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Abstract: In this study, the active vibration control of a rectangular plate submerged in water was
investigated. Mass dampers were attached to the plate, and the system was modeled via assumed
mode. Water is modeled as an inviscid fluid with moving boundaries at fluid–solid interaction
surfaces and applied forces on the plate being calculated by Bernoulli equation. The natural fre-
quencies of the plate in vacuum and in water (for partial and fully submerged cases) found from
numerical calculations are compared with experimental results to prove the accuracy of the model.
Subsequently, for frequency computations, particular frequencies were chosen and active damping
was applied for them. To actively control the plate’s vibration by a moving mass with static stable
methods, the displacement data of some points were used as input. First, to increase the damping of
target mode at low-frequency, the negative acceleration feedback control algorithm in modal-space
was applied. Then, the decentralized method was examined. Both methods were successful in
suppressing vibration of the submerged rectangular plate.

Keywords: active control; vibration suppression; submerged plate; fluid–solid interaction

1. Introduction

The natural resources in the oceans and seas control the Earth’s energy and play an
important role in civilization today. The discipline of underwater acoustic radiation is one
of the applicable utensils in the study of oceans. They can propagate for 106 m in compari-
son to electromagnetic waves, which can propagate around 102 m in water. Fluid–solid
interaction is important in many applications such as vibration suppression particularly for
bioacoustics submerged structures [1]; energy harvesting by galloping [2–4]; physical acous-
tics by piezo fan [5], cavitation [6], sloshing [7]; acoustical oceanography, modal analysis
of submerged structures [8]; structures under cavitation [9]; active vibration control of
submerged structures for remote control of surveillance [10]; sound cancellation of sub-
merged systems [11]; atomic force microscope energy harvesting [7]; transduction, sonar,
acoustic signal processing [12]; underwater communications systems and networks [7–11],
among others. A liquid–solid interaction happens when a structure vibrates in a liq-
uid [8], and must be addressed using both fundamental science and engineering. There are
many studies focusing on vibration suppression of a solid structure by piezo ceramic
elements (PZT) [2]. The neutrino–seawater interaction can be sensed by acoustical methods.
The piezoelectric effect delivers the aptitude to utilize these materials as both actuators and
sensors. Piezo ceramic elements have been extensively used for active vibration control
in the Neutrino Telescope [2,12]. The expansion in dormancy comes about because the
smooth movement influences basic vibrations, with the assumption that the normal fre-
quencies of a structure in a liquid are altogether lower than those in air [9,13]. This marvel
has been portrayed by presenting the idea of an additional virtual mass via a triangula-
tion method. Active control strategies are regularly deficient to control the vibrations of
structures, thus, we look for dynamic techniques to smother vibrations to improve the
presentation of the frameworks of intrigue; for example, for the piezo ceramic elements
mounted on flexible string lines fixed at the seabed [14]. The fluid–solid interaction affects
structures through a wide range of applications and sizes, from microscale MEMS struc-
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tures to larger ship structures [15]. The dynamic conductivity of plate structures is critical
to numerous applications running from cars to designing ventures. In addition, submerged
plates are fundamental pieces of ship building, atomic, sea, and maritime designing [16].
The vibration qualities of the unblemished plate combined with liquid medium have been
thoroughly treated and very much archived in important writing. It is in this way realized
that vibrations of the submerged unblemished plate are not quite the same as those in
vacuum [17]. Brilliant structure innovation has led to dynamic controls to react to outer
aggravations and can offer upgrades in framework execution without essentially expand-
ing the weight [18]. One advantage of utilizing a brilliant structure is that it can adapt to
changes in nature by detecting outside unsettling influences [19,20]. In addition to piezo
ceramic elements, eddy-current-tuned mass damper and pounding-tuned mass damper
are used to suppress vibrations in submerged pipelines [21,22].

Submerged structures in submerged systems characteristically originate from many
engineering applications such as marine submerged, naval, energy harvesting, medicinal,
and biological structures. When the plate is immersed in a fluid, its natural frequencies are
reduced, mode shapes are changed, and damping is increased. It can usually be attained
in practice by adapting the structure’s dynamic characteristic in passive approaches or
by request of the organized secondary source of vibration in active approaches. The un-
derlying investigations on control of flexible and smart structures have been performed
in literature. Ensuing studies have widened their degree to incorporate an assortment
of structures, for example, plates and shells. Vibrations in keen structures have been
effectively constrained by utilizing piezoelectric materials with the Positive Position Feed-
back (PPF) controller [3], proposed by Jamalabadi (with PZT sensor and PZT actuator),
the multi-input multi-output (MIMO) PPF controller [3], and the changed Linear Quadratic
Regulator (LQG) controller [15]. To demonstrate the conductivity of platelike structures,
Kwak and Yan [16] built up a condition for the incitation strain by utilizing the Rayleigh–
Ritz technique for isotropy and anisotropy plates. Thus, liquid structure cooperation issues
frequently require computation of liquid, including mass. They demonstrated that their
hypothetical model was precise through a test with a bar-loved plate. Numerous stud-
ies have been done concerning dynamic vibration control of a plate. Be that as it may,
dynamic vibration control of plates in contact with liquid has not been researched [7,8].

For a stack of n PZT sheets (with stiffness K, capacitance C, and piezoelectric charge
coefficient d33), the electric charge on the electrodes of the transducer and the total displace-
ment have a linear relation with voltage and force as:(

Q
∆

)
=

[
C nd33

nd33 1/K

](
V
F

)
(1)

This PZT effects narrates the mechanical stress, and electricity is used in the electrical
energy storage of energy harvesters [2] or actuators [3]. The interpretive enunciation for
the virtual mass for rectangular plates cannot be as adequately obtained with everything
considered for indirect and annular plates or for a cylinder-formed shell, despite the
way that rectangular plates have a fundamental geometry. Lindholm et al. [11] applied
a strip system to find out the ordinary frequencies of a cantilever plate that was totally
submerged in water, and further, theoretically investigated the abatement in the trademark
frequencies of cantilever plates on account of the proximity of water. For the strip procedure,
the rectangular plate is parceled into thin strips and each strip is seen as an unyielding
body [12–15]. There are other researches in literature related to the application of a negative
acceleration feedback (NAF) controller in a plate with fluid interaction [16–24].

The state-of-the-art related to the three-dimensional numerical models, present in
the marine science and engineering applications, shows that many simulations have
been done from decades before to the present [25]. Gallerano et al. [4,7] simulated the
wave motion and wave-breaking-induced energy dissipation as well as hydrodynamic
effects produced by submerged breakwaters in a coastal area with a curvilinear shoreline.
Derakhti et al. [23] developed a code with consistent boundary conditions and turbulence
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modeling for the marine science and ocean engineering application. The shock-capturing
non-hydrostatic model for fully dispersive surface wave processes is done by Ma et al. [24].
The computational cost of numerical modeling of the submerged systems in terms of
calculating structure-bending mode shapes coupled with fluid motion in full-scale 3D
modeling of the submerged systems with all geometry details in hydroelasticity analysis is
high [26], which leads to the simpler method for engineering applications. In particular,
in the literature, there are numerical models that are able to simulate the phenomena on a
time-moving curvilinear computational grid [4,7,23,24].

In this investigation, a comprehensive 3D model for a cantilever plate in air was joined
with the virtual added-mass framework. Additionally, the sensor and the moving mass
actuator conditions were included. These outcomes were utilized to give a total unique
model to a hanged cantilever plate submerged into a liquid and outfitted with sensors and
moving mass actuators. The recurrence reaction bends acquired by the hypothetical model
are in great concurrence with the exploratory outcomes, along these lines approving the
hypothetical model that is proposed in this investigation. The MIMO PPF controller was
planned by utilizing a square opposite method and was executed for the plate by utilizing
an advanced controller. The trial results demonstrated that the proposed controller can
effectively stifle vibrations of the plate both in air and in water. Furthermore, the control
execution anticipated by the hypothetical model was tentatively approved.

2. Governing Equations

A flexible structure located inside of the liquid containers, the same as baffle structures,
is considered here. Figure 1 shows the liquid level and tank specifications. Even though
Jamalabadi [6] studied the coupled motion of sloshing and fluid–structure interaction,
these problems were treated separately. In this study, the coupled sloshing and structural
vibrations will be investigated. Let us consider a three-dimensional problem as shown
below. The water is bounded by a rigid wall, a rigid bottom, and a flexible beam. Table 1
shows the parameters of the considered system. For the sloshing problem, in addition to
considering the velocity potential founded from Laplace equation of the fluid, the solid
dynamics outside of the fluid can affect the governing equations, especially at the interface
of the structure and fluid. To extract the dynamic equation of the system and the basic equa-
tion in mode extraction from the classical eigenvalue problem, here, the energy approach is
used. The boundary condition of inviscid fluid considered is slip boundary condition at
the tank’s walls and kinematic boundary condition over the flexible submerged plate.
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Figure 1. Schematic of the three-dimensional sloshing and structural vibrations front view.

Table 1. Experimental setup parameters [16].

Parameter Value Unit Description

t 2 mm Thickness of the aluminum plate
ν 0.33 − Poisson ratio of the aluminum plate

ρp 2700 kg/m3 Density of the aluminum plate
Ep 68.9 GPa Module of elasticity of the aluminum plate
ρf 1000 kg/m3 Density of the fluid
a 900 mm Dimension of the aluminum plate for draught of 50%
b 300 mm Dimension of the fluid tank
H 450 mm Dimension of the fluid tank
L 450 mm Dimension of the fluid tank

The kinetic energies of the system can be written as

T =
ρphab

2
.
qT Mp

.
q +

ρf ab2

2
.
qT Mf

.
q+

ms+ma
2

.
qT Ma

.
q + ma

2
.
qT BT .

u + ma
2 uT .

u
(2)

and potential energies of the system can be written as

V =
Db
2a3 qTKp q + Kt

θ2

2
(3)

where q(t) is a vector consisting of generalized coordinates, u(t) is a vector consisting of
moving mass displacements, B is a vector consisting of plate displacement at the point of
supporting mass, subscript p represents the plate, ρp is the mass density of the plate, a is
the plate height, b is the plate width, h is the thickness,

D = Eh3/12(1− v2) (4)
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E is the Young’s modulus, and ν is Poisson’s ratio, subscript f represents the fluid, ρF
is the mass density of the fluid, H is the plate height inside the fluid, subscript a represents
the active mass damper (AMD), ms is the supporting mass of the AMD, ma is moving mass
of the AMD, the nondimensionalized mass matrices of the solid plate are

Mp = X⊗ Z (5)

and the nondimensionalized stiffness of the solid plate is

Kp =
∫ 1

0 Φ”T
Φ” dξ ⊗

∫ 0.5
−0.5 ΨTΨ dζ +

( a
b
)4∫ 1

0 ΦTΦ dξ ⊗
∫ 0.5
−0.5 Ψ”T

Ψ” dζ +( a
b
)2

ν
( ∫ 1

0 Φ”T
Φ dξ ⊗

∫ 0.5
−0.5 ΨTΨ” dζ +

∫ 1
0 ΦTΦ” dξ ⊗

∫ 0.5
−0.5 Ψ”T

Ψ dζ
)
+( a

b
)2
(1− ν)

∫ 1
0 Φ

′TΦ
′
dξ ⊗

∫ 0.5
−0.5 Ψ

′T
Ψ
′
dζ

(6)

The analysis is made for the first modes. Block Lanczos method could be used for
mode extraction. It uses an algorithm where the Lanczos recursion is performed with a
block of vectors. Assuming an isotropic, homogeneous, and inviscid fluid flow for the
sloshing liquid, the nondimensionalized mass matrices of the fluid are

Mf =
−a

2πH

∞

∑
k=1

∞

∑
r=1

Cer(0,− (2k−1)2π2b2

64H2 )

C e ′r(0,− (2k−1)2π2b2

64H2 )
IT

krIkr (7)

where the ⊗ operator, similar to the “.*” operator in MATLAB, indicates the element-
by-element multiplication. As the precision of finite element and boundary element
methods are dependent on the physics of the sloshing geometry and grid size meshing and
considering that a full 3D plate model is time-consuming, the analytical solution of Euler
Beam in one dimension is adopted to reduce the time and cost needed for computation.
The components of Φ functions used in Equations (5) and (6) are

ϕk =



χ1 1 ≤ k ≤ n
χ2 n + 1 ≤ k ≤ 2n
χ3 2n + 1 ≤ k ≤ 3n

...
χn (n− 1)n + 1 ≤ k ≤ n2

(8)

and the components of Ψ functions used in Equations (5) and (6) are

ψk =



γk 1 ≤ k ≤ n
γk−n n + 1 ≤ k ≤ 2n
γk−2n 2n + 1 ≤ k ≤ 3n

...
γk−(n−1)n (n− 1)n + 1 ≤ k ≤ n2

(9)

Here, the χi (i = 1, 2, . . . , n) admissible functions are considered as the eigenfunction
of a torsional spring-free beam in x direction (ξ = x/a)

χi = sinhλiξ+

(coshλiξ + cosλiξ)EIλi
3 sinhλi−sinλi

EIλi
3(cosλi−coshλi)+2Ktsinλi

(sinλiξ)
EIλi

3(coshλi−cosλi)+2Ktsinhλi
EIλi

3(cosλi−coshλi)+2Ktsinλi

(10)
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where λi = 4.5988, 7.6530, 10.7380, 13.8315, 16.9325, 20.0395, 23.1512, etc., and the γi (i = 1, 2, . . . , n)
admissible functions are considered as the eigenfunction of a free-free beam in z direction
(ζ = z/b) with two rigid-body modes

γ1 = 1 (11)

γ2 =
√

12ζ (12)

and the normal modes (i = 1, 2, . . . n− 2) are

γi+2 =coshλi(ζ + 0.5) + cosλi(ζ + 0.5)−
coshλi − cosλi
sinhλi − sinλi

(sinhλi(ζ + 0.5) + sinλi(ζ + 0.5))
(13)

where λi = 4.730, 7.853, 10.996, 14.137, etc.
Additionally, Cer in Equation (7) is the nonperiodic even Mathieu function (cosine-elliptic),

Ikr=

[∫ 2π

0
sinη ser(η,− (2k− 1)2π2b2

64H2 )Ψ

(
1
2

sinη

)
dη

]

⊗
[∫ 1

0
Φ(

Hξ + a−H
a

)sin

(
(2k− 1)πξ

2

)
dξ

] (14)

where ser is the periodic Mathieu function (sin-elliptic). Elliptic functions used in Equations (7)
and (14) are expressed by the following Fourier series

cer(z, q) =


∞
∑

m=0
Ar

2m+1(q) cos (2m + 1)z when r odd
∞
∑

m=0
Ar

2m(q) cos 2mz when r even
(15)

ser(z, q) =


∞
∑

m=0
Br

2m+1(q) sin(2m + 1)z when r odd
∞
∑

m=0
Br

2m+2(q) sin(2m + 2)z when r even
(16)

By using the Lagrangian for the system

L = T−V (17)

Lagrange’s equation
d
dt

(
∂L
∂

.
q

)
− ∂L

∂q
= 0 (18)

and introducing the disturbance (d), equations of motion can then be written as(
ρphab Mp + ρf ab2 Mf + (ms + m)a Ma

) ..
q +

(
Db
a3 Kp

)
q = d−maBT ..

u (19)

By solving the free vibration problem of Equation (19), in regard to Table 1 with value
parameters of the elements in the system, natural frequencies and mode shapes can be
obtained. By neglecting Mf, the natural frequencies and mode shapes for vibrating in vacuo
(ωa) can be obtained. The eigenvector of matrix U satisfies the orthonormality condition:

UTKU = Λ, UTMaU = I (20)

where
Ma = ρphab Mp + (ms + m)a Ma (21)
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K =
Db
a3 Kp (22)

Λ = diag(ω2
n) (23)

If we apply the modal transformation, qn = Un Vn, to the eigenvalue problem of the
plate vibrating in a fluid, Equation (19), and premultiply it by UT

n , we can obtain

ωf ≈
ωa√

1 +
ρf Hb2

ρphpa2 Γ
(24)

where the nondimensionalized added virtual mass incremental (NAVMI) factor represents
the diagonal components of UTMU.
where

M = ρphab Mp + ρfab2 Mf + (ms + m)a Ma (25)

The following equations of motion are obtained in matrix form:

..
V + 2ZΩ

.
V + ΛV = d−maB

..
u (26)

where d = UTd and B = BU. Here, the mathematical model is similar to cantilever
beams and uses one degree of freedom for modeling moving mass devices to apply the
active control. As the paper regards the vibration dumping technique of a rectangular
plate submerged in water, a controller design is conducted. To design a multi-input
(applied acceleration of finite moving mass) multi-output (measured acceleration at finite
node) system, a negative acceleration feedback control (NAF) is used. The components
of Equation (26) are separated by a controlled (with subscript 1) and uncontrolled mode
(with subscript 2) as

..
V1 + 2Z1Ω1

.
V1 + Λ1V1 = d1 −maB1

..
u (27)

..
V2 + 2Z2Ω2

.
V2 + Λ2V2 = d2 −maB2

..
u (28)

where NAF is coupled to the first group with its own damping factors (Zf ) and acceleration
gain (G)

..
Q + 2Zf Ω1

.
Q + Λ1Q = −G

..
V1 (29)

The balance equation is used to find the gain matrix

maB1V1 = GQ. (30)

The final coupled equations are[
I G
G I

][ ..
V1..
Q

]
+ 2Ω1

[
Z1 0
0 Zf

][ .
V1.
Q

]
+ Λ1

[
I 0
0 I

][
V1
Q

]
=

[
d1
0

]
(31)

By reconstructing the components of V vector, controlled contains [V1 V2], V with
subscript 1 from Equation (31) and uncontrolled with subscript 2 from Equation (28),
the decentralized multi-input multi-output (MIMO) negative acceleration feedback control
(NAF) controller coupled equations are presented as[

I maBT

GB I

][ ..
V
..
u

]
+

[
2ZΩ 0

0 2Zf Ω1

][ .
V
.
u

]
+

[
Λ 0
0 Λ1

][
V
u

]
=

[
d
0

]
(32)

Both controllers are static stable (frequency independent) if the determinant of the
first matrix is positive.
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3. Results and Discussion

This paper regards a numerical investigation on submerged systems by moving mass.
The first step in this work is estimating the frequency response function of the free plate in
air and comparing the numerical and experimental [16] results. A mechanical structure
usually is modeled as an assembly of masses, springs, and dampers by modal method.
The output analysis of modal method is usually plotted in frequency response function
(FRF) which is the frequency response of the mechanical structure to the vibrational
dynamic force. The FRF map is used to avoid resonance and noises. Figure 2 presents a
comparison of magnitude of the frequency response function of the free plate, for both
the theory and experiment. The FRF in Figure 2 can be considered as the superposition of
the influence of vibration modes. In any case, the exchange work at a higher recurrence
extend has an alternate size, which infers that the displaying precision crumbles for higher
modes or the exploratory outcomes are bad for higher modes. Experimental modal analysis
results in Figure 2 are based on the structure’s excitation with a calibrated PZT actuator and
the measurement of its response with a calibrated PZT sensor submerged in water. From
Figure 2, one can see some characteristic frequencies in the low recurrence run. This is
most likely because of the sloshing modes, which were dismissed in the detailing.

By solving the free vibration problem of Equation (19), the eigenmodes of the system
could be obtained. The inputs of the system of equations are thickness of the aluminum
plate, Poisson ratio of the aluminum plate, density of the aluminum plate, module of
elasticity of the aluminum plate, density of the fluid, dimension of the aluminum plate,
observed point of vibration, moving mass of active mass damper, and dimensions (height,
length, and depth) of the fluid tank. The numerical model presented here is just the needed
number of required modes as input, there is no need for a computational grid as the
analytical solution is provided. Moreover, the computational time is around 200 s for
calculating the first 15 modes on a Core i7 PC.

Figure 2. Comparison of magnitude of frequency response function of the free plate, for theory and experiment.

Table 2 shows the numerical values of natural frequencies of the system for various
draught ratios. At the draught of 10%, it was found that the first natural frequency of the
test structure is 0.5558 Hz, while the second natural frequency of the structure is 1.3579.
A modal control like NAF is based on the identification of natural frequencies of the system
and uses this parameter to design a scheme of control. In Table 3, the numerical and
experimental natural frequency values of the system are presented. In addition, Table 3
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presents the comparison of the numerical and experimental values of natural frequencies of
the system for 50% draught. As presented, the natural frequencies measured by observing
the transfer function [16] and the theoretical results of the natural frequencies are consistent.

Table 2. Numerical values of natural frequencies of the system for various draught ratios.

10% Draught 20% Draught 30% Draught 40% Draught 50% Draught

1 3.4919 3.4664 3.4509 3.4417 3.4360
2 8.5322 14.8380 21.2059 21.5038 21.4772
3 21.4308 21.5970 21.5427 27.6445 34.1324
4 27.3504 48.4160 60.4955 60.3272 60.2020
5 31.1654 60.5937 66.6982 85.4110 104.4240
6 54.4540 93.3672 118.9479 118.6553 118.3542
7 61.6181 93.7573 121.4258 151.4252 182.4435
8 64.5492 119.1964 188.4479 196.7006 196.2312
9 71.5548 127.6663 195.0043 227.2713 268.3955

10 93.7973 154.1316 208.4070 322.2323 377.0116

In the next steps, the frequency responses of the submerged plate with various in-
sert lengths are compared with experimental setup results. The sloshing may happen
in our investigation since the plate is drenched in the water tank, presented in Figure 3.
As mentioned previously, measurement of the frequency response curve is carried out by
the frequency analyzer. The characteristic frequencies can be distinguished by finding the
pinnacles, and these are in great concurrence with the hypothetical regular frequencies,
which empower us to quantify the adjustments in the normal frequencies coming about
because of changes in the water tallness, as shown in Figure 3. Figure 3 presents a com-
parison of the magnitude of frequency response function of the partially submerged plate
(H = 0.15 m). Figure 3 obviously demonstrates that the hypothetical forecasts are reliable
with the consequences of the trial, which approves the sufficiency of the additional virtual
mass framework.

Table 3. Numerical and experimental values of natural frequencies of the system for 50% draught.

Numerical Experimental

1 3.4360 3.5068
2 21.4772 20.4717
3 34.1324 33.3710
4 60.2020 57.4699
5 104.4240 100.2170
6 118.3542 122.1825
7 182.4435 185.9980
8 196.2312 192.6422
9 268.3955 280.4793
10 377.0116 359.4597

Figure 4 exposes the comparison of theory and experiment in the magnitude of fre-
quency response function of the partially submerged plate (H = 0.3 m). Nevertheless,
the frequency response function at higher frequencies has a diverted magnitude, which im-
plies that the modeling accuracy worsens for higher modes. Experimental results are in
good agreement with the predicted numerical results as shown in Figures 2–4. This proves
that vibration of the plate structure can be theoretically modeled by using the proposed method.



Acoustics 2021, 3 51

Figure 3. Comparison of frequency response function magnitude of the partially submerged plate (H = 0.15 m), theory and experiment.

Figure 4. Comparison of frequency response function magnitude of the partially submerged plate (H = 0.3 m), theory and experiment.
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After numerical model validation against the experimental results, the studies regard-
ing vibration damping by a moving mass are conducted. Figures 5–7 show the vibrations
versus frequency, demonstrated for the uncontrolled plate (blue lines) and the controlled
plate (red line), using the methods defined earlier. Table 4 shows the control parameters.
Figure 5 displays the magnitude and phase of the frequency response function of the
partially submerged plate (H = 0.3 m) controlled by MIMO modal-space NAF. Figure 5
also shows natural mode shapes of the plate with and without MIMO modal-space NAF,
since NAF control is operative in overwhelming the first natural mode. As shown in
Figure 5, MIMO modal-space NAF affected only higher modes, particularly the sixth and
seventh modes. The damping factor for all frequencies was assumed to be 0.005, and a
filter damping factor of 0.4 was chosen. As shown in Figure 5, the introduction of MIMO
modal-space NAF increased the damping of the three lowest modes. Uncontrolled peak-
amplitudes could be abridged meaningfully once the system is controlled by the MIMO
modal-space NAF control.Acoustics 2021, 3 FOR PEER REVIEW  12 

 

 

 
(b) 

Figure 5. Frequency response function of the partially submerged plate (H = 0.3 m) controlled by 
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Figure 5. Frequency response function of the partially submerged plate (H = 0.3 m) controlled by multi-input multi-output
(MIMO) modal-space negative acceleration feedback control (NAF), (a) magnitude and (b) phase.

Table 4. Control parameters.

Parameter Description

(xp,yp) Observed point of vibration
ma Active mass damper
u Displacement of moving mass
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Figure 7. Impulse response by decentralized MIMO NAF controller of the partially submerged plate (H = 0.3 m).

The immersed, elastic, thin-walled plate with normal thickness used in industry now
can be controlled by the NAF method. The structural boundary condition at the top and
the fluid interface, as well as the condition of moving mass, affect the control procedure.
Active vibration control of a partially and completely submerged plate is presented in
Figure 6. Figure 6 reveals the frequency response function of the partially submerged
plate (H = 0.3 m) controlled by decentralized MIMO modal-space NAF, (a) magnitude
and (b) phase. As shown in Figure 6, vibrations are rapidly suppressed by the fully
coupled MIMO modal-space NAF controller. Figure 6 shows the frequency response
function at the excitation point when the decentralized MIMO NAF controller is used.
It is found that mistuning of the NAF controller cannot cause any destructive problems.
Additionally, the advantage of using a NAF controller and AMD controller simultaneously
is established hypothetically.

The precondition to the AMD–NAF controller is accurate knowledge of the moving
mass. It is found that the controller which was effective in controlling the AC servo motor
was not as effective as the linear servo motor experimentally [20]. Hence, the AMD–
NAF technique is measured to touch the requested location. Figure 7 illustrates the
impulse response by decentralized MIMO NAF controller of the partially submerged plate
(H = 0.3 m). The fast damping of the impulse response of the vibration in Figure 7 is clear.
It can be seen that the decentralized MIMO NAF controller is actually an effective method
for suppressing vibrations. In addition, numerical results demonstrated that the NAF
technique can be effective in tracking control of the moving mass of the AMD.
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4. Conclusions

In this study, active vibration control of a rectangular plate submerged in water was
investigated. Mass dampers were attached to the plate, and the system is modeled via
the assumed mode. Water is modeled as an inviscid fluid with moving boundaries at
fluid–solid interaction surfaces, and applied forces on the plate are calculated by Bernoulli
equation. The natural frequency of the plate in vacuum and in water (for partial and
submerged cases) found from numerical calculations are compared with experimental
results to prove the accuracy of the model. To actively control the plate vibration by a
moving mass with static stable methods, the displacement data of some points were used
as input. The advantage of the AMD–NAF controller is that it does not need an extra
procedure to calculate displacement or velocity from the input signal. The following results
are obtained:

• Inviscid fluid modeling with fluid–solid interaction by Bernoulli forces is an effective
approach to frequency response modeling of sloshing systems coupled by structure.

• The negative acceleration feedback control algorithm in modal-space is an effective
approach to controlling the vibrating plate problem submerged in a vessel.

• The decentralized negative acceleration feedback control algorithm in modal-space is
an effective approach to controlling the vibrating plate problem submerged in a vessel.
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Abbreviations

a Dimension of the aluminum plate for draught of 50% (m)
b Length of the fluid tank (m)
B vector consisting of plate displacement at the point of supporting mass
C capacitance
Cer nonperiodic even Mathieu function (cosine-elliptic)
d33 piezoelectric charge coefficient
E Young’s modulus, Module of elasticity (GPa)
F force
g Gravity constant (ms−2)
H Height of the fluid tank (m)
K stiffness
L Depth of the fluid tank (m)
q(t) vector consisting of generalized coordinates
p pressure (Pa)
Q electric charge on the electrodes of the transducer
ser periodic Mathieu function (sin-elliptic)
t thickness of the aluminum plate (m)
u(t) vector consisting of moving mass displacements
V voltage
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Greek symbols
∆ total displacement
ρ density (kg/m3)
ν Poisson ratio of the aluminum plate
χi (i = 1, 2, . . . , n) eigenfunction of a torsional Spring-free beam in x direction
λi eigenvalues of a free-free beam in z direction
γi (i = 1, 2, . . . , n) eigenfunction of a free-free beam in z direction
Subscript
a moving mass of the active mass damper
f base fluid
p aluminum plate
s supporting mass
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