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Abstract: Acoustic spacetime is a four-dimensional manifold analogue to the relativistic spacetime
with the reference speed of light replaced by the speed of sound. It has been established primarily for
the indirect studies of relativistic phenomena by means of their better understood acoustic analogues.
More recently, it has also been used for the analytical treatment of sound propagation in various
uniform and non-uniform flows of the background fluid. In this paper the analogy is extended and
utilized to derive Lighthill’s eight power law for sound generation of an aeroacoustic quadrupole.
Adding to the existing analogue theory, propagating sound waves are described in terms of a weak
perturbation of the background acoustic spacetime metric. The obtained result proves that the
acoustic analogy can be extended to cover both weak perturbation of the fluid due to the sound
waves and certain sound generation mechanisms, at least in incompressible low Mach number flows.
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1. Introduction

The fundamental work of M. J. Lighthill on aerodynamic sound and the introduction of the first
aeroacoustic analogy present a milestone in the development of aeroacoustics and acoustics in general.
In his paper [1] Lighthill not only established the basis for most of the later research in aeroacoustics,
but also pointed to several phenomena which were not well understood before his work:

• physical mechanism of sound generation by pure instability in a fluid (in contrast to moving solid
bodies or boundaries, which involve forces external to the fluid),

• quadrupole sound radiation in free space,
• inefficiency of kinetic-to-acoustic energy conversion in the flow of fluid, and
• power scaling for an aeroacoustic quadrupole source, which Lighthill was able to derive even

without an accurate description of the flow, and its relation with the other two main types of
sources—monopole and dipole.

Before Lighthill’s explanation of aeroacoustic sound generation, quadrupole radiation had only a
marginal importance in classical mechanics. However, parallel to the development of aeroacoustics,
quadrupole radiation took a central place in the relativistic theory of gravitational waves [2],
small curvatures of spacetime which cannot be generated by monopole or dipole sources.

The difference between classical acoustics, defined in separate Newtonian space and time,
and the theory of relativity, which is based on the concept of a four-dimensional spacetime, is largely
diminished by the introduction of analogue acoustic spacetime. The first observations on the
similarity between special relativity and sound propagation date back to W. Gordon [3]. Since then,
Lorentz transformations have been successfully used for the problems of sound propagation in uniform
mean flows [4,5]. The analogy with general relativity and curved spacetime is commonly attributed
to W. G. Unruh, who used it primarily for studying Hawking radiation by means of much better
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understood acoustics in transonic flows [6]. The analogy was further developed and promoted by
M. Visser and C. Barceló in their studies of what is known as analogue gravity [7] or analogue models of
general relativity [8]. The authors have shown that sound propagation in inhomogeneous flows of the
background fluid can be described with differential geometry of a curved spacetime when the speed
of light is replaced by the speed of sound. Different metric tensors of so defined acoustic spacetime
can efficiently capture sound propagation effects such as convection and refraction. In particular,
wave operator of the Pierce equation [9] can be obtained [10] and even more general forms of metrics
are discussed by Bergliaffa et al. [11].

Despite the analogy between the two analogue background spacetimes and the occurrence of
quadrupole radiation in both of them in the absence of external forces, no attempts have been made
to express aeroacoustic sound generation in the relativistic framework. In this work, we show that
Lighthill’s power law for aeroacoustic quadrupole in an inviscid flow can be derived from the acoustic
spacetime analogy. Thus we also prove that the analogy can be used not merely for sound propagation,
but also for aeroacoustic sound generation. In fact, since Lighthill’s analogy assumes quiescent
fluid outside the source region, we can consider the simplest flat (Minkowski) background acoustic
spacetime, which is weakly perturbed by the waves. The purely geometric perturbation representing
propagating sound waves is caused by the fluid motion inside the source region. The linearized
relativistic theory, suitable for its description, is presented in the next section. The sound generation
mechanism is considered in Section 3 and the eighth power law for the quadrupole source is obtained.
Unlike Lighthill’s aeroacoustic analogy, which is an exact reformulation of the governing equations of
fluid dynamics, the eighth power law holds only for incompressible (low Mach number) flows in the
source region and in the absence of a significant acoustic feedback. Indeed, these conditions allow a
purely kinematic analogy with general relativity to be established and applied for capturing sound
generation in the following analysis. Several relevant outcomes which follow from the derivation of
the eighth power law from the analogy are discussed in the concluding Section 4, which also gives
suggestions for future studies.

2. Waves and Motion in Acoustic Spacetime

Adopting the mixed signature [−+++], the simplest flat Minkowski (acoustic) spacetime is
characterized by the second-order metric tensor

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1)

Here, and in the rest of the text, Greek letters denote four-dimensional components (α, β, · · · =
0 . . . 3, where 0 corresponds to the time coordinate) and Latin letters are used for the spatial components
only (for example, i = 1 . . . 3). Therefore, x0 = c0t, where c0 is the constant reference speed of
waves (here the speed of sound in the quiescent fluid at infinity) and x1 to x3 are spatial coordinates.
The associated d’Alembertian is the classical wave operator. For a scalar φ,

2φ = ηαβφ,αβ = φ,α
,α =

(
− 1

c2
0

∂2

∂t2 +∇2

)
φ, (2)

since 0 = ∂
∂x0 = 1

c0
∂
∂t and ∇2 = ∂2

∂(x1)2 + ∂2

∂(x2)2 + ∂2

∂(x3)2 . Comma denotes usual derivative with
respect to the coordinate which follows it (for example, φ,α = ∂φ/∂xα is gradient of φ) and we use
Einstein’s convention which implies summation over each letter appearing in an expression once
as a subscript and once as a superscript [2]. The two positions of the letters correspond to the
covariant and contravariant vector bases. Multiplication with ηαβ raises the index, as in Equation (2),
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while multiplication with ηαβ lowers it. Consequently, four components of vectors Aα and Aα = ηαβ Aβ

are equal, apart from the time components which have opposite signs, since ηαβ = ηαβ has the
component η00 = −1.

Next, we suppose that the only disturbance of otherwise flat spacetime outside a spatially confined
source region is due to propagating waves. In other words, we assume a quiescent fluid with constant
density ρ0 and speed of sound c0 through which the sound waves propagate. The total metric tensor
gαβ is by definition symmetric and can be written as the sum of ηαβ and a weak component hαβ:

gαβ = ηαβ + hαβ, (3)

with |hαβ| � 1. In the linear approximation it can be shown [2] that there always exists

h̄αβ = hαβ − 1
2

ηαβhν
ν, (4)

such that |h̄αβ| � 1 and
h̄αβ

,β = 0. (5)

Here, hν
ν is the trace of hαβ and Equation (5) is called the Lorenz gauge condition. If the condition

is not satisfied directly by h̄αβ from Equation (4) in a certain frame, one can introduce a small change of
coordinates (gauging) xα → xα + ξα which transforms the metric as hαβ → hαβ − ξα,β − ξβ,α such that

h̄αβ = hαβ − 1
2

ηαβhν
ν − ξα,β − ξβ,α + ηαβξν

,ν (6)

does satisfy it. For future use, we should also note that h̄α
α = −hα

α and Equation (4) can be inverted to

hαβ = h̄αβ − 1
2

ηαβ h̄ν
ν. (7)

Relativistic equations which relate the weak perturbation of spacetime with its source,
the stress–energy tensor Tαβ, are the linearized Einstein field equations [2,12],

2h̄αβ = −2kG
c4

0
Tαβ, (8)

in which dimensionless k (not to be confused with wave number) and G (in m3/(kg s2)) are constants.
The instability of Tαβ, which is associated with motion of matter (or energy) in the absence of
boundaries of spacetime, is the source of the fluctuations h̄αβ, which are considered to be too weak to
affect the source mechanism. Such decoupling of the source and the waves it causes is in agreement
with the applicability of Lighthill’s analogy, with no significant back-reaction of sound on the flow [1].
Excluding the source term at first, the simplest solution of Equation (8) has the form of a plane wave,
the real part of

h̄αβ = Aαβejkνxν
. (9)

Components of the polarization tensor Aαβ are complex constants and the four-vector kα is
null vector in the flat Minkowski spacetime: kαkα = ηαβkβkα = 0. For example, if we suppose that
the plane wave propagates in the direction of the x3-axis, kα = [ω/c0, 0, 0, ω/c0], kα = ηαβkβ =

[−ω/c0, 0, 0, ω/c0], where ω denotes angular frequency of the wave, and we obtain the usual exponent
jkνxν = −jω(t− x3

c0
) after replacing x0 with c0t.

Plane transverse gravitational waves are typically analyzed in the transverse-traceless gauge
which suppresses the longitudinal component and leaves only two non-zero transverse components of
the polarization tensor. More suitable for longitudinal acoustic waves in fluids is the Newtonian gauge.
The reason is that, unlike a relativistic observer, an acoustic receiver does not exist in the analogue
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acoustic spacetime, but in the Newtonian space and time. As a consequence, the Newtonian frame is
preferred and only in this particular gauge the metric perturbation obtains classical acoustic meaning.
In the theory of gravity such a gauge is used for calculations of the corrections of classical Newtonian
gravitational potential due to relativistic phenomena. In order to show how it describes sound waves,
we observe motion of a free particle in the acoustic spacetime. As in general relativity, it is given by the
geodesic equation. When the particle is moving with velocity small compared to c0 in an essentially
flat spacetime, the three-dimensional acceleration equals to the lowest order [2]

d2xk

dt2 = −
c2

0
2

ηkl(hl0,0 + h0l,0 − h00,l). (10)

The condition for a slowly moving (non-relativistic) particle is satisfied by weak acoustic waves,
since the particle velocity is much smaller than the speed of sound. In the Newtonian form |hl0| =
|h0l | � |h00| and therefore

d2xk

dt2 =
c2

0
2

h,k
00. (11)

Motion of the particle due to the wave thus depends on a single scalar h00, as we expect from
the longitudinal sound waves in fluids. In this way we can obtain a measurable acoustic quantity
(acceleration) from the acoustic spacetime analogy. It follows that the Lorenz gauge is necessary as a
prerequisite for the wave equation of h̄αβ, Equation (8), but once h̄αβ has been obtained it has to be
converted to hαβ and expressed in the Newtonian gauge in order to calculate the acoustic quantities
such as particle velocity and sound pressure. Nevertheless, a purely geometric quantity, the metric
perturbation, suffices for the description of sound waves and no dynamic analogy with linear general
relativity is necessary.

3. Aeroacoustic Sound Generation

In the previous section we showed how a metric perturbation captures a sound wave in the
acoustic spacetime. In this section we inspect the source of waves represented by the term on the
right-hand side of Equation (8). We consider only non-relativistic flows in which all particles satisfy
the condition |~v| � c0 even in the source region, with ~v denoting three-dimensional particle velocity.
Then, the approximation ~U ≈ [1,~v/c0] = [1, v1/c0, v2/c0, v3/c0] holds for four-velocity and the
stress–energy tensor of a perfect fluid in nearly flat spacetime equals [2]

Tαβ =


ρ0c2

0 ρ0c0v1 ρ0c0v2 ρ0c0v3

ρ0c0v1 ρ0v1v1 + p ρ0v1v2 ρ0v1v3

ρ0c0v2 ρ0v1v2 ρ0v2v2 + p ρ0v2v3

ρ0c0v3 ρ0v1v3 ρ0v2v3 ρ0v3v3 + p

 , (12)

where ρ0 is matter density (here density of the background fluid) and p is pressure. This stress–energy
tensor satisfies the local conservation of mass and momentum:

Tαβ
,β = 0, (13)

which is a compact form of the laws of conservation of mass and momentum in an incompressible
inviscid fluid. We notice the similarity of the spatial part T jk and isentropic Lighthill’s tensor [1],
which is the free-space aeroacoustic source of sound. The condition |~v| � c0 with c0 the speed of
sound (which is the maximum speed in the theory) is satisfied in incompressible low Mach number
flows, which are assumed by Lighthill’s eighth power law.

However, a conceptually important difference compared with Lighthill’s derivation is that we
treat Tαβ as the source of a purely geometric perturbation of the background acoustic spacetime, not as
the source of acoustic pressure or density perturbation. We do not split the conservation equations,
Equation (13), into the source and propagation parts, nor do we need to select a dynamic variable
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for describing acoustic waves. Lighthill’s tensor follows from the conservation laws after the weak
acoustic terms are shifted to the left-hand side of the wave equation to represent propagating sound
waves. Therefore, its components are not fully conserved. In contrast to this, the entire stress–energy
tensor which we consider here as the source satisfies the conservation laws in Equation (13). It is
the source of perturbation of the spacetime itself, so it does not have to be split into the source and
propagation parts in terms of dynamic quantities.

In the further analysis of wave generation we follow Misner et al. [12] and consider a single
isolated source, far from which the acoustic spacetime is asymptotically flat towards the infinity.
A small metric perturbation is defined in Equation (3) everywhere (including the source region) and
Equation (8) holds under the condition in Equation (5). We also expect that only a small fraction of the
stress–energy tensor is responsible for the radiation of waves, in accordance with the inefficiency of
the mechanism of quadrupole radiation. Hence, it can be formally split into the dominant effective
stress–energy tensor, Teff

αβ , and the small component tαβ: Tαβ = Teff
αβ + tαβ, and we can write

2h̄αβ = −2kG
c4

0
(Teff

αβ + tαβ). (14)

The general solution for both ingoing (ε = −1) and outgoing (ε = +1) wave is

h̄αβ =
kG

2πc4
0

∫ [Teff
αβ + tαβ](t−εR/c0)

R
d3~y, (15)

where the integration is performed over the entire three-dimensional space and R = |xi − yi| with xi

location of the receiver. The values of Teff
αβ and tαβ are to be evaluated at the time t− εR/c0.

Next we assume that the source is compact, so that its characteristic length scale satisfies L �
c0/ω, where ω is angular frequency of the oscillations. This actually comes down to the same
slow-motion condition as above, |~v| � c0, since |~v| ∼ Lω. We also consider geometric far field
(R� L), so we can approximate

h̄αβ =
kG

2πrc4
0

∫
[Teff

αβ + tαβ](t−εr/c0)d
3~y, (16)

where r is radial coordinate of the spherical coordinate system with the compact source in its origin.
From the conservation laws in Equation (13) we deduce [12]

1
c2

0

d2

dt2

∫
(Teff

00 + t00)xjxkd3~y = 2
∫
(Teff

jk + tjk)d3~y. (17)

This important identity relates spatial components of the stress–energy tensor, which closely
correspond to Lighthill’s tensor, with the component T00 and accordingly removes the need for a split
in Lighthill’s derivation. It is possible exactly due to the fact that the full stress–energy tensor satisfies
the conservation laws. The second-order time derivative on the left-hand side of Equation (17) takes
over the role of the second-order derivatives of the source terms in Lighthill’s analogy, which naturally
appear when a second-order tensor reduces to a scalar, and ultimately determines the scaling law
for the quadrupole source, one of the key results of Lighthill’s original paper [1]. The integral on the
left-hand side of Equation (17) represents the second moment of the mass distribution and multiplied
by 1/c2

0 it is called quadrupole moment tensor of the mass distribution. It is commonly denoted with
Ijk, which is, thus, by definition

Ijk =
1
c2

0

∫
(Teff

00 + t00)xjxkd3~y. (18)

The quantity which appears to be more convenient for mathematical description of wave
generation is reduced quadrupole moment defined as
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Ijk = Ijk −
1
3

δjk Il
l , (19)

where δjk is Kronecker delta. From Equations (16)–(18),

h̄jk =
kG

4πrc4
0

d2

dt2 Ijk(t− εr/c0). (20)

The assumption of geometric far field (with respect to the characteristic length scale of the flow
in the source region) is necessary for simplifying the calculation with Equation (16). On the other
hand, the assumption of acoustic far field, defined with respect to the sound wavelength, is not strictly
necessary for estimating power of the quadrupole source. It is sufficient to calculate reaction of the
source to the far-field radiation, which can be done in the acoustic near field. Expanding h̄jk in powers
of r for ωr/c0 � 1 (while r � L) and leaving only the terms with ε, which correspond to the wave
radiation, gives (after replacing ε = 1 for an outgoing wave)

h̄react
jk = − kG

4πc5
0

d3

dt3 Ijk(t)−
kG

24πc7
0

r2 d5

dt5 Ijk(t), (21)

where all higher-order terms of the series have been omitted. Using Equation (5), we can also find

h̄react
0j = − kG

12πc6
0

xk d4

dt4 Ijk(t)−
kG

120πc8
0

r2xk d6

dt6 Ijk(t) (22)

and

h̄react
00 = − kG

12πc5
0

d3

dt3 Ijj(t)−
kG

120πc7
0
(r2δjk + 2xjxk)

d5

dt5 Ijk(t) (23)

These components are radiation reaction potentials given in the Lorenz gauge. The omitted terms
which do not correspond to the radiation (not involving ε) represent incompressible fluctuations which
do not propagate into the far field.

In order to calculate the Newtonian form which is suitable for obtaining classical acoustic
quantities, we first switch back to hαβ = h̄αβ − h̄ν

νηαβ/2 from Equation (7) and change the coordinates
as xµ → xµ + ξµ, with

ξ0 = − kG
12πc4

0

d2

dt2 Ill(t) +
kG

48πc6
0

xjxk d4

dt4 Ijk(t)−
kG

48πc6
0

r2 d4

dt4 Ill(t) (24)

and

ξ j = −
kG

8πc5
0

xk d3

dt3 Ijk(t) +
kG

24πc5
0

xj d3

dt3 Ill(t). (25)

In this gauge [12],

hreact
00 = − kG

20πc7
0

xjxk d5

dt5 Ijk(t) (26)

at the leading order, while the components hreact
0j ∼ (ωL/c0)hreact

00 are of higher order and negligible for
the supposed compact source. Therefore, we obtain the metric component h00 in the Newtonian gauge,
which describes the longitudinal perturbation of the acoustic spacetime due to the isentropic quadrupole
source. Equation (26) is also one of the key results in the linearized theory of gravitation, which corrects
the Newtonian gravitational potential with the contribution of gravitational wave radiation [12].
The geodesic Equation (11) gives the acceleration of a particle affected by the incoming wave:

d2xl

dt2 =
c2

0
2

hreact,l
00 = − kG

40πc5
0

(
xjxk d5

dt5 Ijk(t)
)l

. (27)
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We can now obtain a scaling law for the source power. Without considering details of the flow in
the source region, we follow Lighthill and suppose that Tjk scales as ρ0|~v|2, where ρ0 is density of the
essentially incompressible flow. From Equations (17)–(19), |Ijk| ∼ ρ0L5, so the acoustic particle velocity
from Equation (27) scales as

|~vac| ∼
kGρ0L2

c5
0

(ωL)4. (28)

Sound intensity scales as

|~I| ∼ ρ0c0|~vac|2 ∼
k2G2ρ3

0L4

c0

(
|~v|
c0

)8

, (29)

where we also replac ωL ∼ |~v|. Thus, we obtain the eighth power law for the acoustic power of the
quadrupole source, in agreement with the result of Lighthill [1].

A more detailed comparison leads to one more interesting result. After replacing r ∼ L in the
considered acoustic near field, Lighthill’s power law gives the scaling [1,5] |~I| ∼ ρ0c3

0(|~v|/c0)
8. If we

further ignore the multiplication constant which is determined by the dimensionless k, this matches
Equation (29) if we set

G =
c2

0L
2M
∼

c2
0

2ρ0L2 , (30)

where M is total mass of the source. In this way we can identify length scale of the source L as the
acoustic Schwarzschild radius,

L =
2GM

c2
0

. (31)

In cosmology, Schwarzschild radius determines length scale of a source of gravitational waves,
such as a rotating black hole in a black-hole binary. The same concept appears to characterize length
scale of the source of waves in the analogue acoustic spacetime.

It is worth mentioning that compact sources of longitudinal waves are much less efficient than
sources of transverse waves. The reason is that the second-order time derivative in Equations (17)
and (20) leaves the multiplication factor (ωL/c0)

2 in the expression for wave amplitude and (ωL/c0)
4

for radiated power, with ωL/c0 � 1. In fact, the weak longitudinal component is completely removed
in the transverse-traceless gauge, which is typically used for transverse gravitational waves in the
linearized theory. However, the fluids do not support propagation of transverse acoustic waves and
the remaining longitudinal waves obey the eighth power law.

4. Conclusions

Although Lighthill’s power law for a quadrupole source in an inviscid incompressible flow
is merely reproduced using the formalism of the acoustic spacetime analogy, the derivation given
above has several important implications. First, the description of sound generation in acoustic
spacetime appears to be more natural than the classical derivation based on the conservation laws.
The entire stress–energy tensor is taken as the source of waves, without splitting it into the source and
propagation terms or selecting an appropriate dynamic quantity (acoustic pressure or density) for the
aeroacoustic analogy. Second, generated sound waves are treated as a purely geometric perturbation
of the background acoustic spacetime, described by the weak unsteady component of the metric tensor.
Rather than contracting the second-order tensor in the source term with double divergence, the entire
metric tensor field associated with sound waves is observed and the acoustic scalar component is
extracted by the choice of Newtonian gauge. Third, the derivation of the eighth power law proves
that the acoustic spacetime analogy can be extended beyond sound propagation to aeroacoustic sound
generation, at least in incompressible flows where the kinematic effects dominate. Hence, the acoustic
analogy covers not only the background metric, but the sound waves and kinematic sources, as well.
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The applied methodology can include sound propagation effects in a non-uniform flow outside
the source region, such as convection and refraction. The Minkowski metric ηαβ in Equation (3) should
be replaced accordingly with an appropriate background metric [10]. These effects cannot be retrieved
from the analogy with gravitation, since curvature of the background acoustic spacetime depends on
the state of the external steady flow, not mass itself. The acoustic analogy indeed captures kinematics
and not dynamics of general relativity. However, this does not imply that the Einstein field equations
with the source term cannot be used for capturing unsteady changes of the acoustic spacetime,
as demonstrated above. This is possible exactly because sound generation in an incompressible
flow is purely kinematic and the stress–energy tensor reduces to the same form in both theories for
non-relativistic velocities.

The analysis was based on the linearized theory of weak perturbation and free-space sound
generation in low Mach number flows. Further investigation is necessary in order to check whether
the analogy can be extended to include certain non-linear acoustic phenomena and high Mach number
flows, or the effects of boundaries in the flow, such as reduction of aeroacoustic quadrupole to
dipole, although in such case the analogy with covariant electromagnetism appears to be more
natural. The obtained results also open the possibilities for further studies of the analogy between
vortex pairs, as compact aeroacoustic sources, and rotating black-hole binaries, as typical sources of
gravitational waves.
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