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Abstract: As a typical active noise control algorithm, Filtered-x Least Mean Square (FxLMS) is widely
used in the field of audio denoising. In this study, an audio denoising coprocessor based on Re-
trenched Injunction System Computer-V (RISC-V), a custom instruction set extension was designed
and a software and hardware co-design was adopted; based on the traditional pure hardware imple-
mentation, the accelerator optimization design was carried out, and the accelerator was connected
to the RISC-V core in the form of coprocessor. Meanwhile, the corresponding custom instructions
were designed, the compiling environment was established, and the library function of coprocessor
acceleration instructions was established by embedded inline assembly. Finally, the active noise
control (ANC) system was built and tested based on Hbird E203-Core, and the test data were collected
through an audio analyzer. The results showed that the audio denoising algorithm can be realized by
combining a heterogeneous System on Chip (SoC) with a hardware accelerator, and the denoising
effect was approximately 8 dB. The number of instructions consumed by testing custom instructions
for specific operations was reduced by approximately 60%, and the operation acceleration effect was
significant.

Keywords: RISC-V; custom instruction; ANC; coprocessor

1. Introduction

With the rapid development of the economy, noise problems such as industrial noise
and automobile noise have become increasingly prominent. The traditional passive noise
control technology [1] is effective for medium and high-frequency noise through passive
control methods such as sound absorption and sound insulation. However, active noise
control [2], namely the method of reducing a noise signal through the principle of destruc-
tive interference of sound waves, is more effective for low-frequency narrow-band noise.
An adaptive denoising system is generated; that is, while generating anti-noise signals,
active repair of anti-noise signals is carried out according to the change in noise to complete
active noise control.

The FxLMS algorithm is widely used in active noise control systems due to its simple
circuit structure, simple implementation, and small computation. Traditional ANC imple-
mentations usually involve Digital Signal Processing (DSP) due to their certain hardware
computing units and capabilities to modify software, making ANC algorithms highly
flexible without impeding computing speed, but DSP chips are costly and of high power
consumption [3]. Therefore, some designs suggest using a universal Micro Control Unit
(MCU) as a substitute for DSPs [4]. However, universal MCUs are not only subject to the
serial instruction streams but also do not have a certain hardware computing units, making
ANC applications difficult due to their computing inefficiency. Reference [4] proposes an
implementation of the FxLMS algorithm using a STM32F407 microprocessor of Cortex-M4
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in order to improve the computing efficiency, and proposes a fixed step size method to
reduce the computation and solve the problem of floating-point operation.

Field programmable gate arrays (FPGAs), with their highly parallel computing capa-
bilities, are also used for ANC implementations [5]. FPGAs are designed totally based on
hardware logic, so they require no software instructions for control as DSPs and MCUs
do, making FPGAs unconstrained from serial instruction streams; in turn, their parallel
processing capabilities speed up the computing process. Reference [5] proposed a hardware
implementation of the FxLMS algorithm based on FPGA, which divides the operation part
of the algorithm into the filtering part and update part; in which the filtering part is FIR
filter, namely the process of one-dimensional convolution, and the update part is the weight
update part of LMS algorithm block, which is the process of multiply accumulate (MAC).
Using FPGAs as the hardware of ANC algorithms significantly improves the computing
capacity, but the flexibility of the algorithms is sharply reduced because the hardware
design forces the algorithms to redesign the hardware logic for a slight change. In addition,
application-specific integrated circuit (ASIC) [6] and analog circuit [7] are used to realize
the ANC system, but the overall effect is not as good as the mainstream DSP or FPGA.
Therefore, a new design with the advantages of both DSPs and FPGAs was developed; that
is, a combination of RISC-V soft core with a dedicated hardware accelerator. An audio
denoising coprocessor based on RISC-V custom instruction set extension was designed in
this study. According to the hardware implementation of the traditional FxLMS algorithm,
the software and hardware co-design of the FxLMS algorithm was carried out, the work
of filling and moving the data to be processed were handed over to MCU for processing.
Meanwhile, the convolution and MAC operations with large computation were designed
as hardware accelerators, and the coprocessor was designed in the way of instruction
pipeline. Finally, the hardware acceleration was completed by the coprocessor, and the
heterogeneous SoC was combined with the hardware accelerator.

The new method ensures design flexibility and controllability, while the dedicated
hardware accelerator maintains highly parallel computing. Furthermore, the RISC-V soft
core designs the mounted hardware accelerator in the form of a co-processor, which makes
full use of pipelining techniques.

2. RISC-V and Hbird E203 Core

The RISC-V instruction set has been widely welcomed all over the world since it
was published in 2014. The RISC-V instruction set design is simplified and efficient [8].
At present, the setting of RISC-V modular instruction set makes RISC-V architecture
have more choices, so that it can attempt to meet various applications through a unified
architecture, which is an advantage that X86 and the ARM instruction set architecture do
not possess [9]. Extensibility of instructions is a prominent feature of RISC-V architecture.
Users can customize instructions according to the reserved instruction coding space so the
coprocessor has better portability.

In order to realize the audio denoising coprocessor based on the RISC-V instruc-
tion set, it is necessary to select the appropriate RISC-V processor core as the carrier.
Among many open-source RISC-V cores, such as Rocket_Core [10], BOOM_Core [11],
RI5CY_Core [12], and others, Hbird E203 core adopts two-stage pipeline design and sup-
ports RV32I/E/A/M/C instruction subset configuration, and its supporting SoC provides a
large number of Intellectual property (IP) core, including Universal Asynchronous Receiver
Transmitter (UART), Inter Integrated Circuit (IIC), Serial Peripheral Interface (SPI), etc., [13].
Due to the rich SoC resources of the E203 core and its mature design tools, this study
selected the E203 core as the processor core of this design. ARM Cortex-M0+ was used as
the benchmark in terms of performance, and its microarchitecture is shown in Figure 1.
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Figure 1. Schematic diagram of E203 microarchitecture. 

E203 core adopts a two-stage pipeline structure, the first stage of which is instruction 
fetch (IF), and the second stage of which is instruction decode (ID), execute (EX), writeback 
(WB), and memory (MEM). 

The first stage pipeline includes a simple ID function block, branch predictor and 
program counter (PC) generator. The simple ID function block (tag 1 in the figure) par-
tially decodes the obtained instructions to obtain some instruction information, including 
the classification of instructions, whether they are ordinary instructions or branch jump 
instructions, and the types and details of branch jump instructions. For branch jump in-
struction, it is necessary to use a static branch predictor (tag 2 in the figure) to predict the 
jump and obtain the predicted jump address of the instruction. The PC generator (tag 3 in 
the figure) generates the PC value of the next instruction to be fetched, generates the PC 
according to different types such as fetching after reset, sequential fetching, branch in-
struction fetching and pipeline flushing fetching, and accesses instruction tightly coupled 
memory (ITCM) or bus interface unit (BIU) to instruction fetch through internal chip bus 
(ICB). The PC value and the corresponding instruction value are stored in the PC register 
and the IR register. 

The secondary pipeline mainly includes ID and dispatch (tag 4 in the figure), arith-
metic logic operation unit (tag 6 in the figure), memory access unit (tag 7 in the figure), 
long instruction (tag 8 in the figure), custom instruction (tag 9 in the figure), delivery, and 
pipeline flushing (tag 5 in the figure). ID and dispatching realize ID of instructions and 
dispatching related information to arithmetic logic unit (ALU), and ALU unit dispatches 
specific information to different execution units for execution. One-cycle instructions such 
as logic operation, addition and subtraction, shift, etc., are handed over to ordinary ALU 
unit for processing. The branch jump instruction is delivered to judge the prediction, and 
the prediction error needs to be flushed by the instruction pipeline. The memory access 
instruction is allocated to the memory loading unit for loading and accessing data. Long-
term coprocessor instructions are assigned to coprocessor units for execution. 

3. The FxLMS Algorithm and Its Hardware and Software Co-Design Conception 
The schematic diagram of active noise control system architecture is shown in Figure 

2, and the operation processing part is the most classical FxLMS algorithm [14–16]. 

Figure 1. Schematic diagram of E203 microarchitecture.

E203 core adopts a two-stage pipeline structure, the first stage of which is instruction
fetch (IF), and the second stage of which is instruction decode (ID), execute (EX), writeback
(WB), and memory (MEM).

The first stage pipeline includes a simple ID function block, branch predictor and
program counter (PC) generator. The simple ID function block (tag 1 in the figure) partially
decodes the obtained instructions to obtain some instruction information, including the
classification of instructions, whether they are ordinary instructions or branch jump instruc-
tions, and the types and details of branch jump instructions. For branch jump instruction,
it is necessary to use a static branch predictor (tag 2 in the figure) to predict the jump and
obtain the predicted jump address of the instruction. The PC generator (tag 3 in the figure)
generates the PC value of the next instruction to be fetched, generates the PC according to
different types such as fetching after reset, sequential fetching, branch instruction fetching
and pipeline flushing fetching, and accesses instruction tightly coupled memory (ITCM) or
bus interface unit (BIU) to instruction fetch through internal chip bus (ICB). The PC value
and the corresponding instruction value are stored in the PC register and the IR register.

The secondary pipeline mainly includes ID and dispatch (tag 4 in the figure), arithmetic
logic operation unit (tag 6 in the figure), memory access unit (tag 7 in the figure), long
instruction (tag 8 in the figure), custom instruction (tag 9 in the figure), delivery, and
pipeline flushing (tag 5 in the figure). ID and dispatching realize ID of instructions and
dispatching related information to arithmetic logic unit (ALU), and ALU unit dispatches
specific information to different execution units for execution. One-cycle instructions such
as logic operation, addition and subtraction, shift, etc., are handed over to ordinary ALU
unit for processing. The branch jump instruction is delivered to judge the prediction,
and the prediction error needs to be flushed by the instruction pipeline. The memory
access instruction is allocated to the memory loading unit for loading and accessing data.
Long-term coprocessor instructions are assigned to coprocessor units for execution.

3. The FxLMS Algorithm and Its Hardware and Software Co-Design Conception

The schematic diagram of active noise control system architecture is shown in Figure 2,
and the operation processing part is the most classical FxLMS algorithm [14–16].
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Figure 2. Schematic diagram of ANC system structure.

The implementation of the FxLMS algorithm has two different acoustic paths. The
main signal is sampled by the audio codec module WM8731 with built-in ADC, then the
speaker emits an anti-noise signal, and the error sensor measures the residual error signal.
In this process, the acoustic path between the reference noise source and the error sensor is
called the primary path, and the electrical to acoustic path between the speaker and the
error microphone is called the secondary path. The FxLMS algorithm contains two parts,
one is the least mean square algorithm, and the other is adaptive filtering.

3.1. LMS Algorithm Principle

The least mean square (LMS) algorithm is based on the minimum mean square error
criterion and the gradient method. By improving the calculation method of the gradient
value of the mean square error, the algorithm can be shown by recursive formulas such as
Equations (1)–(3) [17–19]:

y(n) = WH(n)X(n) (1)

e(n) = d(n)− y(n) (2)

W(n + 1) = W(n) + 2µX(n)e∗(n) (3)

where W(n) represents the weight vector of the filter; X(n) represents a set of vectors
composed of input signals; y(n) represents the output signal; d(n) represents the desired
signal; e(n) represents the error signal; and µ represents the step size factor, where the
larger µ is, the faster the convergence speed of the algorithm is, and vice versa. However,
the faster the convergence speed, the worse the steady-state performance, so it is necessary
to constrain the step size factor. In this design, considering the reduction in algorithm
complexity and processing flexibility, the selection of step factor is based on the fixed step
proposed in [4].

3.2. Adaptive Filtering

The adaptive filtering part is a FIR filter, and the formula is shown in Equation (4):

y(n) = WT(n)X(n) (4)

where y(n) represents X(n) generated by an FIR filter with a weight coefficient W(n).
Because every time a stage sound source y(n) is generated, the weight coefficient W(n) is
updated by LMS operation; therefore, updated time-varying coefficients are obtained, i.e.,
the coefficients are automatically and continuously adapted to a given signal to obtain a
desired response to complete adaptive filtering.
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3.3. Software and Hardware Co-Design

The coprocessor part is connected with the main processor in the mode of instruction
pipeline through Nuclei Instruction Co-Unit Extension (NICE) circuit interface, and the
hardware acceleration function is mobilized in the mode of custom instructions in the
software flow, which is shown in Figure 3.
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Figure 3. Flow chart of software and hardware co-design.

The pink parts in Figure 3 belong to the software flow, of which specific significance is
the external acquisition of the ANC system and the configuration of function blocks. Then
it includes storing the data at the corresponding address after collection. Subsequently, the
light gray part is the related custom instructions. Used for realizing software and hardware
interaction between the main processor and the coprocessor, the last dark gray part is the
defined hardware acceleration part, which specifically includes the adaptive filtering part in
the algorithm corresponding to convolution operation, the weight update part corresponds
to the LMS algorithm in the algorithm corresponding to multiplication and accumulation
array operation, and the corresponding cache unit used in data handling.

At the same time, due to the particularity of serial operation of the algorithm itself,
this process has two steps. First, the black flow line is the adaptive filtering operation in the
main path, and then the electrical to acoustic transformation is needed through relevant
peripherals to generate secondary sound sources. The second step is the acquisition of
error signals and the updating operation of weight coefficients, which have a sequence
relationship. Therefore, this design process includes two paths, and only when both paths
run out can the ANC system denoising be completed once.

4. Hardware Design Part

The audio denoising accelerator designed in this study optimizes the updating weight
and filtering module in the traditional design. The parallel one-dimensional convolution
structure in the form of an addition tree is used to replace the serial MAC arithmetic unit to
realize the filtering part, and the parallel MAC array is used to replace the original updating
weight part, and the related modules of coprocessor are added.
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4.1. Optimization of Operation Structure Design

In the traditional hardware implementation of the FxLMS algorithm, the filter module
adopts the MAC arithmetic unit, namely the multiply accumulate arithmetic unit, and
realizes filtering in serial mode which reduces the arithmetic performance of the filter
module, and a lot of repeated operations are needed when the filter order is long. Therefore,
this design adopts the strategy of sacrificing area in exchange for performance improvement,
and uses the addition tree structure, which greatly improves the parallel operation ability
and realizes one-dimensional convolution operation. At the same time, this design adopts
the MAC array parallel operation to update the coefficients of the weight matrix. Finally,
this design adopts the idea of data multiplexing, and uses a data distributor to reduce the
resource consumption of weight coefficient storage SRAM. The circuit structure is shown
in Figure 4.
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Figure 4. Structure diagram of hardware accelerator.

The whole acceleration circuit comprises a reference signal data buffer module (X_RAM),
a weight coefficient data buffer module (W_RAM), an error signal data buffer module
(E_RAM), a data distributor, a one-dimensional convolution operation block, a MAC array
operation block, and a data integrator.

The most critical parts in the accelerator circuit are the one-dimensional convolution
operation block and MAC array operation block. The one-dimensional convolution opera-
tion block realizes the FIR filtering part of the algorithm, and the MAC array operation block
realizes the parallel weight coefficient update. Its circuit structure is shown in Figure 5.
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Figure 5. Circuit structure diagram of arithmetic unit.

Because the audio denoising algorithm needs to quickly generate secondary sound
sources after collecting reference signals, and the generation of secondary sound sources
must be operated through adaptive filtering; so in this design, the addition tree parallel
structure is used to design the one-dimensional convolution operation for filtering, which
can improve the operation speed and high parallelism so that the secondary sound sources
can be produced faster. When the secondary sound source is generated, it is necessary to
collect error signals to update the filter weight coefficients, so the algorithm has the charac-
teristics of sequential processing, and the speed of weight updating plays an important role
in the generation of secondary sound sources. Therefore, in this design, the MAC array is
used to realize the updating operation of each weight, and the updated weight data needed
by the next convolution operation can be obtained in the same period. The reasonable use
of the data distributor and data integrator greatly improves the operation speed.

4.2. Coprocessor Design

After the operation structure design is completed, the core instruction cooperation
unit should be added to expand the coprocessor design, and the decoder, data extractor and
configuration enabling function block should be added to complete the hardware design of
the audio denoising coprocessor. Its circuit structure is shown in Figure 6.
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After the operation structure design is completed, the core instruction cooperation 

unit should be added to expand the coprocessor design, and the decoder, data extractor 
and configuration enabling function block should be added to complete the hardware de-
sign of the audio denoising coprocessor. Its circuit structure is shown in Figure 6. 
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The NICE controller processes the time sequence related to the interface of the co-
processor and transmits the instruction information and source operands obtained from
the request channel to the decoder for ID. The decoder is used to decode custom instruc-
tions. This design is mainly divided into two types of instructions, one is configuration
instructions, and the other is data loading and storage instructions. For the configuration
instruction, the configuration information is transmitted to the configuration module, and
the configuration module provides the enabling signal and control signal required by the
corresponding response module to realize the configuration of each operation function
part. For the data load store instruction, the memory access information is transmitted
to the data extractor for processing. When the memory access information is a loading
instruction, the address information and the read signal are transmitted through the mem-
ory request channel and the data are obtained from the corresponding memory module.
Then the read data are transmitted to the data extractor through the memory feedback
channel and distributed to the corresponding cache module by the data extractor. When
the memory access information is a write memory instruction, the address information is
transmitted through the memory request channel, and the write data are obtained from
the data extractor and transmitted to the memory location corresponding to the address. If
the instruction is the write-back result, the write-back data are transmitted to the feedback
channel through the data extractor to complete the write-back of the general register.

After the software program is burned to the MCU, the main processor obtains the
instructions in sequence, decodes the instructions, and judges whether the instructions
are custom instructions according to their operation codes. In this design, the operation
codes of custom 1–4 defined by RISC-V are used as custom instruction operation codes, and
R-type instructions are used for custom instruction coding. Its format is shown in Figure 7.
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For custom instructions, it is judged whether to read the source operand according
to xs1 and xs2. In this process, the main processor maintains the data correlation, and if
there is a data conflict, the data channel is closed until the data correlation is released. If
there are data written back, the destination register of the rd bit is also a consideration of
data correlation. After that, the instruction information is transmitted to the coprocessor
for processing through the NICE interface. The coprocessor decodes the instructions and
distributes them to different units for execution according to the type of instructions. Finally,
the coprocessor writes the instruction execution results back to the main processor through
the response channel, and writes the execution results back to the rd target register or
transmits the results to the corresponding storage locations through the memory request
channel.

The data stream of the audio noise reduction coprocessor designed in this subject is
shown in Figure 8, and the processing signals are obtained by external sensors or receivers.
Data are transmitted to ICB peripheral bus through interface IP mounted on SoC. When the
relevant data need to be processed, the data are acquired and written through the memory
request and feedback channel. After the processing is finished, the processing result is
written back to the general register of the main processor or into the corresponding memory,
and the main processor sends it to the external module through the interface IP to obtain
the generated signal.
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Figure 8. System data flow diagram.

Through memory access custom instructions, a lot of data stored in the main processor
are moved to the coprocessor, which reduces the access of the coprocessor to the main
processor memory and greatly reduces the power consumption. At the same time, the
parallel operation units in the coprocessor ensure the operation speed. Finally, compared
with the SoC plug-in accelerator, the coprocessor with instruction pipeline mode does not
need frequent data access, reduces data movement, and has better real-time processing
performance.

5. Software Design Part
5.1. Custom Instruction Design

The custom instructions of the audio denoising coprocessor based on the FxLMS
algorithm are shown in Table 1.

Table 1. Custom instruction table of coprocessor.

Instruction Funct7 Rd Xd Rs1 Xs1 Rs2 Xs2

Load.X 1 - 0 X_MemoryAddress 1 Length|X_BaseAddress 1
Load.E 2 - 0 E_MemoryAddress 1 Length|E_BaseAddress 1
Store.Y 3 - 0 Y_MemoryAddress 1 - 0

Cfg.Conv 4 - 0 Filter order 1 En_Conv 1
Cfg.MAC 5 - 0 Filter order 1 En_MAC 1
Updata.W 6 - 0 Filter order 1 En_Up.W 1

Rst 7 - 0 - 0 - 0

There are seven custom instructions, namely the data load storage instruction and
configuration enable instruction. The data loading instruction is responsible for loading
the reference signal and the error signal from the corresponding address and storing them
in the corresponding buffer of the coprocessor. The data storage instruction is responsible
for transmitting the secondary sound source signal and writing it to the corresponding
memory address through the memory request channel. The configuration enable instruction
is responsible for configuring the filter order and enabling the relevant functional modules.

The use steps of custom instruction are shown in Figure 9: firstly, the reference signal is
loaded through Load.X instruction, and the data are accessed through the memory request
channel and read through the memory feedback channel, and then loaded into the X_SRAM
cache. After that, the reference signal and weight coefficient are read from X_SRAM and
W_SRAM by Cfg.Conv instruction and sent to the corresponding DMUX through data
distributor. DMUX performs the convolution operation and generates the secondary sound
source under the control of the enable signal until the convolution of reference signal ends.
After that, the secondary sound source data in FIFO is written back to the corresponding
address through the memory request channel through Store.Y instruction. Then Load.E
instruction loads error signal data such as Load.X instruction, and Cfg.MAC instruction
configures MAC operation array and updates weight coefficients. Finally, W_SRAM is
configured by Updata.W instruction to write the update weight, which completes an
adaptive denoising operation acceleration. In addition, the reset of the coprocessor can be
performed by Rst instruction.
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5.2. Coprocessor Library Function Design

After completing the instruction of the custom coprocessor, we can use assembly
language to transfer the work of coprocessor. However, the efficiency of assembly language
development is too low, so embedded inline assembly is often used in C\C + +. Therefore,
the first task is to package instructions into C language library functions by using the inline
assembly syntax format and completing the library function design of coprocessor. The
designed library function interface is shown in Table 2.

Table 2. Library functions of custom instructions and their introduction.

Function Interface Function

int Load_X(unsigned int X_MemoryAddress,
unsigned int X_BaseAddress, unsigned int Length) Load reference signal X into X.SRAM

int Load_E(unsigned int E_MemoryAddress,
unsigned int E_BaseAddress, unsigned int Length) Load error signal E into E.SRAM

int Store_Y(unsigned int Y_ MemoryAddress) Store secondary source Y

int Cfg_Conv(int Filter_order, int En_Conv) Configure convolution operation length and enable

int Cfg_MAC(int Filter_order, int En_MAC) Configure MAC operation length and enable

int Updata_W(int Filter_order, int En_UP.W) Configure weight coefficient length and enable

void Rst() Reset coprocessor

The Cfg.Conv library function is taken as an example, and its specific inline assembly
syntax format is shown in Figure 10.
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The main processor configures the initial information through the IIC bus to make 
the WM8731 audio codec module work normally, and uses the probe to collect audio sig-
nals and convert them into digital audio signals through ADC built in the module. Then 
it is transmitted to the ICB bus through IIS audio transmission interface, and the copro-
cessor reads IIS audio data on the bus through LSU and loads it on the corresponding 
cache. After configuring enabling instructions, the convolution operation can be carried 
out smoothly and anti-noise signals can be generated. After that, the anti-noise signal is 
written to the address where the IIS interface data are located through the memory request 
channel, and the analog signal is obtained by digital-to-analog conversion through the 
built-in DAC of the module and secondary noise is generated. Then the module collects 
the residual noise signal again until it is loaded on the corresponding buffer. After config-
uring the enabling instruction, the MAC array can update the weight coefficients so as to 
complete the denoising and acceleration of the ANC system once. 
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6. Application and Evaluation of the FxLMS Algorithm
6.1. Overall Design of ANC System

After completing the hardware and software design of the coprocessor, it is the de-
sign part of the whole ANC system. This design is based on Hbird E203_SoC platform,
modifies the original SoC, deletes unnecessary peripheral interfaces, and adds IIS interface
peripherals needed for audio data transmission. The whole system structure is shown in
Figure 11.
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The main processor configures the initial information through the IIC bus to make the
WM8731 audio codec module work normally, and uses the probe to collect audio signals
and convert them into digital audio signals through ADC built in the module. Then it is
transmitted to the ICB bus through IIS audio transmission interface, and the coprocessor
reads IIS audio data on the bus through LSU and loads it on the corresponding cache. After
configuring enabling instructions, the convolution operation can be carried out smoothly
and anti-noise signals can be generated. After that, the anti-noise signal is written to the
address where the IIS interface data are located through the memory request channel, and
the analog signal is obtained by digital-to-analog conversion through the built-in DAC
of the module and secondary noise is generated. Then the module collects the residual
noise signal again until it is loaded on the corresponding buffer. After configuring the
enabling instruction, the MAC array can update the weight coefficients so as to complete
the denoising and acceleration of the ANC system once.
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6.2. Evaluation Analysis

After the whole software and hardware design and system design are completed,
the denoising performance is measured based on MCU200T development board, and the
schematic diagram of the measured scene is shown in Figure 12.
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Figure 12. Real scene diagram of test scene.

The noise signal is collected before and after denoising by special instruments, and
the pink noise is used for acoustic test so as to obtain the relevant collected data and
visualize the data through Matlab to obtain the change before and after denoising in the
ear frequency band as shown in Figures 13 and 14.
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Figure 13. (A) Change in SPL and time within 0 to 160 Hz before noise reduction, (B) change in SPL
and time within 0 to 160 Hz after noise reduction, (C) time frequency (0–160 Hz) diagram before
noise reduction, (D) time frequency (0–160 Hz) diagram after noise reduction.
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As can be seen from the Figure 13A,B, the sound pressure levels (SPL) of the same
noise are different in continuous time periods, so the denoising effect is unstable. Because
their color bar scales are the same, the change in sound pressure level before and after noise
reduction is very small, and the change trend is the same. At the same time, it can be seen
from the Figure 13C,D that the noise reduction effect is not good at 20 Hz and 60–100 Hz.
On the contrary, the SPL after noise reduction is larger (the color of the color bar becomes
lighter). There may be two reasons for this result: first, the SPL itself at each frequency
point is within a range of change, and the color of the color bar may become darker due to
the low sound pressure level at individual points. The second reason is that the FXLMS
algorithm itself has a poor noise reduction effect in the ultra-low frequency band.

It can be seen from the Figure 14A,B that the noise reduction effect is obvious at 200 Hz,
the curve changes significantly, and the change trend after 400 Hz is similar. However,
since the color code of the three-dimensional graph before and after noise reduction is not
consistent, the change cannot be seen directly through the color, so it needs to be analyzed
in combination with the coordinates of SPL. The noise reduction effect is about 5 dB in the
range of 400 to 800 Hz and about 3 dB in the range of 1000 to 1600 Hz. At the same time, it
can be seen from the Figure 14C,D that the time-frequency diagram changes significantly
at 200 Hz, from light green in Figure 14C to dark blue in Figure 14D; the noise reduction
effect at this frequency point can reach 10 dB. Although the color of 400 Hz in Figure 14C is
very deep, the sound pressure level at this frequency point is about 42 dB according to its
color code. Although the color of 400 Hz in Figure 14D is lighter than that of Figure 14C, its
sound pressure level is also about 39 dB, so the noise reduction effect is quite significant.
The noise reduction in other frequency points is similar, so it is not be repeated. It should
be noted that when the time coordinate axis in the figure is 8 s, the whole frequency band
(200–1600 Hz) has a cliff drop, which is caused by the discontinuity of the test noise itself.
Therefore, in the description of noise reduction, this part is not included in the calculation
of noise reduction effect.

At the same time, it can be known from the Figure 15a that the denoising effect of
the algorithm in the middle and high-frequency band is not ideal, which is related to the
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denoising principle of the active denoising system itself. According to the relationship
between frequency and sound pressure level in Figure 15b and the mean and maximum
sound pressure levels of each frequency point in Table 3, noise reduction can reach 8 dB in
the frequency range from 200 to 400 Hz, and 5 dB from 500 to 1250 Hz, but decreases to 3 dB
from 1250 to 2000 Hz. Because sound pressure level changes incongruently at the same
frequency point over a continuous period of time, the optimal noise reduction can reach up
to 8 dB in the frequency range from 200 to 2000 Hz. A mean of 5 dB in noise reduction in
the frequency range of 200 to 2000 Hz is attainable based on the average sound pressure
level, which proves that the algorithm can be realized by combining a heterogeneous SOC
with hardware accelerator.
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Table 3. SPL at each frequency point before and after noise reduction.

Hz 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000
AVG_F 36.5 39.5 46.1 49.7 44.1 40.4 41.7 44.6 44.4 60.4 48.5 43.8 43.7
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Min_B 31.25 33.3 35 30.3 36.1 36.2 34.8 37.1 36.5 48.9 38.6 38.8 39.2

In order to evaluate the performance of the coprocessor, this study adopts two methods
to implement convolution and MAC operations, one is implemented by the standard
RISC-V I\M instruction set, the other is implemented by using the coprocessor custom
instructions designed in this study and the RISC-V I\M instruction set together, and
compares the number of instructions executed by the two methods. Through IDE tools
to write the software code and burn it to the development board, you can print out the
corresponding execution results and calculate the number of instructions through the serial
port. The experimental results are shown in Table 4.

Table 4. Number of instructions required by different arithmetic units to run under different instruc-
tion sets.

Algorithm Rv32 I\M Instruction Coprocessor Instruction

Conv 4582 1324
MAC 656 256
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Through the instruction number, we can see that Conv and MAC operation can save
instruction space more than a standard instruction set under the action of coprocessor, and
the instruction number is greatly reduced. This is because on the one hand, the coprocessor
realizes convolution and MAC through a special hardware acceleration unit, while the
main processor can only realize convolution and MAC through software methods such as
addition, subtraction, multiplication, and division; on the other hand, from the system data
flow diagram in Figure 8, it can be seen that the coprocessor implementation reduces the
repeated movement of data and further improves the processing speed of the algorithm.

7. Conclusions

Based on the design optimization of hardware accelerator, The coprocessor was de-
signed, the ANC system was built on the basis of E203_SoC, and the denoising test was
carried out in a quiet indoor environment. The sound pressure level data before and after
denoising were obtained by audio analysis and acquisition instrument. After data analysis,
it can be seen that the FxLMS algorithm realized by combining a heterogeneous SoC with
a hardware accelerator has a remarkable effect and can achieve nearly an 8 dB denoising
effect. Subsequently, two different test methods were used to test the acceleration effect of
the coprocessor, and it was concluded that the implementation of the coprocessor custom
instruction set has a significant acceleration effect for convolution and MAC operations.
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