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Abstract: Circadian rhythms are endogenous 24-h oscillators that regulate the sleep/wake cycles and
the timing of biological systems to optimize physiology and behavior for the environmental day/night
cycles. The systems are basically generated by transcription–translation feedback loops combined
with post-transcriptional and post-translational modification. Recently, evidence is emerging that
additional non-coding RNA-based mechanisms are also required to maintain proper clock function.
MicroRNA is an especially important factor that plays critical roles in regulating circadian rhythm
as well as many other physiological functions. Circadian misalignment not only disturbs the
sleep/wake cycle and rhythmic physiological activity but also contributes to the development
of various diseases, such as sleep disorders and neurodegenerative diseases. The patient with
neurodegenerative diseases often experiences profound disruptions in their circadian rhythms
and/or sleep/wake cycles. In addition, a growing body of recent evidence implicates sleep disorders
as an early symptom of neurodegenerative diseases, and also suggests that abnormalities in the
circadian system lead to the onset and expression of neurodegenerative diseases. The genetic
mutations which cause the pathogenesis of familial neurodegenerative diseases have been well
studied; however, with the exception of Huntington’s disease, the majority of neurodegenerative
diseases are sporadic. Interestingly, the dysfunction of microRNA is increasingly recognized as a cause
of sporadic neurodegenerative diseases through the deregulated genes related to the pathogenesis
of neurodegenerative disease, some of which are the causative genes of familial neurodegenerative
diseases. Here we review the interplay of circadian rhythm disruption, sleep disorders and
neurodegenerative disease, and its relation to microRNA, a key regulator of cellular processes.
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1. Introduction

Most researchers agree that the earth began to form approximately 4.6 billion years ago. Although
the primitive Earth apparently had an unstable rotation, the rotation cycle seems to have been fixed
at around 24 h by the time the first living organisms appeared. The 24-h rotation produces periodic
changes in environmental conditions, such as solar energy day/night lighting cycles. Probably due to
the efficient adaptation to the cycle of environmental changes generated by the Earth’s 24-h rotation,
living organisms internalize a cell-autonomous clock, the so-called circadian clock. From bacteria
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to humans, most living beings possess a circadian clock in the body [1,2], and this characteristic of
organisms persisted even across explosive evolution and mass extinction events, suggesting that
circadian clock systems were internalized in living beings from early in their evolution rather than
acquired later as a trait.

The circadian clock system is technically based on a transcription–translation feedback loop
described by the concept of central dogma, which produce rhythmic gene expression, in a process that
involves many regulatory steps [3]. The circadian clock is regulated by so-called clock gene(s), and the
expression of most of these genes also oscillates in a circadian manner. Indeed, many physiological
activities are under the control of circadian regulation through the rhythmic regulation of gene
expression. Generally, an abnormality of the circadian clock in itself is not directly lethal to living
beings since laboratory animals without clock gene(s) are viable and fertile [4]. However, it is
increasingly clear that animals that are deficient in or overexpress clock gene(s) are susceptible to
various diseases, leading to fatal results [5].

According to the RNA World concept, RNA or RNA-like chemicals carried out most of the
information processing and metabolic transformations needed for biology to emerge from chemistry in
the early history of life [6]. RNA has several roles, acting as a DNA “photocopier”, a protein building
block, a structural component of ribosomes and ribozymes and a regulator of cellular processes. Thus,
life may have begun with and evolved along with RNA. If we consider this RNA World concept
together with the presumed establishment of the circadian clock in the earliest life forms on Earth, it
seems reasonable to assume that the circadian system and RNA regulation evolved together, and that
there was some interplay between them. It has long been thought that non-coding RNAs which
cannot translate into a protein product are all “junk”, but more recently this assumption has been
disproven [7]. Indeed, non-coding RNAs are now a hot topic in research. Many non-coding RNAs are
very much functional in biological systems and compensate for their inability to be translated into
proteins through alternate mechanisms. MicroRNAs (miRNAs) are a class of non-coding RNAs that
function as post-transcriptional regulators. MiRNAs play a role in regulating several factors that are
important for biological systems in the body [8]. Recent lines of evidence show that the circadian
rhythm of gene expression is regulated by miRNAs, and vice versa [9]. The molecular mechanism of
the circadian clock is precisely controlled by post-transcriptional and post-translational regulation,
based on a well-organized transcription and translation feedback system.

However, the breakdown of the circadian clock system has been suggested to lead to various
diseases in the body. In the case of a breakdown in the central nervous system, this could be a
cause of neurological diseases, including sleep disorders and neurodegenerative diseases. Since sleep
disruption can be an early symptom in the development of neurodegenerative disease, it may play a
role in the development and progression of these diseases. Moreover, miRNAs that are abnormally
expressed in the blood, body fluids and/or several tissues are often shared in common between patients
with sleep disorders and patients with neurodegenerative diseases [10]. These facts implicate that
miRNAs, through their ability to modify the expression of genes related to or causative of diseases,
could be both biomarkers of disease pathogenesis and effective therapeutics.

2. Molecular Basis of Circadian Clock System

Living organisms possess circadian systems to adapt to Earth’s 24-h solar energy cycles [11].
The circadian system is based on the molecular mechanisms regulated by several clock genes,
such as those encoding transcriptional activators, repressors, and modification enzymes. The classical
molecular mechanism of the circadian clock is composed of several feedback loop systems, including a
transcriptional and translational step. In mammals, the first loop includes the positive elements CLOCK
and BMAL1, as shown in Figure 1, which are members of the basic helix–loop–helix Per–Arnt–Sim
transcription factor family. A heterodimer of CLOCK and BMAL1 activates the transcription of target
genes containing E-box cis-regulatory enhancer sequences, including the members of the clock gene
family, Period (Per1-3) and Cryptochrome (Cry1, 2). Negative feedback is achieved by heterodimers of the
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PER and CRY proteins, which translocate back to the nucleus to repress their own transcription by acting
on the CLOCK:BMAL1 complex. CLOCK can be substituted with neuronal PAS protein 2 (NPAS2),
a paralog of CLOCK that dimerizes with BMAL1 to form transcriptionally active complexes [12].
NPAS2 can compensate for the loss of CLOCK in peripheral cells as well as in SCN. The second loop
includes the retinoic acid-related orphan nuclear receptors (RORs), REV-ERBα and RORα, acting
through enhancers of the ROR response element (RORE). CLOCK:BMAL1 heterodimers activate
the transcription of Rev-erbα and Rorα, which subsequently compete to bind ROREs present in the
Bmal1 promoter, although the two proteins have opposite effects on Bmal1 transcription. The third
loop includes basic leucine zipper transcription factors of the proline and acid amino acid-rich
subfamily (DBP, TEF and HLF) as positive regulators and E4BP4 as a negative one. These factors
act antagonistically on the D-box (the D-site of the albumin promoter) element in their target genes,
including Per1-3 and Ror α. These loops interact in an intricate manner to compose the basic architecture
of the circadian clock. The autoregulatory feedback loops of the molecular circadian clock take
24 h to complete a cycle. The generation of precise 24-h cycles is governed by post-translational
modifications, including phosphorylation, ubiquitination and acetylation. The phosphorylation of
PER proteins by casein kinase Iε (CKI ε) and glycogen synthase kinase-3β (GSK-3 β) promotes
their nuclear translocation. Further, the phosphorylation of PER at other sites by CKIδ/ε also
promotes β-TrCP-dependent PER ubiquitination. CKI-mediated PER phosphorylation is antagonized
by phosphoprotein phosphatase1 (PPP1) dephosphorylation. In addition, the phosphorylation
of CRY by tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), GSK-3 β and adenosine
monophosphate-activated protein kinase (AMPK) leads to its degradation dependent on either
F-box and leucine rich repeat protein 21 (FBXL21) or FBXL3-mediated ubiquitination. Interestingly,
CLOCK itself has an acetylation activity to BMAL1, which in turn is deacetylated by rhythmic
deacetylase Sirtuin1 (SIRT1) (for a more detailed description see [11,13]).
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Figure 1. MiRNA regulation of core clock components. A schematic of a molecular circadian system
composed of core clock genes is shown. The transcription factors CLOCK:BMAL1 bind to target E-Box
and activate the clock genes Per, Cry, Dbp, Rev-erb and Ror, as well as clock-controlled genes, including
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miRNAs. After PER and CRY are synthesized in the cytoplasm, these proteins form a complex and
inhibit CLOCK:BMAL1-mediated transactivation. PER proteins are phosphorylated by CKIε and/or
GSK-3β and dephosphorylated by PPP1 in order to regulate the cellular distribution and/or stability.
In turn, RORα activates whereas Rev-erbα reduces the transcription of Cry, Bmal1 and miRNAs and
other output genes that have RORE in the region upstream of the promoter. The DBP-dependent
transactivation is repressed by competitive binding of E4BP4 to the D-box. Several miRNAs directly
down-regulate these core clock components and modulate circadian rhythm.

3. MiRNA Biosynthesis

MiRNAs are a class of short non-coding RNAs which are approximately 20 nucleotides in
length [14]. Their function consists mostly of silencing target expressions by binding to target gene
transcripts located mainly at the 3′-untranslated regions (3′-UTR). Most miRNAs are located in
intergenic regions or in an antisense orientation to gene regions on the genome. Clustered miRNAs can
either be simultaneously transcribed from single polycistronic transcripts containing multiple miRNAs
or independently transcribed. In brief, the biogenesis of miRNAs is as follows. First, the primary
miRNAs (pri-miRNAs)—which are primary transcripts containing stem-loop structures and are usually
thousands of nucleotides in length—are transcribed by a polymerase, in most cases RNA polymerase II.
Second, the pri-miRNAs are cleaved by a complex called a microprocessor containing the ribonuclease
III Drosha and the RNA-binding protein DGCR8/Pasha, which generate small hairpin-shaped RNAs
of approximately 70–100 nucleotides in length, called miRNA precursors (pre-miRNAs). Third,
pre-miRNAs exported by exportin-5 in complex with RAN-GTP are processed by a double-stranded
ribonuclease III enzyme, termed Dicer, which is complexed with a double-stranded RNA-binding
protein. Fourth, the mature miRNA duplexes are loaded onto an Argonaute protein to form an effector
complex, called the RNA-induced silencing complex (RISC). Finally, one strand of the miRNA is
removed from RISC to generate the mature RISC that induces gene silencing. The post-transcriptional
regulation by the RISC complex is mediated by incomplete base-paring of miRNA–mRNA interactions,
likely due to the targeting of multiple transcripts, which contributes to the complexity or redundancy
of miRNA systems [14].

4. Circadian Regulation of miRNA

The expressions of the mature or precursor forms of some miRNAs exhibit circadian and/or
diurnal rhythms, although the mechanism remains unclear [15]. The circadian rhythmicity of miRNA
expression appears to be conserved from plants to mammals [13]. In addition, some of the miRNAs
that display circadian rhythm have been reported to contain the circadian cis-elements E-Box and
RORE in their upstream regions [9,16,17]. In the mammalian SCN, miR-219 is rhythmically expressed
and knockdown within the SCN results in the lengthening of the period of behavioral rhythms [9].
The promoter of miR-219 possesses a non-canonical E-box element and is activated by CLOCK: BMAL1.
MiR-122 is also rhythmically expressed, potentially through REV-ERBα acting on two ROREs in
its promoter [17]. In addition, the rhythmic expression of miR-142-3p, which is likely driven by a
canonical E-box within its promoter, is observed in cultured fibroblasts following serum shock, in
immortalized SCN cells and in the murine SCN [16]. In another study, miR-132 was shown to affect
light-inducible clock-entrainment in the SCN [9]. There is a CRE promoter in its upstream region that
shows light-inducible activation by CREB in a MAPK/ERK-dependent manner [9]. Further, miR-132
and miR-212, which are in the same cluster, modulate the entrainment of the seasonal photo period by
regulating the dendritic spine density of SCN neurons acting through the methyl CpG-binding protein
rhythm [18]. Dicer has been reported to show a diurnal pattern of expression in various tissues, which
may affect the mature miRNA rhythm [19,20]. However, these reports are not sufficient to describe the
mechanism of miRNA rhythms, since not all the miRNAs have circadian cis-elements in their promoters
and the rhythm generation of mature miRNAs is dependent on the rhythm of both their transactivation
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and processing. In addition, there is significant discrepancy among the lists of mature miRNAs
with circadian expression published by several research groups using high-throughput technologies,
including microarray, RNA-sequencing and ChIP-sequencing [17,21–23]. Further research will be
needed to more fully understand the mechanism of circadian generation and regulation of miRNAs.

5. Interplay of Circadian Genes and miRNAs

Several lines of recent evidence show that clock components are also regulated by miRNAs.
The Period genes, Per1, Per2 and Per3, which are regulated in mammals by common miRNAs, such as
miR-24, miR-29 family members (miR-29a, miR-29b and miR-29c), miR-30a, miR-34a-5p, miR-192 and
miR-194, are likely to be involved in the timekeeping mechanism in most tissues, given that they are
widely expressed in several types of cells or tissues [21,24–27]. Further, Per2 is likely to be regulated
by miR-449a, which also targeted PPP1, a dephosphorylation enzyme of PER2 phosphorylation by
CKIε according to the computational analysis of microarray data using the SCN of Clock-mutant
mice [30]. In addition, this analysis also showed that both CKIε and Per3 are targets of miR-125a-3p [28].
Moreover, Per3 is regulated by miR-103 in colorectal cancer cells, and the expression of miR-103
is known to be induced by Bmal1 in the vascular smooth muscle cells [29,30]. The pre-miRNA
constructs of miR-142-3p and miR-494 show circadian rhythm in the serum and reduce Bmal1
transcription in the SCN cells [16,31]. The rhythmic expression of miR-27b-3p and miR-155 plays a role
in regulating the rhythmic expression of Bmal1 mRNA and protein levels in the mouse liver [32]. It is
of interest to note that Bmal1 inhibits the induction of miR-155 via interfering with the activation of the
inflammatory pathway, and miR-155 directly targets Bmal1 to control circadian inflammatory responses
in macrophages [33]. In addition, miR-135b directly targets the BMAL1 3’-UTR and asynchrony
between miR-135b and BMAL1 expression impairs the local circadian control in pancreatic cancer
cells [34]. MiR-10a contributes to the down-regulation of the expression of Bmal1, which is involved in
abnormal liver metabolism in cirrhotic liver [35]. Furthermore, miR-211 directly regulates Bmal1 and
Clock via distinct mechanisms and contributes to cell survival in Burkitt’s lymphoma cell lines [36].
Clock is known to be a target gene of multiple miRNAs, such as miR-107, miR-124, miR-141, miR-17-5p
and miR-182, although the circadian rhythmicity of CLOCK is still ambiguous [37–45]. The targets of
miR-17-5p also include Npas2, a paralog of Clock, which may play a role in shortening the period [44].
In addition, miR-199b-5p targets Npas2 to promote the reprogramming of glucose metabolism in
hepatocellular carcinoma cells [46]. Clock was validated as an mRNA target of miR-206, which may
participate in the progression of glioma [47]. Further, Clock and Rorα can be regulated by miR-19b
in the nervous system, and miR-19b might play a role in the development of posttraumatic stress
symptoms [48]. Rorα was also cooperatively suppressed by miR-503-5p, miR-450b-5p, miR-27a-3p,
miR-181a-5p and miR-183-5p in HeLa cells [49]. Pre-miR-185 directly binds to the 3′-UTR of the
Cry1 gene and regulates CRY1 oscillations by reducing CRY1 translation in the NIH3T3 cells [50].
Cry1 is also a target gene of miR-181a, which plays a role in alleviating the degree of kidney injury
through the suppression of the immune-response pathway [51]. Cry2 is repressed by miR-7-5p, which
is transcriptionally activated by the signal transducer and activator of transcription 3 (STAT3) to induce
osteoblast differentiation [52]. Both miR-106b-5p and miR-181d play a role in enhancing cancer cell
growth by downregulating Cry2 [53,54]. Cry2 could also be a target of miR-340, which is involved
in the early life programming of anorexia [55]. Dbp could be regulated by miR-126a-5p and has a
potential for the treatment of hypertension and stroke [56]. Interestingly, a miRNA cluster consisting
of miR-96, miR-182 and miR-183 shows diurnal expression, and this cluster is suggested to be involved
in circadian rhythm regulation, perhaps by modulating the expression of adenylyl cyclase VI in the
retina [57]. Since miRNA regulation could specifically occur in certain tissues, these interplay of
circadian genes and miRNAs may also be tissue specific [58]. However, these findings indicate that
miRNAs play an important role in mediating between circadian rhythm and physiological function.
Recent studies have revealed an obvious disagreement between the number of rhythmic mRNAs
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and that of proteins [59–61]. The number of oscillating proteins is much greater than that of mRNAs,
suggesting the presence of a strong network between the circadian system and miRNA regulation.

6. Sleep Disorder, Circadian Rhythm Disorder and miRNA Regulation

Sleep is essential for various aspects of brain function, including cognition, concentration,
productivity, and performance. Sleep deprivation causes not only several health problems but also
serious diseases. Sleep loss changes the cerebral levels of miRNAs, such as miR-125a, miR-132 and
let-7 family members [62]. Further, rapid eye movement (REM) sleep deprivation has been shown to
considerably affect the hippocampal expressions of miR-132, miR-182, and miR-124 [63]. In addition,
chronic short sleep is associated with a marked reduction in the circulating levels of miR-125a, miR-126
and miR-146a [62,64]. MiR-125a, which could target Per3, as well as CKIε, is preferentially expressed
at the end of the active period in rodents and appears to be involved in the long-term regulation
of sleep [65]. Further, miR-125a and miR-146a exhibit circadian patterns that decrease and phase
shift in aged or diabetic mouse retina in tandem with changes in Dicer expression [19,66]. MiR-132
and miR-182 play an important role in modulating the circadian clock system as described above.
These results have implications for the interplay of abnormal expression patterns in circadian miRNAs
and several sleep problems.

Sleep disorders are frequent and can have serious consequences for patient health and quality of
life. There are various symptoms of sleep disorders, including insomnia (difficulty in falling asleep,
sleep fragmentation, early morning awakening), excessive daytime sleepiness, circadian rhythm
changes, REM sleep behavior disorder, periodic leg movements in sleep, restless leg syndrome, central
or obstructive sleep apnea, and nocturnal stridor.

Sleep homeostasis is distinct from, but also linked to, the circadian clock. The illnesses most
closely related to the circadian clock are the circadian rhythm sleep disorders, which include advanced
sleep phase disorder and delayed sleep phase disorder [67]. Delayed sleep phase disorder is a sleep
disorder in which there is a stable delay of the major sleep episode relative to the required sleep/wake
clock time. Although delayed sleep phase disorder is common in adolescents and young adults,
several reports have identified polymorphisms in the clock genes Clock, Per3 and CKIε in patients with
delayed sleep phase disorder [68–70]. Advanced sleep phase disorder is a sleep disorder in which
there is a stable advance of the major sleep period, characterized by habitual and involuntary sleep
onset and wake-up times that are several hours earlier than the desired or conventional clock times.
Advanced sleep phase disorder is more common among middle-aged and older adults. A genetic basis
has been clearly demonstrated in familial advanced sleep phase disorder, with missense mutations
located in clock genes including Per2, CKIδ and Cry2 [71–73]. Although there are no reports of miRNAs
abnormally expressed in patients with circadian rhythm sleep disorders, abnormal changes in the
expression and/or modification of clock genes by some factors, including miRNAs, could be a primary
cause of these syndromes.

Insomnia is a common clinical condition characterized by difficulty initiating or maintaining
sleep, accompanied by symptoms such as irritability or fatigue during wakefulness, and is
common in neurological diseases such as mood disorders, psychiatric diseases, prion diseases
and neurodegenerative diseases [74]. Patients with circadian rhythm sleep disorder typically have
insomnia, excessive daytime sleepiness, or both. However, there are relatively few clinical studies on
patients with only insomnia, probably because insomnia itself is not lethal but rather is often reported
as a symptom accompanying more serious diseases. On the other hand, it might be possible to predict
future diseases if the causative miRNAs and clock genes common to patients with insomnia and
patients with serious diseases could be identified. Interestingly, an SNP on the Clock gene has been
associated with major depressive disorder, bipolar disorder and/or antidepressant treatment with sleep
problems [75–77]. An SNP in miR-146a has also been associated with susceptibility to fatal familial
insomnia, which is one of the prion diseases that interferes with sleep and leads to the deterioration of
mental function and loss of coordination [78]. Genetic variants and abnormal processing of pre-miR-182
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are present in major depression patients with late insomnia [79]. As described above, miR-182 could be
a circadian modulator that shows circadian expression. These results suggest that aberrant circadian
regulation and/or miRNA expression induce various diseases accompanied by insomnia.

Hypersomnia is characterized by either excessive daytime sleepiness or excessive time spent
sleeping and includes both narcolepsy and idiopathic hypersomnia [80]. A genetic link between
narcolepsy and the chromosomal region that contains the Clock gene has been established [81,82].
However, it is still unclear whether SNPs in Clock are directly associated with narcolepsy, since
two of them have already been reported to have no relation to narcolepsy [83]. On the other hand,
in idiopathic hypersomnia, the amplitude of the rhythmically expressed BMAL1, PER1 and PER2 is
significantly dampened compared to that in healthy controls [84,85]. The levels of several miRNAs
are significantly altered in the blood of narcolepsy patients, including miR-182-3p, which is the other
strand of miR-182-5p regulating Clock expression [86]. Since a genetic variant in the precursor form
of miR-182 causes major depression in patients with late insomnia, this miRNA may be involved
in circadian and sleep function. Further, the aberrant miRNAs, miR-130a, miR-26a, miR-30c and
let-7f, have been commonly detected in plasma from both patients with narcolepsy and patients
with idiopathic hypersomnia [87]. There is a report showing that chicken miR-26a, which is highly
conserved among Drosophila, chickens, mice and humans, shows diurnal rhythm through the regulation
of CLOCK and CREB. This miR-26a regulates the protein level of the L-type voltage-gated calcium
channel α1C subunit in chicken cone photoreceptors, implying that the regulation of light input by
miRNA and clock genes is important for sleep regulation.

Sleep-related breathing disorders, ranging from habitual snoring to increased upper airway
resistance syndrome to sleep apnea, are now recognized as major health problems [88]. The majority of
patients with sleep-related breathing disorders have excessive daytime sleepiness and tiredness. It has
been reported that the expressions of the clock genes Per1, Per3 and Cry1 are deregulated in the patients
with obstructive sleep apnea [89,90]. Further, several miRNAs were identified as deregulated miRNAs
in patients with this symptom, and some of these miRNAs are associated with the expression of clock
genes [91,92]. Among them, miR-181a is up-regulated in patients with obstructive apnea. MiR-181a
plays a role in modulating circadian rhythm by targeting Per3 in the stromal cells as well as Cry1 in the
kidney [51,93]. Furthermore, the downregulation of miR-27 and let-7 has been observed in patients
with obstructive sleep apnea, and in silico data analysis suggest that these miRNAs could target the
Cry2 gene [94]. The up-regulation of miR-199b-5p is likely to be associated with obstructive sleep
apnea, whereas its downregulation is involved in NPAS2 overexpression, leading to tumor cell survival
through the reprogramming of glucose metabolism and reduction in oxidative phosphorylation [46].
In addition, miR-107, which is down-regulated in obstructive sleep apnea, is particularly abundant in
the brain, and regulates the circadian system via targeting Clock in the epithelial cells [40]. The miRNAs
that play a role in circadian rhythm in obstructive sleep apnea appear to be mostly related to cell
survival, suggesting that sleep-related breathing disorders could be critical diseases because of the
chronic abnormal expression of miRNAs and clock genes.

Since sleep disorders are often observed as early symptoms of several diseases, chronic
abnormalities in the function of circadian clock and its-related miRNAs may cause serious diseases.
The identification of common abnormally expressed miRNAs related to circadian clock will assist in
the early therapeutics of critical diseases before they become fatal.

7. Circadian Rhythm and Neurodegenerative Diseases

Neurodegenerative diseases are characterized by the progressive degeneration of the structure
and function of the nervous system, and include Alzheimer’s disease (AD), Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) and multiple system atrophy (MSA).
These diseases primarily occur in the later stages of life. As an ironic side effect of the worldwide
increases in life expectancy and resulting growth in the aging population, the number of people
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suffering from neurodegenerative diseases has also grown. Currently, no neurodegenerative disease is
curable; the available treatments only manage the symptoms or halt the disease progression.

Circadian abnormalities have generally been considered consequences of neurodegeneration.
Despite the varied pathogenesis and diversity of symptoms among the neurodegenerative diseases,
it is common for patients with these disorders to exhibit disruptions in the circadian rhythms of
physiological and behavioral processes, or circadian fluctuations in their symptoms. However, recent
lines of evidence suggest that circadian disruption might actually contribute to the neurodegenerative
process [95]. Several findings indicate that the circadian system may in fact play a more direct role in
the etiology of neurodegenerative diseases [96].

Although there are several causes of the onset and progression of neurodegenerative diseases,
oxidative stress enhancement is a common feature [97]. Oxidative stress has been defined as an
imbalance of reductant and oxidant (Redox) states in which reactive oxygen species production exceeds
the capacity of antioxidant systems to control it [98]. Interestingly, many of the genes involved in
controlling the antioxidant system show circadian rhythm [99]. Moreover, BMAL1-deficient mice
exhibit increased levels of reactive oxygen species (ROS) and accelerated ageing, suggesting that
the circadian clock is involved in ROS regulation [100]. Although much emphasis has been placed
on the role of protein aggregates in neurodegenerative diseases, a growing body of evidence is also
converging on altered RNA processing as a contributing factor in the pathogenesis of neurodegenerative
diseases [101]. MiRNAs are among the most important of the RNA-processing factors and play a
post-transcriptional regulatory role [14]. The aberrant expression of miRNA is detected in the brain,
cerebrospinal fluid and blood of patients with neurodegenerative diseases [101] (Table 1).

7.1. Alzheimer’s Disease

AD is an irreversible age-related neurodegenerative disease characterized by progressive dementia
developed in middle or later life. The pathological hallmarks are depositions of amyloidβ (Aβ) plaques
and neurofibrillary tangles composed of abnormally phosphorylated tau protein in the brain [102].
The ε4 allele of the apolipoprotein E gene (APOE) is a major genetic risk factor for late-onset AD.
The ApoE4 protein enhances Aβ deposition in the CNS.

Common symptoms related to sleep in AD include difficulties in falling asleep, arousal at night,
repeated awakenings and waking up too early in the morning, and sleepiness/frequent naps during the
day. Obstructive sleep apnea also frequently occurs in patients with AD [103]. These symptoms are also
evident in patients with mild cognitive impairment, suggesting that sleep disorders could be primary
symptoms prior to the clinical diagnosis of AD. Nighttime sleep becomes increasingly fragmented as
the disease progresses, while nocturnal activity levels and daytime sleepiness increase [104]. In severe
cases, minimal differences exist between daytime and nighttime bouts of activity and sleep due to a
flattening of the melatonin rhythm. Changes in the rhythm of cortisol release have also been observed.
Further, a rhythm in mood and emotional volatility has been reported to emerge along with the
progression of the neurodegenerative conditions.

Aberrant BMAL1 methylation and transcription have been observed in the brains of AD patients,
leading to alterations in BMAL1 expression and neuronal circadian rhythms, contributing in part to
the sleep and behavior alterations associated with pathology [105]. Further, diurnal variations in PER1,
PER2, and BMAL1 gene expressions are altered in several brain areas of AD patients [106]. Interestingly,
Aβ itself shows a circadian pattern with an increased level during wakefulness and decreased level
during sleep [107]. Decreases in Aβ circadian patterns with age and amyloid deposition have also
been observed. Moreover, in a mouse model of AD, Bmal1 regulated the expression of the APOE gene
and Bmal1 deletion caused a loss of Aβ rhythms in the hippocampus, resulting in marked increases
in the amyloid plaque burden [108]. The physiological isoform of Aβ originates from the amyloid
precursor protein via sequential cleavages that are catalyzed by BACE proteins (BACE1 and BACE2)
and by presenilin proteins (PSEN1 and PSEN2) [109]. BACE1 is inhibited by the D-box repressor
E4BP4, while BACE2 and PSEN2 are activated by CLOCK:BMAL1 [109,110]. Tau pathology in AD
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is related to tau phosphorylation and aggregation. One of the most important tau kinases is GSK3β,
which is known to phosphorylate and modify the clock proteins, BMAL1, PER2 and CRY2 [111–113].

Although many miRNAs have been shown to be deregulated in the blood, cerebrospinal fluid
and the brains of patients with AD, the lists of such miRNAs are not always consistent between
studies, probably because of the small cohort sizes, circadian changes or discrepancies in the disease
stage, underscoring the importance of systematic analysis from multiple clinical trials [114]. However,
it is of interest to note that common miRNAs are involved in the expression of genes related to
circadian rhythm, sleep disorders and AD pathogenesis, indicating the strong connection between
them. The overexpression of miR-219 has been observed in the brains of patients with AD, and miR-219
is known to play a role in the downregulation of Tau phosphorylation by targeting GSK-3β [115].
This miRNA has been reported to be a modulator of the circadian clock via the CLOCK and BMAL1
complex [9]. MiR-132 is significantly downregulated in neurons in AD [116]. GSK-3β and Tau
mRNA are targeted by miR-132 [117], which could be induced by photic entrainment cues via a
MAPK/CREB-dependent mechanism [9]. On the other hand, miR-146a is up-regulated in several
brain regions of AD patients [114]. The miR-146a is associated with short sleep [62,64,79] and
has also been reported to show rhythmic expression [66]. This miRNA has also been suggested to
be involved in the pathogenesis of AD by regulating the genes related to neuroinflammation and
cerebrovascular dysfunction [118,119]. MiR-107, which is downregulated in the cortex of patients
with AD, displays circadian rhythm [40]. Further, miR-107 is a candidate miRNA for participation in
obstructive sleep apnea [91]. In addition, miR-107 could target Clock as well as BACE1, suggesting that
miR-107 may trigger AD pathogenesis and its accompanying symptoms through the dysregulation
of target genes [40,120,121]. MiR-26b is upregulated in AD, and MiR-26b has been identified as an
oscillating miRNA in distinct high-throughput studies [22,23]. Interestingly, miR-26b has also been
shown to contribute to Tau hyper-phosphorylation and Aβ accumulation [122]. Increased miR-34a
expression was also observed in the temporal cortex region of patients with AD [123]. The rhythmic
expression of miR-34a was observed in the tumor cell lines and its overexpression contributes to
abnormal expression of the clock genes Per1 and Per2, as well as the specific genes involved in memory
formation, amyloid precursor protein (APP) metabolism and tau phosphorylation states [27,124,125].
In addition, hypoxia-induced miR-210 targets directly regulate various genes associated with the
pathways of various diseases, including neurodegenerative disease [126]. The dysregulation of
miR-210 in brain tissues, as well as in cerebrospinal fluid and serum, has also been correlated with the
pathology of AD. MiR-210 is known to control circadian locomotor rhythms in Drosophila, and this effect
might also be observed in mammals, since miR-210 was evolutionarily conserved between Drosophila
and mammals [127,128]. Although miR-125b and miR-29b are the top-ranked AD biomarkers in
several clinical studies [129–131], the mechanism of dysregulation in the blood of AD patients is still
unclear. In silico analysis reveals that miR-125b regulates the cholinergic neuron functions by targeting
Clock [132]. Further, recent evidence shows that miR-125b regulates neuronal cell growth and apoptosis
via the regulation of inflammatory factors and oxidative stress, and this regulation may be related to
AD pathogenesis [133]. On the other hand, miR-29 family members can target BACE1 mRNA and
be downregulated in sporadic AD [134]. It is known that Period genes are regulated by the miR-29
family [43]. These results suggest that AD pathology, pathogenesis, and pathophysiology are strongly
connected to circadian rhythm abnormalities, sleep disorders and miRNA dysregulation.

7.2. Parkinson’s Disease

PD is the second most common neurodegenerative disease after AD, and is clinically characterized
by resting tremor, rigidity, akinesia, and postural instability [135]. PD is characterized as a progressive,
late-onset movement disorder which is affected by dopaminergic neurodegeneration in the substantia
nigra (SN). Lewy bodies, which are eosinophilic neuronal inclusions that contain both α-synuclein and
ubiquitin, are pathological hallmarks of PD [136].
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Since dopaminergic neurotransmission lies at the core of PD pathology, diurnal and circadian
variation in dopamine content and metabolism should be considered when investigating the
mechanism [137]. Several reports have reported diurnal variation in dopamine and some of its
metabolites. Changes in dopamine content could be causally related to rhythms in dopamine-
synthesizing enzymes and transporters, whose activities exhibit temporal changes [138]. Rhythmic
dopaminergic activity can be controlled by the circadian clock and, in turn, might also regulate the
activity of the clock itself [138,139]. In addition, dopamine might be relevant to the modulation of
circadian retinal input [140].

Sleep disorders are among the most frequent non-motor symptoms of PD and include insomnia,
parasomnia, nocturia, and sleep-related breathing disorder—all of these conditions lead to excessive
daytime sleepiness, which usually increases in frequency over the course of the disease and disability
progression [141]. Behavioral sleep disorders, such as restless leg syndrome and REM behavior
disorder, are especially highly comorbid with PD [142]. Cortisol release is elevated in PD, although the
diurnal pattern of cortisol remains rhythmic [143]. It has also been reported that BMAL1 expression is
dampened in total leukocytes of patients with PD [144].

Clinical studies for PD patients show the dysregulation of several miRNAs in the whole blood,
serum, or CSF. The miR-29 family members are particularly interesting in this regard, because the
expressions of miR-29a and miR-29c are both down-regulated in PD [145]. Further, blood miR-29a
is overexpressed in levodopa-treated patients with PD [146] and miR-29c overexpression attenuated
dopaminergic neuron loss and α-synuclein accumulation in the SN of PD mice [147]. The targets of the
miR-29 family also include PER proteins, although the rhythmicity of the miR-29 family has not been
reported yet [21,148]. Since the expression of miR-29 family members is also altered in AD patients,
the miR-29 family members are suggested to be key factors for neurodegeneration and clock gene
dysregulation. In addition, several clinical studies have reported lower expression of miR-30c in PD
patients [149]. MiR-30c has been reported to be elevated in patients with narcolepsy, and changes in
the expression of MiR-30c in response to sleep deprivation have been observed in young patients with
narcolepsy [87,150]. Although the actual targets of miR-30c have not been identified, a computational
algorithm revealed many target genes that are involved in neuronal autophagy, mitophagy and the
regulation of dopaminergic cell death [151]. In addition, circadian PER proteins are also predicted
to be target genes of miR-30c [148], although the precise mechanisms by which miR-30c affects PD
pathology and circadian rhythm are unknown. miR-19b levels have been reported to be lower in
patients with PD compared to healthy controls, and the protective effect of miR-19b is mediated
by targeting the genes related to neuronal apoptosis [152,153]. Further, the decreased expression of
miR-19b has been observed in patients with idiopathic REM sleep behavior disorder several years
before a diagnosis of PD or dementia with Lewy bodies [154]. MiR-19b could be a key regulator of
the circadian transcripts CLOCK and RORα and has been shown to be influenced by estrogen and
stress exposure [48]. The levels of miR-221 are also significantly decreased in PD patients compared
with healthy control populations. MiR-221 has a protective role in PD by targeting a gene related
to apoptosis and is modulated by DJ-1, whose loss-of-function mutations are linked to recessively
inherited PD [155]. In addition, circadian oscillation of salivary miR-221 expression has been reported,
suggesting that the circadian dysregulation of anti-inflammatory functions through miRNAs could
be involved in PD pathogenesis [156]. Elevated levels of miR-126 may play a functional role in DA
neurons and in PD pathogenesis by downregulating insulin signaling [157]. It has been reported that
miR-126 is involved in the mechanism of ROS production [158]. Moreover, the altered expression
of miR-126 is associated with insufficient sleep [64]. These facts indicate an interaction among PD
pathogenesis, sleep disorders, oxidative stress and miRNA dysregulation.

7.3. Amyotrophic Lateral Sclerosis (ALS)

ALS is a chronic progressive disease characterized by selective degeneration of motor neurons in the
spinal cord and motor cortex, normally causing death within 3–5 years of onset [159]. Cortisol rhythm
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is dysregulated in patients with ALS; in particular, evening cortisol levels are significantly increased in
ALS patients compared to controls [160]. Sleep disorders, including nocturnal hypoventilation, restless
leg syndrome, mood disorders, sleep-disordered breathing, and circadian disturbances, occur frequently
in ALS patients [161].

Mutations in several genes have been identified as potential genetic risk factors for ALS.
These include mutations in Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein
43 (TDP-43) and fused in sarcoma/translated in liposarcoma (FUS), and an increased number of repeats
in chromosome 9 open reading frame 72 (C9orf72) [162]. The expression and activity of SOD1 show
circadian variations, which are significantly dampened in Per1/Per2 double-knockout (DKO) mice [163].
Further, TDP-43 regulates the circadian period by stabilizing CRY proteins [164]. Recently, FUS has been
identified as a novel modulator for circadian gene expression positively regulated by REV-ERBα [165].
The hexanucleotide (GGGGCC) repeat expansion in the C9orf72 gene is the underlying genetic cause
in approximately half of the familial amyotrophic lateral sclerosis (ALS) cases and in about 10% of
the sporadic ALS cases [166]. Interestingly, aberrant protein aggregates in the SCN-related neuron of
C9orf72-related ALS patients may disturb the circadian rhythm of their sleep/wake cycle [167].

Since it is evident that ALS affects not only neurons in the CNS, but also peripheral muscle tissues,
circulating miRNAs may contribute to the association of central and peripheral organs in the ALS
pathology. The most promising of the circulating miRNAs that are deregulated in ALS patients are
miR-206 and miR-133a/b. Both these miRNAs are highly expressed in myocytes and up-regulated in the
muscle and brain in patients with ALS [168]. Furthermore, other miRNAs, such as miR-142 and miR-132,
have been reported to target a specific set of genes related to the pathophysiology of ALS [168].

The up-regulation of circulating miR-206 has been observed in ALS patients and is known to play
a crucial role in the reinnervation process [169]. MiR-206 also has a profound effect on the dynamic
mechanism of the mammalian circadian clock, both by control of the amplitude and the frequency to
affect the level of the gene expression [170]. MiR-133a and miR-133b are involved in muscle proliferation,
repair and regeneration, and both these miRNAs are up-regulated in ALS patients [171–173]. It has been
reported that miR-133, which is highly conserved, contributes to core circadian gene expression based
on the significant differences observed between a clock mutant and wild type fly [174]. In addition,
miR-142 is up-regulated in the spinal cord of sporadic ALS patients [173]. MiR-142 has been predicted
to target TDP-43 and C9orf72 [175] and is also known to regulate the expression of Nrf2, a transcription
factor that controls the expression of antioxidant-response genes [176]. MiR-142 is one of the regulators
of SIRT1, which has a deacetylase activity that counteracts the acetylase activity of CLOCK [177,178]
and oxidative stress [179]. Moreover, the inhibition of Dicer function by ALS-causing mutant proteins,
such as SOD1, TDP-43 and FUS, may lead to alterations in miRNA processing, which could account
for some of the miRNAs whose expressions are altered in ALS [180]. MiR-132 has been reported
to be upregulated in ALS patients [181]. Because miR-132 has been identified as a TDP-43-binding
miRNA [175], it is directly affected by mutations in both TDP-43 and FUS in neuronal models of
ALS [182,183]. Finally, it has been reported that miR-132 plays an important role for coupling the
circadian clock to daily rhythms of neuronal plasticity and cognition [184]. These results indicate that
ALS-causing genes are strongly correlated with circadian genes and miRNAs.

7.4. Huntington’s Disease

HD is caused by the expansion of CAG trinucleotide repeats (in excess of 38 repeats) on chromosome
4 in exon 1 of the gene coding “huntingtin” with autosomal-dominant inheritance [185]. HD patients
show hyperkinetic movement disorders due to basal ganglion dysfunction. The most common sleep
problems reported by HD patients are insomnia, difficulties in falling asleep, frequent nocturnal
awakenings, and excessive daytime sleepiness [186].

Circadian gene expression is impaired in HD model flies [187]. Delayed acrophase of per and tim
in HD flies correlates with delayed nighttime sleep. Impaired clock gene expressions of Per2 and Bmal1
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are also observed in a mouse model of HD that shows disrupted night–day activity patterns mirroring
the symptoms of HD patients [188].

Several miRNAs, such as miR-132, miR-124 and miR-146a, are involved in the association with
HD [189]. Alterations of miR-132 expression are present in the brains of HD patients [190]. With respect
to circadian physiology, miR-132 expression is under the control of the circadian oscillator in the SCN,
and photic entrainment cues trigger a marked increase in the levels of miR-132 expression [9]. Altered
expression of miR-132 is also observed in patients with AD and ALS, possibly because miR-132 is
highly expressed in the brain and regulates multiple oxidative stress-related pathways [191]. It is of
interest to note that miR-124 is one of the miRNAs down-regulated in the brain of HD patients [196]
and miR-124 could slow the progression of Huntington’s disease by promoting neurogenesis in the
mouse striatum [192]. MiR-124 is conserved across the animal kingdom and is abundantly expressed
in the central nervous system. In flies, MiR-124 expression is under circadian regulation and modulates
circadian output [193,194]. The expression of miR-146a shows circadian rhythm in human retinal
endothelial cells and regulates the genes related to inflammatory response [66]. Further, miR-146a is
upregulated in HD patients [195] and is known to target the HTT gene [196]. The genetic mutation of
miR-146a causes fatal familial insomnia and a reduction in miR-146a expression is observed in people
chronically short of sleep [64,78]. These results indicate that miRNAs are a key factor for the interplay
of circadian abnormality, sleep disorder and Huntington’s disease.

7.5. Multiple System Atrophy

Multiple system atrophy (MSA) is a devastating neurodegenerative disease representing parkinsonism,
cerebellar ataxia, autonomic dysfunction, and pyramidal signs [197]. MSA, clinically predominated by
parkinsonism, is defined as MSA-P, while that predominated by cerebellar ataxia is called MSA-C. MSA
patients show significant brain atrophy of the putamen, cerebellum, pons, or middle cerebellar peduncle
with mild cortical atrophy in the frontal lobes. The mean age at the onset of symptoms is 55 to 60 years
and the mean survival from the onset is 6 to 10 years. At present, there is no disease-modifying therapy
and only symptomatic therapies, such as levodopa, are available for clinical use.

Sleep disorders in MSA are frequent and severe, and include insomnia, daytime sleepiness, restless
legs syndrome, REM sleep behavior disorder, and sleep disordered breathing [198]. A postmortem
study of the brains of patients with MSA revealed the degeneration of AVP neurons in the SCN [199],
and such degeneration was subsequently shown to lead to the impairment of the circadian rhythm of
plasma AVP concentration in MSA [200,201].

The number of clinical studies showing miRNA profiles in MSA patients is much lower than the
numbers of such studies for other neurodegenerative diseases, simply because MSA is rarer. Several
miRNAs are differentially expressed in the brain and body fluid of MSA patients compared to controls
(e.g., miR-24, miR-96 and miR-433).

The level of miR-24 expression is dysregulated in the serum of patients with MSA [202,203].
Interestingly, miR-24 binds to the 3′-UTR of Per2 and plays an important post-transcriptional regulatory
role in the PER2 expression required for normal circadian timekeeping, as described above. Further,
miR-24 is disrupted in the cohort of autistic children with disordered sleep patterns compared to those
without sleep problem [156]. miR-96 has been identified as one of the up-regulated miRNAs in both MSA
patients and a mouse model of MSA [204]. Further, miR-96 targets EAAC1, a transporter of cysteine,
which is a precursor substrate of the antioxidant glutathione, as well as a taurine transporter. It has
been shown that rhythmic miR-96 plays an important role in neuroprotection through its regulation
of glutathione levels [205]. The expression of miR-433 has been reported to be downregulated in
the cerebellum of post-mortem MSA cases [206]. Further, the down-regulation of miR-433 was also
observed in the striatum of an MSA transgenic mouse model [207]. MiR-433 shows robust circadian
rhythm and regulates Per2 gene expression by regulating glucocorticoid receptors [208]. These findings
indicate the importance of miRNA regulation in circadian rhythm and suggest that the disruption of
miRNA regulation might play a role in the etiology of these neurodegenerative diseases.
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Table 1. Dysregulated miRNAs in the patient with neurodegenerative diseases, which is related to the regulation of clock genes or sleep disorders.

Disease miRNA Target Clock Gene Rhythmicity Regulation Predicted Disease Mechanism Related Sleep Disorder Reference

Alzheimer’s
disease

miR-107 Clock rhythmic temporal cortex ↓ Increased BACE1 expression obstructive sleep apnea [40,91,114,120,121]
whole blood ↓

plasma ↓

miR-125b Clock n.d. hippocampus ↑ Increased BACE1, APP and Tau
protein expression n.d. [114,129,130]

serum ↓

miR-132 n.d. rhythmic temporal cortex ↓ Pathological aggregation of tau
protein n.d. [9,116,117]

serum ↑
exsome ↓

miR-146a n.d. rhythmic frontal cortex ↑ Increased tau hyperphosphorylation chronic short sleep [62,64,66,79,114,118,119]
hippocampus ↑ fatal familial insomnia

plasma ↓
serum ↓

miR-210 Per (Drosophila) n.d. hippocampus ↓ Dysregulation of hypoxic stress
pathway n.d. [114,126]

CSF ↓
serum ↓
plasma ↑

miR-219 n.d. rhythmic entorhinal cortex ↓ Accumulation of insoluble tau n.d. [115]

miR-26b n.d. rhythmic temporal cortex ↓ Induced tau hyperphosphorylation n.d. [22,23,114,122]
whole blood ↓ Aβ accumulation

serum ↓

miR-29a/b Per1 rhythmic cortex ↓ Increased BACE1 expression [129–131,134]
Per2 (primary transcript) whole blood ↓ n.d.
Per3 serum ↓

plasma exosome ↓
blood mononuclear cells ↓

miR-34a Per1 rhythmic temporal cortex ↓ Accumulation of intraneuronal Aβ n.d. [27,114,124,125,129–131]
Per2 hippocampus ↑ Induced tau hyperphosphorylation

frontal cortex ↑
plasma ↓

blood mononuclear cells ↑
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Table 1. Cont.

Disease miRNA Target Clock Gene Rhythmicity Regulation Predicted Disease Mechanism Related Sleep Disorder Reference

Parkinson’s
disease

miR-126 Dbp n.d. dopaminergic neurons ↑ Dysregulation of trophic support in
DA neurons chronic short sleep [64,149,157,158]

blood mononuclear cells ↓

miR-19b Clock n.d. CSF ↓ Promotion of cell apoptosis idiopathic REM sleep [48,149,152–154]
Rora serum ↓ behavior syndrome

blood mononuclear cells ↓

miR-221 n.d. rhythmic serum ↓ Inhibition of cell proliferation n.d. [155,156]
Promotion of apoptosis

miR-29a/c Per1 rhythmic serum ↓ Doperminergic neuron loss n.d. [21,145–149]
Per2 (primary transcript) blood mononuclear cells ↓ α-synuclein accumulation
Per3

miR-30c n.d. n.d. serum ↓ Progression of α-synucleinopathies? narcolepsy [148,149,151]

blood mononuclear cells ↓ (Predicted by computational analysis
of gene network)

Amyotrophic
lateral sclerosis

miR-132 n.d. rhythmic muscle ↑ Inhibition of neurite outgrowth n.d. [175,181–184]

miR-133a/b n.d. n.d. spinal cord ↓ Involved in muscle proliferation and
regeneration n.d. [171–174]

serum ↑

miR-142 Bmal1 rhythmic spinal cord ↑ Promotion of ALS pathogenesis n.d. [173,175–178]
serum ↑

miR-206 Clock rhythmic serum ↑ Involved in reinnervation process n.d. [169,170]

Huntington’s
disease

miR-124 Clock n.d. leukocytes ↓ Disease progression n.d. [189,192–194]

miR-132 n.d. rhythmic frontal cortex ↓ Enhancement of oxidative stress n.d. [9,189,190]

miR-146a n.d. rhythmic frontal cortex ↑ Targeting Huntingtin gene chronic short sleep [64,66,78,195,196]
striatum ↑ fatal familial insomnia

Multiple system
atrophy

miR-24 Per2 rhythmic CSF ↓ Involved in cerebellar degeneration disordered sleep patterns [156,202,203]
serum ↓ (autistic children)
plasma ↓

miR-433 Per2 rhythmic cerebellum ↓ Involved in formation of glial
cytoplasmic inclusions n.d. [206–208]

miR-96 n.d. rhythmic frontal cortex ↑ Inhibition of transporters involved in
antioxidant defense n.d. [204,205]

Dysregulated miRNAs in patients with neurodegenerative diseases, which are related to the regulation of clock genes or sleep disorders, are listed. Listed here are miRNAs mentioned in
this review, although there are many other dysregulated miRNAs identified as a predicted biomarkers and/or therapeutics. CSF, cerebrospinal fluid; n.d.; not determined; Bold font,
miRNA regulation in the brain tissue or CSF.
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8. Conclusions and Future Perspectives

Sleep homeostasis is strongly connected to circadian rhythm, and abnormalities in both are often
observed in patients with neurodegenerative diseases. Recently, emerging studies have suggested
that sleep and circadian alterations precede neurodegenerative diseases and may contribute to disease
progression. Growing bodies of evidence show that several circadian-related miRNAs are altered in
both sleep disorders and neurodegenerative diseases, as reviewed in this study. These facts imply that
the abnormalities in the expression of circadian miRNAs in patients with sleep disorders could be
biomarkers for future development of neurodegenerative disorders (Figure 2). Moreover, manipulation
of the expression of miRNAs in the early stage of diseases could be used as a treatment for sleep
disorders as well as neurodegenerative diseases. Further research is needed to develop therapeutics
for neurodegenerative diseases that are currently incurable and progressive.
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Figure 2. Models for interplay of miRNA regulation, circadian rhythm, sleep homeostasis and
neuroprotection. Common miRNAs which could regulate circadian rhythm, sleep homeostasis
and redox states are represented. Sleep homeostasis is strongly connected to circadian rhythm.
Disruption of circadian rhythm causes sleep disorder, and vice versa. Patients with neurodegenerative
disease often complain of sleep deprivation. Moreover, sleep disorders can be an early symptom of
neurodegenerative diseases. Several miRNAs that are altered with the circadian abnormalities, sleep
disorders or neurodegenerative diseases are dysregulated in the brain and blood of disease-model
animals or patients with neurodegenerative diseases. Taken together, these facts suggest that miRNAs
have the potential to be biomarkers as well as therapeutics for these diseases.
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