of simulations were performed, one to

https://www.roomeqwizard.com/
https://www.native-instruments.com/en/
https://www.native-instruments.com/en/
https://www.bksv.com/en/transducers/acoustic/sound-sources/power-amplifier-2734
https://www.bksv.com/en/transducers/acoustic/sound-sources/power-amplifier-2734
https://www.bksv.com/en/instruments/handheld/sound-level-meters/2270-series/type-2270-s
https://www.bksv.com/en/instruments/handheld/sound-level-meters/2270-series/type-2270-s
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evaluate the theoretical estimates of the expected value and variance and one to evaluate
the similarity between the classical and iterative algorithms. Both are described below.

When testing the estimates for expected value and variance, the surface absorption
coefficient was constant across all frequency bands, but the air attenuation and scattering
parameters were frequency dependent. The surface absorption was set uniformly to
α = 0.1 across all surfaces and frequencies and air attenuation and scattering parameters
are presented in Table 1. Air attenuation is set based on the environmental conditions of the
measurement space during measurements, and the scattering parameters were set based
on the results of earlier research [15]. Since the scattering parameter affects how diffused
the simulated sound field is, their variations across the frequency range should lead to
variations where frequency bands with higher scattering coefficients should match the
theoretical results better.

Table 1. Simulation parameters described for each octave band by frequency ( f ). s is the dimen-
sionless surface scattering parameter, constant for all surfaces in the space. γ is the air attenuation
parameter, defined in m−1. Finally, the dimensionless absorption coefficients α are given for the
surfaces in the model. Note that the surface absorption parameters were not used in the simulations
designed to evaluate the estimates of expected value and variance. Surface scattering and absorption
parameters are based on calibration from earlier research [15].

f (Hz) s γ (m−1) α, Walls α, Floor α, Ceiling Absorbers

125 0.01 0 0.0734 0.0596 0.25
250 0.13 0 0.056 0.0453 0.80
500 0.05 0.00064 0.0453 0.0453 0.95
1000 0.13 0.0015 0.04 0.045 0.95
2000 0.1 0.00208 0.045 0.045 0.95
4000 0.25 0.00532 0.045 0.045 0.95

Simulations were also used to examine the difference between the iterative and the
classical ray tracing algorithms. In these simulations, surface absorption parameters varied
across surfaces and frequency bands, shown in Table 1. Air attenuation and surface
scattering parameters were identical to what was used in simulations for theory evaluation.

For both of the configurations described above, ray tracing simulations were per-
formed using both the classical and the iterative algorithms. A total of eight configurations
were simulated, two source positions and four listener positions (as shown in Figure 2b).
In the classical ray tracer, 900,000 rays were used. In the iterative algorithm, each iteration
used 9000 rays and there were 100 iterations. This results in a total of 900,000 rays con-
tributing to the final impulse response, the same number as in the classical algorithm. A
total of 15 simulations were performed for each configuration, each yielding an energetic
impulse response across six octave bands in the range 125 Hz–4 kHz.

4.3. Ray Tracing Implementation

An implementation of a classical ray tracer was used for the simulations. The NVIDIA
OptiX ray tracing engine version 4.1.1 [21] is used as a foundation for the program. The
OptiX engine traces the paths of traveling rays and detects collisions with the digital model.
Programs to generate rays, to determine the direction and energy of rays after reflection,
and to record ray collisions with the detector are implemented in CUDA to run on the
graphics card. These are accessed through a C++ wrapper, which operates on the host
computer. The simulations are performed on an NVIDIA GeForce GTX 1070 on a machine
with an Intel i5 3.8 GHz processor with four cores.

In the program, new rays are randomly generated from a uniform spherical distribu-
tion at the source. Scattering is implemented by randomly determining the new direction
of rays as either the direction predicted by Schnell’s law (i.e., the specular direction) or a
direction randomly generated from an ideal diffused distribution. This implementation is
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arguably the most commonly used implementation [1,5] and found to outperform the most
common alternatives [15].

As shown in Figure 1 and Section 3.2, the iterative algorithm can be implemented in
addition to, and separately from, a standard ray tracer, as it acts only on the produced
energetic impulse responses. In this study, the iterative algorithm is only partially imple-
mented, as only the step for addition of impulse responses is tested. Pseudo code for the
implementation in question is shown in Listing 1. For the iterative algorithm, all rays have
an initial energy of 1. The same number of rays are emitted in each iteration step, and
the total number of rays emitted is recorded and updated after each simulation. Since the
initial ray energy is 1, the total number of rays used coincides with the normalization factor
that should be used to ensure that the iterative algorithm has the correct expected value.
As new impulse responses are calculated, they are added to the current impulse response
in the C++ wrapper. The impulse response is only normalized when it is passed on to be
used externally.

Listing 1. Pseudo code for the partial iterative implementation.

i n t number_of_rays ;
f l o a t n o r m a l i z a t i o n _ f a c t o r ;
Raytracer r a y t r a c e r ;
f l o a t [ ] new_impulse_response , i t e r a t i v e _ i m p u l s e _ r e s p o n s e ;

while ( t rue ) {
new_impulse_response = r a y t r a c e r . run ( number_of_rays ) ;
i t e r a t i v e _ i m p u l s e _ r e s p o n s e += new_impulse_response ;
n o r m a l i z a t i o n _ f a c t o r += number_of_rays ;
}

return i t e r a t i v e _ i m p u l s e _ r e s p o n s e/ n o r m a l i z a t i o n _ f a c t o r ;

The raw impulse responses have a sampling rate of 44.1 kHz and are 8 s long.

4.4. Post-Processing of the Results

In order to interpret the results of the simulations, some post-processing was necessary.
In particular, graphical comparisons of impulse response data were found to require a low
temporal resolution to reduce the noise. Consequently, the impulse responses used in plots
have a sampling rate of 441 Hz, giving a time resolution of about 2.23 ms. These data were
obtained by summing the energy in the 100 time steps of the original impulse response
that would be overlapped by the extended time period. Since ray tracers produce energetic
impulse responses, this can be achieved.

Room acoustic variables were extracted from the simulated and measured impulse
responses. Reverberation time (T20), early decay time (EDT), and speech clarity (C50) were
extracted from the measured impulse responses using ITA-toolbox for MATLAB version
R2020b, developed in Aachen [22], and the same room acoustic parameters were extracted
from the simulated impulse responses using a MATLAB script.

4.5. Timing Tests

Finally, the time requirements for the classical algorithm and the iterative algorithm
were compared. For the ray tracer used in this study, each ray tracing step can be divided
into two parts. The first is the ray tracing procedure itself, complete with ray generation,
path calculation, and energy evaluation, where an energetic impulse response is formed on
the graphics card. The second part of the ray tracing step is the retrieval of data from the
graphics card to the working memory of the host computer. Only the first step depends
on the number of rays outright, and the second is independent of the number of rays.
In iterative ray tracing, the retrieval of data occurs more frequently, and the overall time
consumption per ray, thus, increases. This effect is exacerbated if the number of rays in
each update step is very small.
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The number of rays used generally has a dominating impact on the overall simulation
time and should, therefore, be chosen carefully. For the classical algorithm, it has been
determined that 540,000 rays is sufficient to accurately model the reverberation time,
early decay time, and speech clarity [15]. It is used for simulation time measurements in
this study.

For the iterative algorithm, the number of rays depend on the time available for
simulation, on the order of 50 ms for real-time performance [12]. However, that number of
rays should still provide a reasonable model of the acoustic field in the space. A possible
limit may be, for example, that the simulated impulse response should have room acoustic
parameters within 1 JND of the actual value (as predicted by the GA model), 75% of the
simulations. For the ray tracer used in this project, further optimization is needed before
the simulation results are reasonably accurate after 50 ms simulation time. Instead, the
proposed limit of 75% of the studied room acoustic parameters, being within 1 JND of the
actual value, is used. This corresponds to 81,000 rays.

5. Results
5.1. Validation of the Theoretical Model

The theoretical expressions for the expected value and the variance of a ray tracing
simulation (derived in Section 3.1) were compared to estimates formed from test simulations
and to an earlier theoretical model described in [14]. In particular, whether the effects of
varying the number of rays is similar for all data sets was examined. If it is, it shows that
the theoretically derived estimates describe important behavior in the real simulations.

The simulated estimates of the expected value and variance were derived using
standard methods, from the 15 sets of simulations described in Section 4.2. Each source and
listener configuration was treated separately, but no systematic or significant differences
were found when comparing to the theoretically-derived estimates. The full set of graphs
is available as supplementary material.

In Figure 3, the expected value estimated both from simulations and theoretical
expressions is compared. As expected, the theoretical expressions are less accurate when
the sound field is less diffused, in the early parts of the impulse response and in cases with
low scattering. In these cases, the theoretical estimates tend to underestimate the total
detected power. Since diffused sound fields generally tend to decay faster and have lower
energy overall, this supports the theory that the simulated sound field is not diffused in
these cases.
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Figure 3. Comparison between the theoretical estimate of the mean detected energy (Equation
(7), green), the estimate found in [14] (yellow), and an approximation based on simulations (light
blue). Note that only the scattering coefficient and air absorption vary between the octave bands.
For low scattering, (a), the simulation results exhibit a ringing behavior which is not replicated
in either theoretical estimate. In (b), both theoretical estimates match the simulation well. In (c),
the air attenuation affects the results, and the new theoretical estimate outperforms the simplified
expression.

The two theoretical expressions are very similar, especially when air attenuation has
no significant impact. When air attenuation affects the results, the newly derived estimate
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is significantly better. This is not surprising, and it is worth mentioning that air absorption
can very easily be added also to the older estimate. When air absorption is not significant,
the new estimate of the expected value is slightly smaller, as compared to the previous
estimate. Since the earlier estimate makes an even stricter assumption on the diffuseness of
the sound field (as discussed in Section 3.1), this can be interpreted as the earlier expression
describing a more diffused sound field, which consequently has lower energy.

In Figure 3a, the expected detected energy for the octave band centered on 125 Hz is
shown. In the results from simulations, a ringing behavior is seen. This is likely due to rays
following a cyclical path through the simulated space, hitting the detector once every lap.
Since all rays are emitted at the same time, t = 0, all rays following the same path hit the
detector at the same time. This behavior can be seen in ray tracers if the simulated space
have very low scattering. It is not related to acoustic resonance.

In Figure 4, the theoretical estimates of the variance are shown, together with an
estimate from 15 simulations. Although the variance estimate derived from simulations is
more noisy, its general trend (when the sound field is sufficiently diffuse) is matched very
well by the theoretical expressions. The influence of simulation noise on the estimate of the
variance is expected to be larger than its influence on the expected value, since the variance
is approximately squared, compared to the measurement data itself. This amplifies all
noise.
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Figure 4. Comparison of the estimated variance of the detected energy in the impulse response, using
the new expression Equation (7, green), the estimate found in [14] (yellow) and the results, based on
15 simulations (light blue). (a) shows the result for low scattering, (b) the results with more scattering
and (c) the results when both scattering and air attenuation affects the simulation.

The results found for the expected value are mostly replicated in the results for the
variance. That is, the theoretical expressions are more accurate for higher scattering and
not accurate for the very early impulse response. In addition, it is found that the simplified
expression and the expression derived in this paper are similar. When air attenuation
affects the simulation, the expression which takes this into account is significantly better.

In Figure 5, the expected energy for each time is shown for increasing number of rays.
Both the theoretical expressions are independent of the number of rays and are shown as
horizontal lines in the plots. The estimated results do not show any dependence on the
number of rays. As noted in Section 1, the expected value of Monte Carlo simulations
should be independent of the number of samples, and any result other than what was
found here would be alarming.
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Figure 5. Graphs illustrating how the expected value of the impulse response at 0.15 s (a), 0.5 s
(b) and 1 s (c), estimated theoretically and from simulation data, changes as the number of rays
change. The theoretical estimates are both constant, and this behavior is generally repeated by the
simulation data.

In the three graphs in Figure 5, the simulation results are slightly larger than the
theoretical estimates (as was found in Figure 3), possibly due to the level of diffuseness in
the simulations not reaching the level of diffuseness assumed in the theoretical expressions.
However, the difference between the simulated result and the theoretically calculated
results does not seem to change as time grows from 0.15 s to 1 s. A possible explanation is
that the sound field after 0.15 s has reached its maximum level of diffuseness.

The variance, as it depends on the number of rays, is shown in Figure 6. As noted in
Section 3.1, the variance decreases as the number of rays increase. The rate of change seems
similar for all three graphs shown, but the computation noise in the simulated data is too
large to make more precise statements.

1 2 3 4 5 6 7 8 9

10 5

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

(a)

1 2 3 4 5 6 7 8 9

10 5

-90

-85

-80

-75

-70

-65

-60

-55

-50

-45

(b)

1 2 3 4 5 6 7 8 9

10 5

-135

-130

-125

-120

-115

-110

-105

-100

-95

-90

(c)
Figure 6. Graphs illustrating how the estimated and modelled variance in a given time frame changes
as the number of rays used changes, at 0.15 s (a), 0.5 s (b) and 1 s (c). The two th eoretical estimates
decrease as the number of rays increase and seem to do so at a similar or equal rate. While the results
from simulations are more noisy, they seem to follow a similar pattern and are quite close to both
theoretical estimates.

5.2. Validation of the Algorithm

In this section, the results from the classical and the iterative algorithms are compared.
In particular, it is examined whether the precision and accuracy of the two algorithms
are equivalent for a large number of rays. This is primarily evaluated by comparing
the estimated expected value and variance of the impulse responses produced using
the maximum number of rays. Some room acoustic parameters are also studied to help
determine whether the two algorithms produce perceptually similar responses. The room
acoustic parameters are shown, together with measurement data for the space in question,
to put the results into context. For a more detailed discussion of the correspondence
between measurements and simulations, the reader is referred to [15].

As an initial test, the total detected energy in the broadband impulse response (simply
the sum of all the energy detected in each simulation) was compared using a Mann–Whitney
U test (Wilcoxon rank sum test) [23,24]. This is a non-parametric test on two data sets
that indicates the likelihood that these or more dissimilar measurements could come from
identical populations. As such, low values on the test signifies a higher likelihood that there
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is a difference between the two data sets. In this case, no significant difference could be
found between the classical and the iterative algorithms. The results are shown in Table 2
for each source and listener position separately, since the impulse responses for each source
and listener position are unique.

Table 2. p-Value from a Mann–Whitney U test comparing the total energy detected in the impulse
response for the iterative and classical algorithms. The results do not show a significant difference
between the two data sets for any of the positions.

S1R1 S1R2 S1R3 S1R4 S2R1 S2R2 S2R3 S2R4

p-Value 0.23 1.00 0.74 0.15 0.13 0.71 0.19 0.37

The mean detected energy in the broadband impulse response was compared for the
two algorithms, and some sample graphs are shown in Figure 7. The full set of graphs
are available in the supplementary material. No significant differences can be seen. In
particular, the results for the very early parts, containing the vital early reflections, are
almost identical. Towards the end of the response, some discrepancies can be seen, but
these are small in absolute terms and likely due to simulation noise. The similarities in
the early response and in the decay rate show that the estimated expected values are very
similar and likely at least perceptually identical.
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Figure 7. The mean detected energy in the impulse response for the classical and iterative algorithms,
the first 0.25 s of the impulse response in (a) and the first 1 s (b). The results are very similar.

In addition to comparing the mean of the simulations, the estimated variance was
compared, as shown in Figure 8 and in the supplementary material. The estimates of the
variances are more noisy, similarly to the variance found when checking accuracy of the
theoretical estimates. It seems that the variances of the two algorithms have an equal decay
rate over the impulse response.
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Figure 8. The variance of the detected energy in the impulse response for the classical and iterative
algorithms, the first 0.25 s of the impulse response (a) and the first 1 s (b). The results are quite noisy,
but similar.

In addition to comparison of the broadband energetic impulse response, the rever-
beration time T20, early decay time (EDT), and speech clarity C50 were studied. Some
results are shown in Figures 9a–11a. In these graphs, the averages from 15 simulation
runs are shown for the maximum number of rays. The reverberation time T20 has been
spatially averaged, in accordance with [20]. No significant difference can be seen between
the estimated expected value of the two algorithms for any of the room acoustic parameters.
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Figure 9. Reverberation time T20 measured and obtained from simulations using the classic and the
iterative algorithm. Dashed lines indicate values 1 JND away from the results from the classic ray
tracer. In (a), the results for the maximum number of rays are shown. (b) shows the estimate for
1000 Hz using an increasing number of rays in the iterative algorithm, as well as the results for the
full classic simulation. The shaded area illustrates the spread of estimates in the iterative algorithm.
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Figure 10. Early decay time EDT for one position, measured and estimated from classic and iterative
simulation data sets. In (a), the results for the maximum number of rays are shown. (b) shows the
estimate for 1000 Hz increasing the number of rays in the iterative algorithm and showing the results
for the full classic simulation. The shaded area illustrates the spread of estimates in the iterative
algorithm.
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Figure 11. Speech clarity C50 for one position, measured and estimated from classic and iterative
simulation data sets. In (a), the results for the maximum number of rays are shown. (b) shows the
estimate for 1000 Hz increasing number of rays in the iterative algorithm and shows the results for the
full classic simulation. The shaded area illustrates the spread of estimates in the iterative algorithm.

For the iterative algorithm, the room acoustic parameters were also studied, as the
number of steps and, consequently, the number of rays increased, as shown in Figures
9b–11b. Based on the calculations in Section 3.1, the expected value of the impulse response
should be constant while the variance decreases. This should translate to a decrease in
variance of the room acoustic parameters as the number of steps increase, but it does not
necessarily mean that their expected value is constant.

In the graphs shown in Figures 9b–11b, the room acoustic parameters for the octave
band centered on 1000 Hz are shown as the number of steps in the iterative algorithm
increases. The average from 15 simulations is shown as thick lines, and the area between
the minimum and maximum parameter values is shaded. This illustrates the spread of
the estimates over the whole set of simulation runs. As expected, the variations decreases
as the number of steps increase, and when the total number of rays reaches about 100,000
(about 11 steps), the variations are about 1 JND.

It can also be noted that the estimated expected values for reverberation time T20 and
C50 are not constant for all steps in the iterative algorithm. It is possible that this reflects
a real effect for small numbers of rays, where the increased variability in the impulse
response leads to a systematic difference in the calculated room acoustic parameters. It
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is also possible that the increased variability leads to a situation where the sample size of
15 is not large enough to ensure that the expected value is estimated accurately. However,
the estimated expected values does not look particularly noisy, even for small numbers of
steps, so it seems more likely that there is a systematic difference, due to how the room
acoustic parameters are calculated.

As discussed in Section 4, the room acoustic parameters were used as a tool to estimate
an appropriate number of rays to use in the iterative algorithm. The chosen number of rays
is 81,000, and it can be seen in Figures 9–11 that, for this number of rays, the variations of
the room acoustic parameters are about 1 JND for this frequency band.

5.3. Computation Time

Iterative ray tracing is expected to improve the performance of classical ray tracing
by adapting to the speed or precision as necessary. The results presented so far focus on
showing that the iterative algorithm is as precise as the classical ray tracing algorithm,
given sufficient time. In this section, the performance, in terms of speed, is evaluated. One
aspect that is considered is how the time consumption per ray changes when iterative
ray tracing is implemented. Another aspect is how large the overall time improvement
is when the number of rays is decreased, as this indicates if it is possible, in general, to
come closer to real-time performance by using fewer rays. As mentioned in Section 4,
the ray tracer used in this study is not fully optimized for speed and cannot achieve real-
time performance. The number of rays to use in each step of the iterative algorithm was
consequently determined using other parameters and set to 81,000. For the classical ray
tracing step, the full number of rays used was 540,000. Based on earlier research, this is
sufficient for the space in question [15].

The simulation time for each algorithm is shown in Table 3. The ray tracing average
is the average time for a full ray tracing step, yielding energetic impulse responses for six
octave bands and four listener positions. The retrieval average details the time consumption
for transferring the impulse response data from the graphics card to the host computer
(consisting of twelve impulse responses 8 seconds in length with a sample rate of 44.1 kHz).
The update trace takes about 15% of the time required by the full simulation. The number
of rays used in the iterative algorithm is also 15% of the number of rays used in the full
simulation, which suggests that the time consumption is proportional to the number of
rays, at least in this implementation of ray tracing. It is also noted that the data retrieval
step takes longer for the iterative algorithm. This is due to the additional step of adding
the calculated impulse response to that which has been calculated in previous time steps.
The increase in total time is short, however.

Table 3. Comparison of the time consumption for the classical algorithm and for the iterative algo-
rithm. Computation time is presented for the ray tracing simulations and the transfer of simulation
results from the graphics card to the host computer.

Algorithm Ray Tracing Average ± std (s) Transfer Average ± std (s)

Classic, 540,000 rays 2.055± 0.039 0.0250± 0.0012
Iterative, 81,000 rays 0.307± 0.003 0.0260± 0.0004

The iterative algorithm reaches and exceeds the number of rays in the classical algo-
rithm after seven steps with the current configuration. Assuming that the total time of
a simulation is adequately estimated as the sum of the two steps detailed above, seven
runs would take approximately 2.33 s, or about 0.3 s more than a full classical trace. The
total number of rays in the classical trace is then exceeded by 27,000 rays. In total, the time
consumption per ray is approximately 7% higher in the iterative algorithm in this specific
configuration, and the approximate time consumption per ray is 4 µs for both algorithms.
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6. Discussion

In this paper, an algorithm that improves the adaptability of ray tracing simulations
in real-time applications has been presented. When the simulation time limits imposed
by real-time performance negatively affects the simulation precision, iterative ray tracing
can be used to improve simulation precision over time, eventually reaching optimal ray
tracing performance. It is shown that the simulations produced by the iterative algorithm
are equivalent to those produced using the classical algorithm with the same total number
of rays, by both revising the theoretical estimates of the expected value and variance and
comparing results from the two algorithms outright.

Additionally, a theoretical expression is derived for the expected outcome and variance
of a ray tracing simulation in a diffused sound field. These expressions can be used to
increase understanding of ray tracing simulations and their variability, which can help
in determining what number of rays to use and what factors affect the reliability of ray
tracing simulations. In addition, since ray tracing simulations are an unbiased tool for
calculating the energetic impulse response predicted by a geometrical acoustics model, the
estimated expected value can be used explicitly to find the impulse response of a space.
This is only accurate if the sound field is diffused, and in real spaces, the sound field is
practically never diffused. However, the later parts of the sound field, in some cases, can
be approximately diffused. The expression could, thus, be an acceptable way to estimate
the so-called reverberating tail of the impulse response.

The calculated expected value and variance are very similar to previously derived
estimates, while being rather more complex to evaluate. The increased complexity is
introduced as both the ray paths and the ray energy are considered stochastic, and the
expressions in this paper can, consequently, be said to be more stringent, at least in that
aspect. In that sense, the presented calculations show that the simplifications made in
earlier derivations are appropriate at least in some spaces. The results presented in this
paper also emphasizes that air absorption should be considered.

The iterative ray tracing algorithm has a similar performance as the classical algorithm
if the total number of rays is equal. This is shown using the theoretical expressions for
expected value and variance by examining the room acoustic parameters and by outright
comparing the average impulse responses from the two algorithms.

In general, the time consumption per ray is greater for the iterative algorithm. How-
ever, the difference is small. It is not likely that this effect, even in real-time applications,
would be sufficiently large to have a significant impact on how many rays can be used in
each simulation step.

Iterative ray tracing needs to be tested further before it can be deployed in real
applications. Importantly, it is not yet clear whether the algorithm can be used to speed
up the simulation without perceptual degradation. This needs to be tested by listening
tests with users, preferably in full virtual reality. Furthermore, the resolution for the spatial
discretization needs to be determined, although this can likely be estimated quite well from
the existing research on acoustic virtual reality.

The future development of the algorithm could be focused on the spatial aspects. For
example, linear interpolation is mathematically equivalent to the operations performed
when combining the impulse responses from different runs. If the impulse responses are
from different locations, the summation and normalization step gives a spatial interpolation
of the various positions, and modifications of the normalization value can be used to change
the relative position of the interpolated impulse response. This could be used to modify
the spatial resolution and to counteract any issues introduced by it. It may also be possible
to remove the need for an explicit spatial resolution by, instead, using a moving average
process, where the current impulse response consists of a linear combination of several of
the latest calculations. This would implicitly perform a spatial interpolation and potentially
also mitigate the risks of perceptual degradation when a new impulse response is to be
calculated.
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An advantage to iterative ray tracing is that it can be used well in combination
with other methods of improving ray tracer performance, in terms of either accuracy or
speed. The algorithm requires that the results from different runs of the ray tracer are
statistically independent, but it does not have any specific limitations on how the ray
paths are calculated and is very flexible, in terms of what algorithms and models it can be
combined with.

7. Conclusions

Iterative ray tracing improves the overall precision of ray tracing simulations when
real-time restrictions may otherwise adversely affect simulation performance. In compari-
son to classic ray tracing, it is as fast, but can also iteratively improve the simulated impulse
response over time. The algorithm is flexible enough to be used in conjunction with other
methods of improving ray tracer performance, both in terms of speed and in terms of
accuracy.

In this study, and for this test space, it was shown that using as few as 15% of the rays
produced simulation results was accurate to within 1 JND of the studied room acoustic
parameters (T20, EDT, and C50) approximately 75% of the time. This is seven times faster
than what is needed for full accuracy. It has also been shown that iterative ray tracing can
take advantage of this significant improvement in speed, while still providing full accuracy
as quickly as the classical algorithm.

The next step in the development of the iterative ray tracing algorithm should be to
determine an adequate spatial resolution and then implementing the iterative algorithm, in
conjunction with a fast ray tracing step and a real-time auralization engine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/acoustics5010019/s1, Supplementary graphs showing results for
additional octave frequency bands and source and listener positions.
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