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Abstract: Surface chloride concentration (Cs) is a key parameter used to feed models adopted to
simulate chloride penetration into concrete and evaluate the initial period of corrosion. Although
there are several models that have been proposed for the representation of Cs behaviour in the marine
atmosphere zone, such models are still scarce. In this context, we analysed the behaviour of surface
chloride concentration in concrete specimens exposed over 12.5 years in a marine atmosphere zone in
the northeast of Brazil. The experimental work was carried out in two steps: environmental charac-
terization, which was undertaken for temperature, relative humidity, rainfall, wind characteristics
and sea-salt data; and chloride concentration measurements for the concrete surface considering
three different concrete mixtures with w/b ratios of 0.65, 0.57 and 0.50. The results showed that the
Cs increase over time followed three stages: a first short stage characterised by an initial dispersion,
followed by an increase period and then a final period of stabilisation, which was not fully reached in
the present study. This behaviour can be represented by a power function or a sigmoidal function,
with a better fit with the latter. Chloride concentration in the atmosphere plays an important role in Cs
behaviour. Higher availability of chlorides means higher Cs values. The relationship between Cs and
the rate of chloride deposition on a wet candle was analysed and the function Cs = C0 + kcs·(Dac)n

was the one that best fit the experimental data.

Keywords: concrete; corrosion; marine atmosphere zone; surface chloride concentration

1. Introduction

Surface chloride concentration (Cs) is one of the main parameters used to feed models
adopted to simulate chloride penetration into concrete structures [1,2]. As Cs governs the
availability of the chloride ions that are transported into concrete, representing its behaviour
in a more accurate way should result in more accurate forecasting of the initiation period of
corrosion (the time that elapses between the exposure of the reinforced concrete structure
and the reinforcement depassivation).

Regarding Cs behaviour over time, it has been observed that Cs tends to increase
as time progresses [3,4]. However, this increasing trend weakens over time and tends to
become stabilised, which can be observed after about 10 years of exposure time in some
cases [5]. Taking into account that literature data on Cs behaviour over time are still scarce,
Figure 1 presents available data from several authors focused on the marine atmosphere
zone. Despite the short exposure time, it is possible to see signs of the weakening tendency
previously mentioned for those cases where the exposure time was longer.
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Figure 1. Relationship between surface chloride content in concrete and exposure time [3,6,7]. 

The literature thus shows that Cs behaviour can be represented by various mathe-
matical models (power or exponential growth functions), which are presented in Table 1. 
All these functions proposed in the literature and shown in Table 1 are based on exposures 
in the marine atmosphere zone. From this table and from Figure 1, it can be observed that 
not many studies have focused on the behaviour of Cs in the marine atmosphere zone and 
that most proposed functions are power or exponential functions, with the first being pre-
dominant. 

Table 1. Models from the literature used to represent the behaviour of surface chloride concentra-
tion in concrete in the marine atmosphere zone. 

Source of Data Exposure Time (years) Function Authors Year 
Japan 23–58 Cs = at0.5 Uji et al. [8] 1990 

Portugal 0.5–5.5 Cs = atb Costa and Appleton [3] 1999 
United States of America 2–16 Cs = a (a (1 − ebt) Kassir et al. [9] 2002 

South Korea 0.7–48.7 Cs = aLn(bt + 1) + c Pack et al. [10] 2010 
Data from the literature 0–3 Cs = a + bt0.5 Zhou et al. [11] 2016 
Data from the literature 0–5 Cs = a(1 − ebt) Yang et al. [4] 2017 

Cs = surface chloride concentration, t = exposure time. 

Following the analysis of the results presented by the studies referenced in Figure 1 
and Table 1, it can be observed that, in general, Cs sharply increases in the initial years of 
exposure and, in the following years, this trend gives way to a more understated increase. 
Depending on the function adopted to represent behaviour of the data, the final part can 
assume a more asymptotic shape, which denotes a trend towards stabilisation over the 
years. Moreover, in some cases, Cs presents some fluctuation, which can be a result of 
environmental interaction [5,12]. This can be more easily seen in the initial years of expo-
sure, when the chloride concentrations are still low and the impact of the environmental 
variables, such as rainfall, on chloride content on concrete surfaces can assume a stronger 
magnitude. 

Regarding the shape of the Cs curve, continuous cement-paste hydration over time 
is one of the aspects that may influence behaviour. As hydration of cement paste advances, 
the concrete surface becomes less porous and fewer chloride ions can be captured in this 
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The literature thus shows that Cs behaviour can be represented by various mathemati-
cal models (power or exponential growth functions), which are presented in Table 1. All
these functions proposed in the literature and shown in Table 1 are based on exposures in
the marine atmosphere zone. From this table and from Figure 1, it can be observed that
not many studies have focused on the behaviour of Cs in the marine atmosphere zone
and that most proposed functions are power or exponential functions, with the first being
predominant.

Table 1. Models from the literature used to represent the behaviour of surface chloride concentration
in concrete in the marine atmosphere zone.

Source of Data Exposure Time (Years) Function Authors Year

Japan 23–58 Cs = at0.5 Uji et al. [8] 1990

Portugal 0.5–5.5 Cs = atb Costa and Appleton [3] 1999

United States of America 2–16 Cs = a (a (1 − ebt)) Kassir et al. [9] 2002

South Korea 0.7–48.7 Cs = aLn(bt + 1) + c Pack et al. [10] 2010

Data from the literature 0–3 Cs = a + bt0.5 Zhou et al. [11] 2016

Data from the literature 0–5 Cs = a(1 − ebt) Yang et al. [4] 2017

Cs = surface chloride concentration, t = exposure time.

Following the analysis of the results presented by the studies referenced in Figure 1
and Table 1, it can be observed that, in general, Cs sharply increases in the initial years
of exposure and, in the following years, this trend gives way to a more understated
increase. Depending on the function adopted to represent behaviour of the data, the final
part can assume a more asymptotic shape, which denotes a trend towards stabilisation
over the years. Moreover, in some cases, Cs presents some fluctuation, which can be
a result of environmental interaction [5,12]. This can be more easily seen in the initial
years of exposure, when the chloride concentrations are still low and the impact of the
environmental variables, such as rainfall, on chloride content on concrete surfaces can
assume a stronger magnitude.

Regarding the shape of the Cs curve, continuous cement-paste hydration over time is
one of the aspects that may influence behaviour. As hydration of cement paste advances,
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the concrete surface becomes less porous and fewer chloride ions can be captured in this
region [10,13]. As a consequence, the rate of the increase in Cs weakens. Furthermore, the
concrete’s ability to capture chlorides decreases with the increase in chloride concentration
as a consequence of the increase in the bound chloride content, which also contributes, in
the same way, to weakening the increase in Cs over time [12].

Another aspect to be considered in this analysis is the aggressiveness of the environ-
ment to which concrete structure is subjected. At locations with a greater availability of
chlorides in the atmosphere, there is a stronger increase in Cs in the initial years, with a
subsequent attenuation with time [3,14]. However, it can be expected that Cs may present
some fluctuation over the years, which may be related to the movement of ions towards
bulk concrete or to direct environmental interaction, which can promote several removal
effects, such as surface chloride removal due to rainfall [12].

Although several models have been proposed to represent Cs behaviour over time in
the marine atmosphere zone, they are still scarce and there is no consensus concerning the
best function to represent Cs behaviour. Moreover, the relationship between Cs and the
availability of chlorides in the atmosphere has not been modelled. This work contributes
to this discussion and analyses the behaviour of Cs in concrete exposed over 12.5 years
in a marine atmosphere zone located in the northeast of Brazil, and analytical models to
represent the relationships between Cs, time and chloride presence in the atmosphere are
proposed. This is part of a long-term project studying chloride ion transportation into
concrete under field exposure in the marine atmosphere zone.

2. Experimental Work

The experimental work carried out in this study took place in two steps: environmental
characterisation and chloride concentration measurements from the concrete surface.

2.1. Environmental Characterization

The environmental characterization was undertaken with temperature, relative hu-
midity, rainfall, wind characteristics and sea-salt data. Climatic data were collected by a
Brazilian government weather station located in the region where the research took place.
Sea-salt data were collected at location 10, 100, 200 and 500 m away from the sea (Figure 2)
using the wet-candle method and a standardized capturing device, following the ASTM
standard G140 [15]. With regard to long-term exposure, chloride deposition measurements
were taken monthly in the first 2 years and, afterwards, in two additional cycles of 12 month
monitoring following 5 and 10 years of the first monitoring cycle. No significant differences
could be observed among these cycles. As a consequence, these results are represented by
an average monthly rate of chloride deposition and its standard deviation.

2.2. Surface Chloride Concentration in Concrete

Prismatic concrete specimens (0.15 × 0.15 × 1.40 m3) were cast using filler-modified
Portland Brazilian cement, the chemical and physical properties of which are presented in
Table 2. The main oxides were determined using XRF analysis and the insoluble residue,
loss on ignition, specific surface and specific density were obtained using the Brazilian
standards specific for each of these properties. The coarse aggregate was granitic crushed
rock with a maximum diameter of 19 mm and the fine aggregate was river sand with a
maximum diameter of 4.8 mm. Their granulometric curves are presented in Figure 3.
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Table 2. Chemical and physical properties of studied cement.

Composition
(%)

SO3 SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Insoluble
Residue (IR)

Loss on
Ignition (LI)

3.21 18.11 4.31 2.27 59.87 3.61 0.21 1.51 1.45 5.50
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The concrete mixtures, which had w/b ratios of 0.65, 0.57 and 0.50, along with their
physical properties are presented in Table 3. They are denoted C65, C57 and C50. As
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these mixtures were produced several years ago, they have w/b ratios that are not typical
nowadays but which represent a significant number of the reinforced concrete structures
built in the past. Two samples for each test were used to characterise the concrete, as well
as the studied cement and aggregates.

Table 3. Concrete mixtures and properties.

Concrete C50 C57 C65

Mixture
Cement (kg/m3) 406 356 320

Sand (kg/m3) 769 812 840
Coarse aggregate (kg/m3) 947 947 947

Plasticiser (kg/m3) 1.22 1.06 -
w/b 0.5 0.57 0.65

Property
Slump (mm) 80 80 80

Compressive strength (MPa—28 days) 31 27 20
Concrete porosity (% volume—90 days) 11.0 12.4 13.2

The specimens were cured in a wet chamber (RH > 95 %) for 7 days. The curing
period of 7 days was adopted to represent a condition more similar to the building site.
Afterwards, the specimens were painted with a waterproof film at those surfaces thorough
which chloride penetration should be avoided; i.e., all the surfaces except the one facing
the sea. Then, the specimens were placed at the same monitoring stations used for the
wet-candle devices in an unsheltered condition.

After 6, 10, 14, 18, 46, 78 and 150 months of exposure, powdered samples were
extracted from the specimens to obtain chloride profiles for the concrete. These samples
were obtained by progressively grinding the concrete layers (from surface to bulk) of
cores previously extracted from the prismatic concrete specimens. These cores had 75 mm
diameters and 150 mm lengths. Although chloride profiles were obtained at each sampling
period, only the surface chloride contents are analysed here. These samples were extracted
from the first millimetre of the exposure surfaces of the specimens; i.e., a concrete layer from
the surface to a depth of 1 mm. This option was adopted considering the two-zone profile
that is characteristic of marine atmosphere zones, composed of a convection zone (outer
zone) and a diffusion zone (inner zone) [16,17]. From this kind of profile, the extrapolation
of the diffusion zone gives a theoretical Cs that is related to the internal peak that separates
these two zones but not to the real concrete surface. Thus, directly obtaining a sample from
the first concrete millimetre was considered to be closer to the real condition.

After obtaining the powdered samples, the total chloride content was determined
through potentiometric titration using an automatic titrator from Metrohm and a double-
junction electrode with a silver ring. The sample preparation followed the procedures of
the International Union of Laboratories and Experts in Construction Materials, Systems
and Structures [18].

3. Results and Discussion
3.1. Environmental Parameters

The climatic results showed that the temperature ranged between roughly 18 and
33 ◦C over this period, with an average value of 27 ◦C (Figure 4a). The relative humidity
presented fluctuations between 62 and 99%, with an average value of 76.6% (Figure 4b).
Higher values were reached during the winter (rainy season), which mainly takes place
between May and August. The monthly average wind speed data ranged between 1.8 and
4.2 m/s, with an average value in the exposure period of around 3 m/s (Figure 5a). The
predominant average wind directions remained between the east (E) and southeast (SE)
directions (Figure 5b).
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Average chloride deposition data are presented in Figure 6. This figure shows a strong
decrease in salinity in the areas closest to the sea, which impacts chloride transportation
into concrete at different levels. This drop in salinity is a consequence of the removal of
marine aerosol salt particles, mainly due to the gravimetric effect. The gravimetric effect
results in larger salt particles moving from the upper to the lower atmosphere layers until
they are deposited on the ground, while marine aerosol is transported inland [19–21]. Other
removal mechanisms can simultaneously act alongside the gravimetric effect and increase
salt particle removal, such as the presence of obstacles and rainfall removal. However, the
gravimetric effect assumes a greater significance than the other mechanisms [20].

The rate of the decrease in marine aerosol salinity when moving inland changed from
site to site and was strongly dependent on wind characteristics [22]. However, a significant
decrease in salinity when moving inland was observed in the vast majority of cases. As
a result, concrete structures placed at different distances from the sea were subjected to
different levels of aggressiveness.
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3.2. Surface Chloride Concentration and Its Relationship with Exposure Time

The results for the surface chloride concentration are presented in Figure 7, considering
the three different concretes, the four exposure sites and their distances from the shoreline.
Regarding the general aspects of the data, they show some fluctuation in the first months
of exposure, followed by a period of significant increase and, afterwards, a tendency
to increase at lower rates. These results suggest a tendency to reach a maximum over
time, but it not possible to fully observe this in these 12.5 years of exposure. The initial
fluctuation in the chloride concentration on the concrete surface can be attributed to
environmental interaction, in which rainfall can play an important role, changing the
chloride concentration on concrete surfaces with a relative higher magnitude [12,23].
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Figure 7. Relationship between Cs and exposure time for C65 (a), C57 (b) and C50 (c) concrete.

Regarding the influence of the concrete’s characteristics, it is clear there was greater
accumulation of chlorides on the concrete surface as concrete porosity increased (see
Table 3), which was related to the greater availability of space for the accumulation of
chloride ions. Furthermore, taking into account the distance from the sea, it is noticeable
that the chloride concentration decayed as the distance from the sea increased, which was
a consequence of the decrease in aggressiveness at sites far from the shoreline due to the
lower availability of chlorides in the atmosphere, as can be observed in Figure 6. This
decay did not follow a linear relationship, as can be indirectly observed in Figure 7 (and in
the following figures), where it is possible to observe rates of decrease differing from one
exposure site to another. This difference occurred because only some of the chlorides in
atmosphere were deposited and captured on the concrete surface.

Exponential or power functions are usually used to represent the increase in Cs
over time, as presented in Table 1. Nevertheless, the function that best fit the present
experimental data was a sigmoidal function that considered the initial stage of fluctuation at
low chloride concentrations, the sharpest growth period and the final period of stabilization.
This can be better seen when comparing the determination coefficients obtained when using
power functions and sigmoidal functions (Figure 8). This latter function is an alternative to
the options presented in the literature that better represents the three stages of Cs growth
over time.

After producing simulations using the functions adopted in Figure 8, it was possible
to compare Cs values after 50 years of exposure in the marine atmosphere zone (Table 4).
These results show that the sigmoidal function tends toward stabilization over a shorter
time than the power function (as can also be seen in Figure 8) and that the values of Cs at
the end of the 50 years may be between 3.7 and 7 times higher for the power functions. This
overestimation was more pronounced for lower chloride concentrations in the atmosphere
and less porous concretes. Considering the arrangement of the data in Figure 8 and
previously published papers focusing on marine exposures [5], it is more reliable to expect
a stabilization tendency after 10 years, which is better represented by the sigmoidal function.
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Table 4. Simulation of Cs values using power and sigmoidal functions for 50 years of exposure.

Function Concrete

Distance from the Sea

10 m 100 m 200 m 500 m

Cs (% Cement Weight)—After 50 Years

Power
function

C65 4.94 4.52 2.58 2.33
C57 4.54 3.44 2.72 1.97
C50 2.62 2.07 1.96 2.04

Sigmodal
function

C65 1.32 0.95 0.56 0.47
C57 1.19 0.75 0.47 0.33
C50 0.70 0.43 0.31 0.29

Figure 9 gathers the literature data and the presented experimental data and shows the
curves that represent each dataset. From this figure, it can be seen that the present results
are from long-term field exposure and, thus, can catch part of the stabilization period.
Furthermore, the literature data based on shorter exposure periods generally presented
higher tendencies for increases in Cs. This can be explained not only by the fact that
these studies were based on the first and second stages of the increase in Cs during the
exposure time but also by the differences in the availability of chlorides in atmosphere.
Nevertheless, the present data and Ghods et al. [7] data show good harmony, which may
indicate similarities in environmental characteristics.
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3.3. Surface Chloride Concentration and Its Relationship with Chloride Deposition on a Wet Candle

Considering that the exposure time is not the main variable that influences the increase
in Cs but rather the availability of chlorides in the atmosphere, the relationship between Cs
and the accumulated deposition of chlorides on a wet candle (Dac) was analysed, which
was obtained by summing the chloride deposition on the wet candle month-to-month
(Figure 10).The power and sigmoidal functions were fitted to the experimental data in a
similar way.
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As can be seen in Figure 10, there were no significant differences between the fitting
results using the power and sigmoidal functions. This can be explained by the fact that,
when using Dac values, data from different atmosphere salinities are considered together
and, thus, there is an increase in the data dispersion in the region of low Dac values, making
it more difficult to identify the first two stages of Cs growth. As a result, considering the
simplicity of the model, the relationship between Cs and Dac can be represented by Equation
(1), where Cs is the surface chloride concentration, C0 is the initial chloride concentration in
concrete, kcs is a coefficient associated with the concrete’s ability to capture chlorides from
atmosphere, Dac is the accumulated deposition of chlorides and n is a coefficient associated
with the rate of the increase in Dac over time:

Cs = C0 + kcs(Dac)n (1)

This equation has the advantage of taking into account the direct relation between
the availability of chlorides in the atmosphere and those captured on the concrete surface.
Thus, it seems to be more suitable than those considered in previous studies [3,8,11].

4. Conclusions

In the present study, experimental data were collected over 150 months; i.e., a long-
term field exposure period that could help in understanding the behaviour of Cs under
long-term exposure. Therefore, the conclusions presented here may be considered relevant
for the abovementioned exposure period and similar environments. The main conclusions
are as follows:

(1) The increase in Cs with exposure time followed three stages: a first short stage
characterised by an initial dispersion, followed by a period of increase and then
a final period of stabilisation. Considering that the present data focused on the
marine atmosphere zone, although the final period of stabilisation tended to reach a
maximum, this condition was not fully reached in 12.5 years of exposure, indicating
that more time is needed to reach the stabilisation condition in the marine atmosphere
zone.

(2) Considering the fact that the concrete porosity at the surface layer may change depend-
ing on the w/b of concrete, and that Cs refers to the chloride concentration in the first
millimetre of the concrete, the influence of concrete porosity on Cs behaviour occurred
in a direct way. Concrete with higher w/b and, thus, higher porosity presented a
stronger increase in Cs, independently of the exposure site.

(3) Chloride concentration in the atmosphere plays an important role in Cs behaviour.
Higher availability of chlorides means higher Cs values. This leads to different curves
for the increase in Cs depending on the availability of chlorides in the atmosphere at
different distances from the sea. In terms of the exposure time, this behaviour can be
represented by a power function or a sigmoidal function, with a better fit for the latter.

(4) Regarding the relationship between Cs and the availability of chlorides in the atmo-
sphere, the function that best represented this relationship was Cs = C0 + kcs(Dac)n,
where Cs is the surface chloride concentration, C0 is the initial chloride concentration
in concrete, kcs is a coefficient associated with the concrete’s ability to capture chlo-
rides from the atmosphere, Dac is the accumulated deposition of chlorides and n is a
coefficient associated with the rate of the increase in Dac over time.

The continuation of this study will make it possible to obtain data from even longer
exposure periods, which may contribute to the refinement of the models presented here
and the evaluation of other modelling approaches, such as numerical ones.
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