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Abstract: Conductive polymers are nowadays attracting great attention for their peculiar mechan-
ical, electrical and optical proprieties. In particular, PEDOT can be used in a wide range of inno-
vative applications, from electroluminescent devices to photovoltaics. In this work, the electro-
chemical deposition of 3,4 ethylenedioxythiophene (EDOT) was performed on various substrates
(ITO, thin films of gold and palladium on silicon wafers) by means of both potentiostatic and poten-
tiodynamic techniques. This was intended to further expand the applications of electrochemically
deposited PEDOT, particularly regarding the preparation of thin films in tight contact with elec-
trode surfaces. This allows one to obtain systems prone to be used as electrodes in stacked devices.
Chronoamperometric experiments were performed to study the nucleation and growth process
of PEDOT. SEM, ESEM and AFM analysis allowed the characterization of the morphology of the
polymeric films obtained. Raman and visible spectroscopy confirmed the high-quality of the coatings
on the different substrates. Then, the PEDOT films were used as the base material for the further
electrodeposition of a copper layer. In this way, a hybrid electronic device was obtained, by us-
ing electrochemical methods only. The high conductivity and ohmic behavior of the device were
confirmed over a wide range of frequencies with electrical impedance spectroscopy analysis.

Keywords: PEDOT; electrosynthesis; hybrid solid-state electronic device; Cu electrodeposition;
Raman; visible spectroscopy; SEM; AFM; polymer coating

1. Introduction

Conductive polymers (CPs) constitute an important class of materials, which com-
bine some mechanical characteristics of plastics with the typical electrical properties of
semiconductors; these polymeric species contain conjugated bonds, which give rise to
almost continuous valence and conduction bands. Furthermore, many CPs are charac-
terized by optical transparency in the oxidized state and by a modulable band gap [1].
This means that these polymers can be useful in multiple applications, including catalysis [2],
electroluminescent devices [3–5], organic transistors [6–11], LEDs [12–15] and photovoltaic
polymer cells [16–23]. CPs also exhibit good adhesion to electrode surfaces [24]. For these
reasons, the field of conductive polymers has attracted the interest of many scientists
since their discovery [2]. Compared to inorganic semiconductors, CPs offer further advan-
tages, such as a low switching time [25], a high contrast ratio (CR) [26] and a modulable
bandgap [24]. The chemical, electrochemical oxidation or reduction of the polymeric chains
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of CPs generate charge centers, which are responsible for the electrical conductivity of
these species [27]. A significant research area related to CPs concerns the preparation of
optically transparent polymers, easily subjected to both n-type and p-type doping and
highly conductive in the doped state.

Among the numerous conductive polymers, polyanilines, polypyrroles, polythiophenes,
polyphenylenes and poly (p-phenylene vinylenes) are of particular importance. In par-
ticular, the polyaniline family is characterized by low cost and the possibility of being
obtained in the bulk form. However, the possible presence of benzidines in the polymer
backbone, which can lead to the formation of toxic (carcinogenic) products by degrada-
tion, considerably limits the applications of polyaniline and derivatives. Heteroaromatic
polypyrroles, polythiophenes and poly (p-phenylenes vinylenes) are more environmentally
friendly systems, still presenting the disadvantages of being insoluble and non-fusible.
To overcome these problems, an attempt was made to obtain derivatives of these polymeric
species. By modifying the structure of the main polymer chain and the chemistry of the
side groups, alternative CPs with a great variety of properties have been developed [28].

One of the most important conductive polymers is poly (3,4 ethylenedioxythiophene)
(PEDOT), which can be obtained by synthetic or electrochemical processes. By means of
electropolymerization, it is possible to obtain polymeric films of high morphological quality,
with small quantities of the initial monomer and short polymerization times. PEDOT can be
synthetized by chemical or electrochemical polymerization of 3,4-ethylenedioxythiophene
(EDOT), a thiophene derivative with positions 3 and 4 blocked by an ethylenedioxy
group [28,29]. The most important reactions of EDOT are those of oxidation, typically with
the result of producing conductive oligomers and polymeric materials in the presence of
doping counterions (anions), which balance the charges [8]. Among the organic conductive
polymers, polythiophenes and their derivatives, such as PEDOT, are of particular interest
due to their high stability. In particular, PEDOT presents multiple advantages over un-
substituted polythiophenes. Indeed, the introduction of the ethylenedioxy substituents in
positions 3 and 4 of the monomeric ring of EDOT prevents α,β and β,β couplings during
the polymerization process. Consequently, the resulting polymer is more defined from
a regiochemical point of view. Furthermore, the electrochemical synthesis of PEDOT is
facilitated compared to that of an unsubstituted polythiophene. This occurs since the
oxidative potential of EDOT is lower than that of thiophene [1,28]. Therefore, PEDOT has
established itself as one of the most important materials among conductive polymers and
has acquired great popularity in the scientific community. Many research groups have
focused on PEDOT chemistry in recent years, bringing about an exponential increase in the
number of patents and publications. This material features a unique combination of proper-
ties: high conductivity (≈300 S/cm) [19,30], good transparency in thin films [3,7] and low
bandgap (1.6–1.7 eV) [31]. These characteristics make PEDOT films suitable for optoelec-
tronic and hybrid electronics applications, allowing the preparation of organic/inorganic
interfaces without the need of high-cost vacuum techniques [32].

In this work, the electrochemical polymerization of PEDOT was investigated to further
expand the range of possible uses of PEDOT. In that, electrochemically grown polymers,
with respect to chemically synthesized ones, allow for the preparation of thin films in tight
contact with electrode surfaces. In this way, systems prone to be used as electrodes in
stacked devices can be obtained. Moreover, electrochemically grown polymers were quite
recently exploited in obtaining intrinsically grown chiral PANI, thus paving the way for the
preparation of 2D layered materials to be used in spintronic devices. [33,34]. Potentiostatic
and potentiodynamic electrochemical depositions were performed on various substrates:
indium tin oxide (ITO) glass and silicon wafers coated with thin films of gold and palladium.
The obtained PEDOT coatings were characterized by environmental scanning electron
microscopy (ESEM), scanning electron microscopy (SEM), atomic force microscopy (AFM)
and visible and Raman spectroscopy. Then, the polymeric films were further used as
working electrodes, undergoing a copper metallization. In this way, a hybrid electronic
device was obtained, by using electrochemical methods only. The conductivity and the
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ohmic behavior of the samples were characterized by means of electrochemical impedance
spectroscopy (EIS).

2. Materials and Methods

Sigma Aldrich 3,4-ethylenedioxythiophene 97% (EDOT), Sigma Aldrich copper (II)
sulfate CuSO4 ≥ 99%, Sigma Aldrich sulfuric acid H2SO4 ≥ 99.9%, Thermo Fisher ACS
reagent grade LiClO4 ≥ 95% and Sigma Aldrich ACS reagent grade acetonitrile (ACN)
≥ 99.5% were used without further purification. The EDOT polymerization studies and
the copper metallization were performed in a one-compartment, three-electrode electro-
chemical cell. Three different substrates were used as working electrodes: ITO (1 × 2 cm2),
gold and palladium supported on silicon (1.5 × 1.5 cm2). The counter-electrode was a Pt
wire, and an Ag wire was used as pseudo-reference. The solutions were de-aerated by
bubbling N2 for 15 min before each electrochemical experiment, which was performed
under N2 atmosphere at room temperature. Prior to each electropolymerization process,
the working electrodes were cleaned by sonication in EtOH, then rinsed with AcOH and
distilled water and finally dried with N2. The electropolymerization studies, deposition of
PEDOT and metallization with copper were performed by means of cyclic voltammetry and
chronoamperometry in unstirred solutions. The electropolymerization solution consisted
of 10 mM EDOT and 0.1 M LiClO4 in ACN. The copper metallization was carried out in
an aqueous solution of 1.5 M H2SO4 and 0.5 M CuSO4 (measured pH oscillating between
1 and 1.5). The electrochemical experiments were performed by means of a Metrohm
µAUTOLABIII (Herisau, Switzerland). EIS measurements were recorded in air using a
2-electrode configuration, in the region of frequency 104–0.1 Hz. Samples were contacted
to the electrodes using silver paste. Sinusoidal amplitude (Vrms) of 0.01 V, from 100 kHz
to 0.1 Hz, with 10 samplings per decade, were used. No additional DC bias was applied
between the electrodes. The microscopic characterization of PEDOT films was carried out
using an environmental scanning electron microscope (ESEM; Quanta-200, Fei Company,
Oxford Instruments (High Wycombe, UK). The scanning electron microscopy analysis and
the focused ion beam (FIB) ablation were performed by means of a GAIA 3 instrument
equipped with Triglav electron and gallium FIB Cobra Gallium columns manufactured by
Tescan (Brno, Czech Republic). Atomic force microscopy measurements were carried out
in contact mode with a Si3N4 triangular cantilever (Veeco, NP-S10, Munich, Germany) on a
PicoSPM (Molecular Imaging, AZ, USA). The spectrophotometric measurements on the
PEDOT films on ITO were performed by means of UV–VIS Cary 300 Agilent Technology
(Santa Clara, CA, USA). Raman spectra were obtained by a Jobin Yvon LabRAM confocal
Raman microscope (Horiba, Darmstadt, Germany) with a Peltier cooled CCD detector.
A solid state 532 nm, with 60 mW maximum power, was used.

2.1. Potentiodynamic Growth

In the potentiodynamic deposition, the film was grown by repeatedly cycling poten-
tials between −0.6 V and 1.3 V, with a sweep rate of 50 mV/s. Figure 1a shows 8 consecutive
CVs scans of EDOT solution on the gold electrode. In the first CV scan, the oxidative onset
potential was at 1.1 V, and then the current density increased, reaching a maximum value
at 1.3 V. Starting from the second CV scan, the onset oxidative process shifted at lower
potentials and set at 1.0 V in the last cyclic voltammetry. This suggests that the repeated de-
position of PEDOT promotes monomer oxidation, facilitating the formation of the polymer
coating on the gold electrode. The current density peak increased with every cycle.
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Figure 1. Eight consecutive CVs of the EDOT solution between −0.6 V and 1.3 V, starting from the OCP, scan rate 50 mV/s,
on the various substrates: (a) gold, (b) palladium and (c) ITO.

Indicating the continuous growth of the PEDOT film on the substrate. Furthermore, depo-
sition after deposition, the current density range of the CVs widened, with an increase of
both cathodic and anodic current. This capacitive effect arose from the continuous growth
of the electroactive polymeric film on the electrode, with a thickness that increased scan
after scan [35].

The trend of PEDOT deposition on the palladium electrode (Figure 1b) was like that
previously described. However, the maximum current density value in the first CV scan
was significantly higher than the one registered on gold (Figure 1a). This may suggest that
the formation of the polymer coating is favored on the Pd electrode, with a higher amount
of the PEDOT film deposited after the first CV scan. A homogeneous blue polymer coating
was obtained after 8 CVs scans on both gold and palladium. The electropolymerization of
PEDOT on ITO differed significantly from the one that took place on the metal electrodes.
The onset oxidation potential was still at 1.1 V, but the overall current density values
were definitely lower (Figure 1c). Furthermore, the first 4 CVs showed a crossover of the
reverse cathodic scan over the anodic one, bringing about the so called “nucleation loop”.
In particular, the current density of the reverse scan was higher than the anodic one in
the region between the switching potential and the onset oxidative potential (1.1–1.3 V).
This phenomenon has been interpreted as being due to polymer nucleation effects [36] or,
more recently, to homogeneous reactions involving the starting monomer and the oligomer
follow-up product [37]. The nucleation loop disappeared from the fifth CV on (Figure 1c),
being replaced by the growth of the polymeric nuclei previously deposited. At the end
of the potentiodynamic polymerization, non-homogeneous dark blue spots of PEDOT
covered the surface of the immersed area of the electrode. Therefore, the potentiody-
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namic route does not seem to be the optimum process to obtain PEDOT films on ITO.
However, the potentiodynamic route set the basis for further investigation of PEDOT
deposition by means of potentiostatic methods. Indeed, the detection of the onset oxidation
potential and the maximum current density values in Figure 1 allowed us to look for the
optimum conditions to obtain the PEDOT film potentiostatically on the different electrodes.
Of note was the presence of two isoamperic point potentials found during the scans on all
the different substrates (Figure 1), the one at cathodic potentials (−0.5 V) and the other at
anodic ones (1 V) [38].

2.2. Potentiostatic Growth

The potentiostatic deposition of PEDOT on Au, Pd and ITO was studied by means of
chronoamperometric experiments. Before each potentiostatic polymerization, the working
electrode was switched from the open circuit potential (OCP) to 0.8 V for 5 s. This step
allows for the formation of a double-layer charge between the electrode and the solution
interface [39]. Under these experimental conditions, the adsorption of the monomer is
absent or negligible [40]. Then, the EDOT polymerization was performed by polarizing the
electrode for 30 s at different potentials, in the range between 1.1 V and 1.3 V (Figure 2).

Figure 2. Chronoamperograms of EDOT solution at various potentials for 30 s on (a) gold, (b) palladium and (c,d) ITO.

Figure 2 shows the current density–time plots for the potentiostastic electropolymer-
ization of PEDOT on Au, Pt and ITO. On gold, the depositions performed between 1.15 V
and 1.22 V (Figure 2a) were characterized by a similar trend, which could be divided into
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two different regions. The general features of these curves were similar to those reported
in the literature [40–45].

Initially, in the first region, the current density variation followed a t−1/2 law. This be-
havior is related to the diffusion-limited oxidation of the monomer. This process consists
of the diffusion of EDOT from the solution towards the electrode. Then, the molecules
of the monomer oxidize and return to the solution, where the oligomerization process
occurs in front of the surface of the electrode. The formation of an oligomeric high-density
region leads to the deposition of cluster deposits onto the substrate, creating the growing
nuclei [28]. These processes occurred during the time at which the current density was
minimal (induction time).

After the induction time, in the second region, the current density increased and
reaches a plateau. This behavior of the chronoamperogram is generally attributed to the
process of nucleation and growth [40].

The lowest current density plateau was recorded at 1.15 V. The current density plateau
value increased by increasing the deposition potential. This may indicate the deposition
of a higher amount of PEDOT on the gold electrode by increasing the oxidative depo-
sition potential value. The current density–time curve obtained by depositing PEDOT
at 1.25 V for 30 s followed a trend that only partially overlapped with those previously
described. Indeed, after 5 s of deposition, the current density reached a maximum peak.
Then, the current density decreased, bringing about a noisy signal that did not set to a
plateau value. This may suggest that the deposition of PEDOT diverts on gold from the
nucleation and growth model previously described, starting from a deposition potential of
1.25 V. A homogeneous film of PEDOT was obtained on gold after 30 s of deposition in the
potential range of 1.15–1.25 V.

The deposition performed between 1.15 V and 1.198 V on palladium (Figure 2b)
showed the same regions previously described in the case of the gold substrate. This sug-
gests that the nucleation and growth process of PEDOT on palladium in the potential
range of 1.15–1.198 V followed a behavior similar to the one taking place on gold from
1.15 V to 1.22 V. At higher potentials (1.20–1.25 V, Figure 2b), the chronoamperometric
behavior changed also in the case of the palladium electrode, and the current density
reached a peak instead of a plateau. Therefore, the deposition of PEDOT on palladium in
the potential range of 1.198–1.25 V seemed to follow the exact same trend of the one taking
place on gold-on-silicon from 1.25 V. A homogeneous film of PEDOT was obtained on
palladium in potentiostatic conditions after 30 s of deposition, starting from 1.19 V. On the
contrary, a high-quality coating of the polymer on gold was deposited at lower potentials,
starting from 1.15 V. Therefore, it can be said that the deposition of PEDOT in potentiostatic
route is favored on gold.

Figure 2c shows the current density–time curves related to the deposition of PEDOT
on ITO for 30 s at different potentials. Once again, the same trend was observed, and the
two main regions were individuated as in the case of Au and Pd. This suggests that the
potentiostatic nucleation and growth process of PEDOT on ITO between 1.2 V and 1.25 V
follows the same behavior described on gold from 1.15 V to 1.22 V and on palladium
between 1.15 V and 1.198 V. On the contrary, the PEDOT deposition on ITO at 1.3 V differed
from this trend. Indeed, after reaching a minimum value, the increase in the current density
as a function of time was nearly negligible since the curve remained substantially flat.
This is evidence of the fact that the nucleation process of PEDOT on ITO at 1.3 V is much
more favored than the growth of the nuclei. The potentiostatic deposition of PEDOT on
ITO in the range between 1.2 V and 1.3 V for 30 s produced non-homogeneous dark blue
spots on the surface of the electrode. A homogeneous and high-coverage film was obtained
by applying the onset oxidative potential value (1.3 V) for 5 s, in order to enhance the
nucleation process. Then, the potential was switched at a lower value (1.15 V) for 120 s,
enabling the growth of the nuclei (Figure 2d).
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2.3. Raman, Visible, SEM, ESEM and AFM Characterization

An investigation of the microstructure of the electropolymerized PEDOT films was
performed by SEM, ESEM and AFM analysis. Microscopy acquisitions were captured
for each of the different samples, meaning the polymer deposited on diverse substrates:
Pd, Au and ITO. The obtained micrographs are displayed in Figure 3, Figures S1 and S2.

Figure 3. ESEM images of the PEDOT films on (a) Pd, (b) Au, (c) ITO.

The morphology appeared rough and dense, with highly visible cluster sites and
uniform particle sizes (Figure 3, Figures S1 and S2). The difference between the two
metallic substrates (Figure 3a,b) was negligible. On the contrary, the PEDOT films on ITO
evidenced a more indented pattern, suggesting a greater contribution from nucleation.
This effect can be related to the ITO surface’s higher roughness, with respect to the metal
ones. The Raman spectra confirmed the presence of PEDOT in all the samples. As seen
from Figure 4a, the bands at 440 cm−1, 992 cm−1 and the broadband at 1240–1270 cm−1

were assigned to the C–O–C deformation, oxyethylene ring deformation and Cα–Cα

inter-ring stretching, respectively. In particular, the peculiar band at 1427 cm−1 due to
symmetric Cα=Cβ (–O) stretching indicated a high level of conjugation in the structure of
PEDOT [46–48]. The visible spectrum of the PEDOT coating on ITO (Figure 4b) showed
the characteristic broadband dip in the absorption signal at approximately 400–700 nm,
which may be related to the π–π* transitions of thiophene ring [48].
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Figure 4. (a) Raman spectra of PEDOT/Pd, (b) visible spectrum of PEDOT/ITO.

2.4. Copper Electrodeposition

The previously electropolymerized PEDOT samples underwent copper metallization,
described by Equation (1).

Cu2+
aq + SO2−

4 aq + 2e− 
 Cus + SO2−
4 aq (1)

The Cu2+ ions were reduced by an electrochemical one-step process on the polymer
coated substrates in an acidic electrolyte solution (1.5 M H2SO4 and 0.5 M CuSO4, pH rang-
ing between 1 and 1.5). Potentiostatic and galvanostatic methods were both investigated,
exploring different parameters combinations, in order to obtain a uniform layer of copper
with a thickness between 1 and 4 µm [49,50]. In particular, the copper depositions on
PEDOT/Pd, PEDOT/Au and PEDOT/ITO were performed at −0.8 V for 300 s, −0.007 A
for 600 s and −0.9 V for 600 s, respectively. Figure 5 shows the copper deposition curves
on the different samples. An example of a produced sample, including the schematic
representation of the layers, is reported in Figure 6.

Figure 5. Curves of the copper deposition on three different working electrodes: (a) PEDOT/Pd, (b) PEDOT/Au, (c) PE-
DOT/ITO. The electrodepositions were accomplished in a one-compartment, three-electrode electrochemical cell, with Pt
wire as the counter electrode and an Ag wire as the reference electrode.
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Figure 6. Image of the specimen Cu/PEDOT/Au.

2.5. Electrical Impedance Spectroscopy

Electric impedance spectroscopy was used to characterize the PEDOT–Cu hybrid sys-
tems obtained (Figure 7and Figure S3). Two-electrode measurements were performed on
all the samples, by contacting one electrode to the conductive substrate (Pd, Au, ITO) and
the other to the copper layer on PEDOT. Contacts were obtained connecting copper thin
wires to the sample with a small amount of silver paste. The sandwich-like systems pre-
sented an ohmic behavior all over the wide range of frequencies analyzed. The PEDOT–Cu
device developed on the palladium and gold substrates was characterized by a resistance
of 240 Ω cm2 and 335 Ω cm2, respectively. On the contrary, the hybrid system obtained on
ITO showed a higher resistance (8 × 103 Ω cm2), possibly due to the lower conductivity of
the substrate.

Figure 7. Bode plot of the PEDOT/Cu device, obtained on the three different substrates (Pd in black,
Au in red, ITO in blue). Areas of interest are magnified in the two insets, which help in visualizing
the Z values.
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3. Conclusions

In the present study, we evaluated the optimal electrochemical conditions to obtain a
hybrid Cu/PEDOT electronic solid-state device. The deposition of PEDOT was studied on
different substrates (ITO, thin films of gold and palladium on silicon wafers) by both poten-
tiostatic and potentiodynamic techniques. The first one produced high-quality deposits on
the metal substrates but did not seem to be the optimum process to obtain PEDOT films on
ITO. Smooth and homogeneous coatings of the conductive polymer on Au/Si and Pd/Si
were also obtained with the potentiostatic route, starting from 1.15 V and 1.19 V in the case
of gold and palladium, respectively. Chronoamperometric experiments confirmed a change
in the nucleation and growth process over 1.198 V and 1.22 V for Au and Pd, respectively.
The potentiostatic deposition of PEDOT on ITO produced non-homogeneous dark blue
spots on the surface of the electrode. Instead, a high-coverage polymeric film was obtained
on ITO by firstly applying an oxidative potential pulse (1.3 V for 5 s), then growing the
polymer at 1.15 V for 120 s.

Therefore, the optimal electrochemical conditions were set to obtain homogeneous
PEDOT films on all the substrates. Raman, visible, ESEM, SEM and AFM characterization
confirmed the high quality of the conductive polymeric coatings. Then, a further layer of
copper was electrodeposited on PEDOT films on the different electrodes. In this way, a hy-
brid electronic solid-state device was obtained by means of electrochemical methods only.
Electrical impedance spectroscopy analysis confirmed the high conductivity of the PEDOT–
Cu device and its ohmic behavior over a wide range of frequencies analyzed. This further
expands the possible applications of electrochemically deposit PEDOT, especially to obtain
systems prone to be used as electrodes in stacked devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/surfaces4020015/s1, Figure S1: SEM images of (a) the PEDOT film on Au and (b) the cross
section of the polymeric deposit on Au, Figure S2: (a) AFM analysis of PEDOT film on Au (the
horizontal lines 1-2 are to be intended as references for the plot profile (Figure S2b). (b) Plot profile of
PEDOT film on Au observed from the two different horizontal lines present in Figure S2a. (c) 3D
view of the AFM analysis, Figure S3: (a) Curves of the Copper deposition on three different working
electrodes: Pd, Au and ITO. (b) Electrical Impedance Spectroscopy of the Substrate/Cu devices,
(Pd in black, Au in red, ITO in blue).
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