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Abstract: MoS, supported on oxides like TiO, has a broad range of applications. The atomic structure
of this system is therefore very useful to study. Previous research work in this area has made use
of high-temperature synthesis methods, while the preparation of an MoS,/TiO; in very important
applications, such as catalysis, makes use of a low-temperature synthesis method. In this work,
we investigate a low-temperature synthesis strategy for MoS; slabs supported on rutile TiO,(110).
Using scanning tunneling microscopy and X-ray photoelectron spectroscopy, we demonstrate that not
only flat MoS; slabs with irregular shapes but also MoSy stripes with a large number of coordinatively
unsaturated Mo atoms are formed. In particular, it becomes evident that, for atomic structural
characterization of MoS,/TiO; and similar oxide-supported systems grown by low-temperature
synthesis methods, the surface structure of the support becomes highly relevant.

Keywords: MoS;; TiO,; scanning tunneling microscopy (STM); X-ray photoelectron spectroscopy (XPS)

1. Introduction

Nanostructured MoS,/TiO; composites have attracted a lot of interest as a model system for
applications in electronics [1-3], photovoltaics [4], electrocatalysis [5], and heterogeneous catalysis [6],
combining a transition metal dichalcogenide (TMDC) and a wide-bandgap semiconductor. In particular,
the promoted MoS,/TiO; system is widely applied in industry, to perform hydrodesulfurization (HDS)
and reduce the global SOy emissions [7-9] More recently, the MoS,/TiO, system has also found
application as an efficient hydrogen evolution reaction (HER) catalyst [10].

Despite the widespread applications, many fundamental properties of the MoS;-TiO, system,
especially those relevant for catalysis, such as the atomic structure and reactivity of the edges,
are disputed due to the difficulty of resolving the edge structure with sufficient contrast in conventional
characterization techniques, such as electron microscopy [11,12]. Recent studies on model systems have
attempted to tackle some of these challenges by using scanning tunneling microscopy (STM) and X-ray
photoelectron spectroscopy (XPS). For instance, Kibsgaard et al. [6] have shown that the morphology of
MoS; slabs supported on rutile TiO,(110) depends on the atomic structure of the TiO,(110) surface and
the synthesis temperature. The MoS, slabs grown by using physical vapor deposition (PVD) at 900 K
are hexagonal, while at 950 K, elongated particles are formed. Galhenage et al. [13] have investigated
the effects of exposure of MoS,/TiO,(110) grown by PVD at 950 K to various gas environments, such as
D,, CO, and methanol. The MoS; slabs grown on TiO,(110) by alternative strategies, like chemical
vapor deposition (CVD), have shown efficient excitonic separation between the MoS, and TiO, phases
and, hence, better photocatalytic activity [14]. In all of these studies, MoS, is grown at temperatures
above 900 K and thermodynamically favorable pristine MoS; slabs with well-defined edges, and the
basal planes lying flat on the TiO,(110) surface are observed.
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In industrially relevant systems such as a HDS catalyst, however, MoS, is typically grown at much
lower temperatures, between 573 and 673 K, using wet chemical procedures [15-17]. Transmission
electron microscopy (TEM) studies of MoS; grown at low temperatures on various facets of rutile and
anatase TiO, have shown the presence of “edge-on” supported MoS; slabs [18,19]. X-ray absorption
fine structure (XAFS) studies of the Mo K-edge of MoS; slabs grown on TiO(110) at lower temperature
have indicated the presence of MoS, clusters with Mo being in five-fold coordination or less [20,21].
Such unsaturated Mo atoms were assigned to small MoS; clusters potentially growing as stripes on
the TiO; surface [20]. On the contrary, prior STM-based studies on MoS,/TiO,(110) fabricated by
the high-temperature synthesis procedure have not observed the formation of any such structures.
Given the sensitivity of the MoS, morphology to the synthesis temperature, it is important to synthesize
MoS; on the TiO, surface at lower temperatures, in order to gain atomic level insights, especially those
relevant for industrial HDS. However, such attempts are complicated by the reactivity of the TiO5(110)
substrate towards sulfur. Studies performed by other groups have shown that, depending on the
temperature and the coverage, sulfur can form a plethora of structures by binding to five-fold
coordinated surface Ti atoms, by replacement of the surface bridging oxygen atoms or by replacement
of the near-surface in-plane oxygen atoms [22-25]. Such complications are conveniently avoided at
higher temperatures, as the sulfur desorbs from the TiO,(110) surface.

In this work, we report a synthesis procedure to grow MoS, on rutile TiO,(110) at a catalytically
relevant low temperature of 650 K. We start with depositing Mo nanoparticles on a clean TiO,(110)
surface. The Mo nanoparticles are thereafter sulfided by using H,S as the sulfiding agent. We make
use of STM and XPS to study the morphology of MoS;. We show that our synthesis procedure yields
irregular shaped MoS; slabs with their basal planes lying flat on the substrate and “edge-on” MoSx
stripes forming as elongated structures aligned along the [ﬁO] direction of the TiO,(110) substrate.
Athigher initial Mo coverage, we obtain predominantly multilayered MoS; slabs with their basal planes
lying flat on the substrate. Furthermore, we show that all of these structures adhere to a (3 x 1) lattice
on the TiO,(110) surface formed by adsorption of sulfur. Additionally, we present possible atomic
models supported by our experimental results to explain our findings for future theoretical work.

2. Materials and Methods

All the experiments were carried out in the ReactorSTM setup [26]. A polished rutile TiO,(110)
crystal was purchased from Surface Preparation Laboratory, Zaandam, the Netherlands. The TiO,(110)
crystal was cleaned by repeated cycles of sputtering and annealing. The sputtering was performed,
using Ar* with an ion energy of 1.5 keV, and annealing was performed at 873 K, for 10 min, in the
presence of Oy, at 2 X 107® mbar. Heating and cooling rates of 10 K/min were maintained to prevent
cracks in the crystals due to thermal shock. The ultimate cleaning cycle involved annealing in ultra-high
vacuum (UHV) at 900 K, for 10 min, to generate atomically flat TiO,(110) terraces. The cleanliness was
checked with XPS and STM, until impurities were below the detection limits. The TiO5(110) crystal
turned light blue after this cleaning procedure, due to the slight bulk reduction in UHV generating
oxygen vacancies, which act as color centers.

Mo metal was evaporated from an Mo rod, using an Oxford EGCO4 e-beam evaporator with the
TiO, substrate held at 300 K. Coverages of Mo were checked, using XPS and samples with 0.25, 0.49,
and 0.61 monolayer (ML) Mo nanoparticles were prepared as precursors for the sulfidation process.
The coverage of the Mo nanoparticles was calculated from the XPS spectra by comparing the peak
areas of Mo 3d and Ti 2p signals after correcting for the relative sensitivity factors [27]. The sulfidation
was carried out by heating the samples to 650 K for 45 min in an H,S atmosphere of 1 x 10~ mbar.
Thereafter, the samples were cooled to room temperature in UHV.

Scanning tunneling microscopy was performed at room temperature, using the UHV mode of
the ReactorSTM. Polycrystalline Pt-Ir 90-10 wires purchased from Goodfellow were cut and used as
STM tips without further processing. Constant-current scans were performed, using LPM video-rate
scanning electronics, described in detail elsewhere [28,29]. Home-developed Camera software and
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WSxM were used for STM image processing [30]. Most-common normal filtering was used to obtain
a correctly connected surface in order to calculate the height profiles. Line-by-line background
subtraction was used, otherwise, for the ease of viewing. No other processing was performed on the
STM images reported in this paper.

The XPS measurements were performed in a SPECS Phoibos system equipped with an XRM50
X-ray source set to the Al K-alpha line, used along with a monochromator, to excite the sample with
a beam spot of 0.4 mm diameter, at 55° incidence. The acceleration voltage was set to 10 kV, and a
power of 250 W was used for all the measurements. The HSA3500 hemispherical analyzer with a
pass energy of 30 eV was employed to analyze the photoemission. The bulk Tip, peak set to 458.5 eV
was used to calibrate the XPS spectra obtained [31]. The calibration was further checked by using
a separate clean Au(111) crystal by confirming the peak position of Auys at 84 eV. The number of
integrations was set to 20. The data thus obtained were characterized and quantified, using CASA-XPS
and with relative sensitivity factors reported in the literature [27]. The XPSPEAK41 software was
used for peak fitting the Mo 3d and S 2p spectra. The Mo 3d and S 2p peaks were fit, using mixed
Gaussian-Lorentzian (65-35) curves. Shirley background subtraction was applied and a non-linear
least squares method was used for peak fitting. The Mo 3d spectrum was fit with components for
Mo (228.0 eV), MoOx (228.7 eV), and MoO, (229.8 eV) for the Mo nanoparticles and MoS, (229.2 eV),
MoSy (228.8 eV, 228.3 V), and the S 2s (226.2 eV) component for the Mo sulfide samples. The MoSx
has two components arising from 5-fold and 4-fold coordinated Mo atoms. The S 2p spectra were
fit with components for S?~(161.8 eV) and bridging S,?~ (163.1 eV) doublets separated by 3.15 and
1.16 eV, respectively. These binding energies are tabulated in Table 1, and they are based on previous
experiments reported in the literature [32-39].

Table 1. XPS binding energies for various components used for peak fitting.

Components Mo Metal MoOy MoO, MoS,
Binding energy (eV) 228.0 228.7 229.8 229.2
ABE * (eV) 3.15 3.15 3.15 3.15
Components MoSy S2s S2- 2p S»2" 2p
Binding energy (eV) 228.3,228.8 226.2 161.8 163.1
ABE * (eV) 3.15 1.16 1.16

* ABE(3d) = BE 3ds, — BE 3d3),; ABE(2p) = BE 2p3» — BE 2pyp.

3. Results and Discussion

A clean TiO,(110) surface with atomic steps produced by our cleaning procedure is shown in
Figure la. The height of steps (Figure 1b) is measured to be 3.19 A and is very close to the monoatomic
step height 3.24 A of TiO,(110) [40]. The terraces show bright and dark rows along the [001] direction
(Figure 1c,d) characteristic of a slightly reduced UHV-annealed TiO(110) surface [22,40-42]. The bright
rows in Figure 1c are attributed to the Ti** atoms with five-fold coordination, and the dark rows are
attributed to the bridging oxygen atoms of the rutile TiO,(110) atomic structure [43]. Figure 1d shows
the presence of dark spots on the bright rows of the (1 x 1) structure. These features have been
interpreted as sub-surface oxygen vacancy sites in a previous study [42]. The bright features on the
dark rows which are expected for surface oxygen defects are not imaged here [42—44]. Pt-Ir tips are
known to be prone to a tip state where these features are not imaged and the appearance of the dark
features are enhanced [42]. The bright features observed in Figure 1d are likely due to residual -OH
groups on the surface [44].
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Figure 1. (a) Large-scale STM image of a clean TiO,(110) surface after sputtering and annealing in UHV
at 900 K; sample voltage = +2.2 V, tunneling current = 150 pA. (b) Height along line A in Figure 1a
shows the measured step height of clean TiO,(110) is 3.19 A. (c) Zoom in of the TiO,(110) surface
showing the alternating bright and dark rows characteristic of the (1 x 1) structure of slightly reduced
rutile titania. (d) Zoom-in of the area denoted by the yellow square in Figure 1c.

Mo metal was evaporated onto the clean TiO,(110) surface by physical vapor deposition from
an Mo, rod as detailed in the experimental methods. Figure 2a shows the large-scale STM image
of the Mo nanoparticles supported on the TiO,(110) surface grown to a coverage of 0.25 ML of Mo.
The Mo nanoparticles are observed to nucleate randomly on the TiO,(110) terraces and are 1.8-3.2 A
high (Figure 2b). Some nanoparticles of 4-5 A height are also observed. The Mo nanoparticles
uniformly cover the TiO,(110) surface and preference for any nucleation site was not observed.
Furthermore, the Mo 3d XPS spectrum (Figure 2c) shows a peak at 228.8 eV, which is less than the
expected 229.2 eV for Mo*", suggesting that the particles have an overall oxidation state of less
than 4. Peak fitting shows the presence of Mo**, as well as a sub-stoichiometric Mo oxide component,
suggesting that the particles are of the form MoO;_y. The lack of a preferred nucleation site and the
oxidation of Mo nanoparticles on the TiO,(110) surface suggest a very strong substrate—overlayer
interaction. Such a strong Mo-TiO;(110) interaction has been observed in the previous studies on this
system [32-35,45,46]. The nature of interaction between metal nanoparticles and the TiO, surface
depends on the initial heat of adsorption of oxygen on the respective metal nanoparticle, in comparison
to the initial heat of reduction of TiO,. In the case of Mo, the heat of absorption of oxygen is
greater than the heat of reduction of TiO,. Therefore, the transfer of oxygen from the surface to the
Mo nanoparticles leading to their partial oxidation is thermodynamically favorable [46]. The Mo
nanoparticles thus formed are known to have an oxidation state of less than 4, as observed in our
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experiment. Similar behavior is also observed for reactive metals with high heat of oxygen adsorption,
such as Re, Al, Hf, Cr, and Mn supported on TiO, [47-49]. Growing Mo nanoparticles to higher
coverages, for instance, to 0.49 ML, leads to an increase in their metallicity, as is evident from the
overall 0.4 eV shift of the Mo 3d spectrum to lower binding energy (see Supplementary Materials
Figure S1). The peak fits also show a non-zero contribution from the metallic Mo signature at 228.0 eV.
This increase in the metallicity of Mo is attributed to the kinetic limitations of oxygen diffusion from
the bulk TiO, to Mo nanoparticles and was observed in previous studies, as well [32].
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Figure 2. (a) Large-scale STM image of Mo nanoparticles supported on TiO,(110) grown by physical
vapor deposition at 300 K; sample voltage = +2.2 V, and tunneling current = 200 pA. The Mo coverage
is 0.25 ML, as determined from XPS. (b) Measured height along the line marked A in Figure 2a. (c) Mo
3d XPS spectrum of the Mo nanoparticles supported on TiO,(110).

The Mo nanoparticles thus prepared were sulfided at 650 K in a HS atmosphere of 1 x 1073 mbar,
as detailed in the experimental methods. Figure 3a,b shows large-scale STM images of MoS, slabs
on TiO,(110) formed after the sulfidation process. Upon sulfidation, the atomically flat structures
with a dark relative contrast and a bright rim along their perimeter are formed. We identify these
structures as MoS; slabs with their basal planes lying flat on the TiO, (110) support and refer to them
as “basal-bonded” MoS; slabs in the rest of this article. These MoS, slabs are of 3-5 nm size and
predominantly have an irregular shape (Figure 3b,c). The “basal-bonded” MoS; slabs, despite their
irregular shape, appear to be slightly elongated along the [ﬁO] direction. This is in contrast to the
MoS; slabs grown by the high-temperature synthesis methods used in prior studies where highly
elongated particles with well-defined edges aligned along both the [001] and [ﬁO] directions were
observed [6,13]. Kibsgaard et al. [6], in particular, observed a strong dependence of the shape of the
MoS; slabs on the synthesis temperature. The irregular edge shapes of the “basal-bonded” MoS; in
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our experiments are likely driven by the strong interaction of Mo nanoparticles with the TiO,(110)
substrate, as well as the adsorption of S on TiO,(110), which, in turn, strongly depends on the
temperature [22-25,50]. The atomic resolution of the basal planes of the “basal-bonded” MoS, slabs
shows an interatomic distance of 3.13 A (see Figure 3d), which matches well with the reported S-Mo-S
distance of 3.15 A of the (0001) basal plane of single-layer MoS; slabs [51]. This further shows that
the “basal-bonded” MoS; slabs grown in this experiment are crystalline in nature. Atomic resolution
along the edges was, however, difficult to obtain due to the low conductivity of the titania substrate.
Furthermore, the tendency for rapid tip changes due to the mobile sulfur species present on the sample
made it difficult to maintain the tip state required for the atomic resolution of the MoS, basal planes.

The observed bright rim along the periphery of the MoS; slabs was attributed to the electronic
effects of one-dimensional metallic states on the edges of the MoS; slabs called Brim sites [52]. The bright
rim of “basal-bonded” MoS, slabs supported on TiO,(110) is, however, more diffuse as compared to
MoS, on metallic supports like Au(111). These Brim sites were also observed on MoS; slabs grown
on TiO; at 900 K [6]. The measured height along the line marked A in Figure 3¢ (shown in Figure 3e)
shows that the “basal-bonded” MoS, slabs have the edge protrusions measured up to 5.1 + 0.1 A
high, while the basal planes are measured to be 3.3 + 0.2 A high, which is close to the theoretical
S-Mo-S distance of 3.15 A. However, the single-layer MoS, slabs with measured height of up to
4.7 A were reported in previous studies [6,13]. The measured height of MoS, is strongly influenced
by electronic effects due to the chemical state of the tip, applied sample voltage, and MoS,-TiO,
interactions, as well as the conductivity of the substrate, which, in turn, is influenced by the cleaning
procedure and fate of the substrate due to the inevitable sulfur-TiO, chemical reactions at the lower
synthesis temperature used in our experiment. Therefore, the comparison of our measured heights
with the previous literature reports becomes difficult. Since nearly all of the “basal-bonded” MoS,
slabs have the same relative contrast with respect to the TiO,(110) steps, we conclude that the synthesis
procedure yields predominantly single-layer “basal-bonded” MoS, slabs. Furthermore, we observe
that there are two types of Brim sites with a measured height difference of ~1 A. This is attributed to
the Mo- and S- terminated edges of the MoS; slabs having slightly different electron densities at the
respective Brim sites. Furthermore, the electron density at these Brim sites was found to have maxima
(bright spots) at the corner sites of the irregular “basal-bonded” MoS, slabs. Analysis of the locations
of these corner sites of nearby “basal-bonded” MoS, slabs showed that the bright spots were located
at positions which were integral multiples of ~6.2 A along the [110] direction and ~8.9 A along the
[001] direction, thus fitting a (3 x 1) TiO,(110) lattice (see Figure 3f) strongly suggesting that these
bright spots are related to bonding of the MoS; slabs with the substrate, likely through an edge sulfur
atom. Theoretical calculations, using density functional theory (DFT) on the influence of the substrate
interactions, are necessary to correctly assign the edge terminations.

Increasing the initial coverage of Mo nanoparticles to 0.49 ML followed by sulfidation also
formed “basal-bonded” MoS, slabs. However, the slabs were observed to merge along at least one
of their edges, thus forming effectively larger-size MoS; slabs. This effect can be seen in Figure 4a
and is better resolved in Figure 4b. The “basal-bonded” MoS, slabs thus formed retain their irregular
shape and also have an atomically flat basal plane with a dark relative contrast. However, we also
observed the formation of a significant number of slabs with a brighter contrast. Height lines along
the basal planes of these slabs show a measured height of ~5.8 A, suggesting the formation of a
second layer (see Supplementary Materials Figure S2). Upon further increasing the coverage of Mo
nanoparticles to 0.61 ML, followed by sulfidation, the MoS, slabs are predominantly “basal-bonded”
and are multilayered, as is evident from their STM contrasts (see Figure 4c). As the substrate is already
completely covered at this Mo coverage, determining the number layers of “basal-bonded” MoS; slabs
from the STM images becomes difficult. However, a layer-by-layer growth of the MoS, slabs is evident
from our experiments up to a coverage of 0.61 ML Mo.
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Figure 3. (a,b) Large-scale STM images of MoS, slabs supported on TiO,(110) obtained with a sample

voltage = +2.1 V and tunneling current = 150 pA. The coverage of Mo determined from XPS is 0.25 ML.

(c) Zoomed-in STM image showing MoS, slabs supported on TiO,(110). (d) Atom-resolved STM image

of the “basal-bonded” MoS; slab within the area marked by the yellow dotted square in Figure 3c.

(e) Measured height along the line marked A in Figure 3c. (f) A (3 x 1) lattice superimposed on the
“basal-bonded” MoS; slabs in Figure 3c. The red dotted circles show the locations where the bright
corner sites match the (3 x 1) lattice.
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Figure 4. (a,b) STM images of MoS, slabs supported on TiO,(110) obtained with a sample
voltage = +2.2 V and tunneling current = 150 pA. The coverage of Mo determined from XPS is
0.49 ML. (c,d) MoS; slabs supported on TiO,(110) obtained with a sample voltage = +2.2 V and
tunneling current = 200 pA. The coverage of Mo determined from XPS is 0.61 ML.

In addition to the “basal-bonded” MoS; slabs, we also observe the formation of several elongated
structures aligned along the [ﬁO] direction for all the coverages of Mo nanoparticles presented in
this work. These elongated structures have both intermediate and bright relative contrasts with
respect to the “basal-bonded” MoS; slabs, as seen in the large-scale STM images in Figures 3a and 4a,c.
These structures have not been observed to form in the previous studies involving the high-temperature
synthesis of MoS, on TiO; at 900 and 950 K. The measured height along the line marked B in Figure 3c
over one such elongated structure is shown in Figure 5a. The elongated structures were measured
to have a height of 7.2 + 0.2 A for the intermediate contrast ones and 11.7 + 0.4 A for the bright
contrast ones. Additionally, the elongated structures are 3-5 nm in length and are formed without
a preferred location as is seen from their uniform distribution on the TiO,(110) steps in Figure 4a.
Furthermore, these elongated structures are resolved into a row of bright spots separated by 6.2 + 0.1 A
(see Figure 5b). The elongated structures typically consist of two to four of these rows, separated by
8.6+ 0.2 A (see Figure 5b,c). These distances fit well with a (3 x 1) TiO,(110) lattice, suggesting that
strong substrate interactions are present and likely play a key role in the formation of these structures.
We also observed that the number density of the elongated structures decreases sharply with increasing
the Mo coverage from 0.25 to 0.49 ML but only decreases slightly with further increasing the Mo
coverage to 0.61 ML (see Supplementary Materials Table S1). However, we also observe that the
elongated structures always have a higher STM contrast than that of the “basal-bonded” MoS; slabs
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irrespective of the number of layers of MoS, grown, suggesting a more metallic nature of the elongated
structures. For example, in the case of Mo coverage of 0.25 ML, a relative height difference of up
to 8.3 + 0.4 A (see Figure 5a) is measured between the elongated structures and the basal planes of
nearby “basal-bonded” MoS, slabs, while in the case of Mo coverage of 0.61 ML, a height difference
of 7.4 + 0.2 A (see Supplementary Materials Figure S2) is measured. However, one may expect
that the geometric effect growing multiple layers of “basal-bonded” MoS, slabs eventually offsets
the electronic effects of an adjacent, more metallic elongated structure, and, therefore, the contrast
difference between the MoS, phase and the elongated structures should decrease with increasing
coverage of Mo. The measured height difference clearly contradicts this expectation. This observation
may, however, be explained by the vertical growth of the elongated structures with respect to the
TiO, substrate.
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Figure 5. (a) Measured height along the line marked B in Figure 3c over the elongated structures,
(b) Zoom-in of an elongated structure at high contrast resolving rows of bright spots. The STM image
is obtained with a sample voltage = +2.2 V and tunneling current = 400 pA. The coverage of Mo
determined from XPS is 0.25 ML. (¢) STM image showing the elongated structures formed as two to
four rows.

The Mo 3d and S 2p spectra of all sulfided samples are shown in Figure 6. After sulfidation,
irrespective of the coverage, all the Mo 3d spectra show a doublet with peaks at 229.2 and 232.3 eV
which are identified as those of MoS, and a shoulder at 226.1 eV, which is identified as an S 2s feature.
The Mo 3d doublets were fit based on the interpretations by Bruix et al. [36]. The observed Mo 3d
signal has no components of Mo®* and Mo®" states, suggesting complete conversion to MoS, and no
residual Mo oxysulfides within the detection limits of the XPS measurements. This matches very well
with our STM observations. Furthermore, the data also suggest the presence of sub-stoichiometric
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MoSy due to non-zero components at 228.7 and 228.3 eV. These two components have been assigned
by Bruix et al. to coordinatively unsaturated Mo atoms bound to sulfur, such as the edge Mo atoms of
an MoS; slab. Such coordinatively unsaturated Mo atoms have a lower oxidation state than that of
the Mo atoms in the basal plane of an MoS, slab and, hence, a lower binding energy signal in XPS.
Upon increasing the coverage of Mo from 0.25 to 0.49 ML, it is observed that the Mo0S,:MoSy ratio
increases. However, a further increase of Mo coverage to 0.61 ML does not change this relative ratio
significantly, as it is seen in Table 2. The S 2p peak shows a slight red-shift from 162.2 to 162 eV upon
increasing the coverage of Mo. The corresponding S 2s spectra also show this behavior. Furthermore,
the S 2p peak for low-coverage MoS, shows an asymmetry on the higher binding energy side of the peak.
Fitting is performed with components for S%2~ and S,2™ [37-39,53]. The S,2" states are attributed to the
presence of double S atoms on the edges of the MoS; slabs [38,39]. Our fits indicate an increase in the
S$27:5,2" ratio (see Table 2) upon increasing the Mo coverage to 0.49 ML, but the ratio remains the same
within experimental errors upon further increase of the amount of Mo. This observation corresponds
to the changes in the MoS;:MoS ratio noted from the Mo 3d spectra. Furthermore, the Mo:S ratio
remains fairly constant at ~1:2.2 upon increasing the coverage of Mo. The ratio of 1:2.2 is very close
to the expected value of 1:2 for MoS,. The extra sulfur could be attributed to the adsorption of S on
TiO,. The component for these sulfur atoms could not be satisfactorily resolved in the peak fits for
S 2p, due to overlap with the S,>~ component [24].
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Figure 6. Mo 3d and S 2p XPS spectra of MoS; slabs supported on TiO(110) at various initial coverages
of Mo.

Table 2. Ratio between various components of the XPS spectra in Figure 6.

Mo Coverage (ML) Mo:S  MoS;:MoSx §2-:G,2-

0.25 1:2.31 1:0.241 1:0.329
0.49 1:2.22 1:0.096 1:0.056
0.61 1:2.24 1:0.093 1:0.062

In order to gain insights into the fate of the TiO,(110) support after the sulfidation of the Mo
nanoparticles, the STM images of the sample obtained after sulfiding 0.25 ML Mo nanoparticles
were analyzed at high contrast to highlight the substrate (see Supplementary Materials Figure S3).
A characteristic (3 X 1) structure on the substrate that is identical to the well-known (3 x 1) sulfur
adsorption structure of TiO,(110) was observed to form on the exposed areas of the TiO, support [22,24].
It is expected that the exposure to H,S at elevated temperatures drastically changes the surface structure
of the TiO,(110) surface. The extensive studies on S-TiO; interactions in the past [22-25,50,54,55] have
shown that the interaction is very complex and can result in a wide variety of structures depending on
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the S coverage and temperature of adsorption. For instance, at room temperature, sulfur adsorbs on
the exposed titanium atoms (five-fold coordinated) of TiO,(110) but does not form ordered structures.
When the temperature is increased to 573 K, the bridging oxygen atoms are systematically replaced by
sulfur which eventually forms a (3 x 1) ordered structure. At 673 K, the in-plane oxygen atoms are
replaced by the sulfur atom pairs, forming an ordered (3 X 3) and ultimately a (4 x 1) structure [23,24].
Typically, the TiO,(110) surface has multiple structures co-existing depending on the sulfur coverage at
that given temperature as has been demonstrated by STM and low-energy electron diffraction (LEED)
experiments [24]. Based on these studies, at 650 K, the temperature used for MoS; synthesis in our
experiments, the formation of (3 x 3) and (4 X 1) domains is expected on TiO,(110). We did not observe
such structures in any of the STM images where the substrate is exposed. Instead, only a (3 x 1)
structure associated with a slightly lower coverage of sulfur was observed to form on the exposed
areas of the substrate. This can be explained by considering the presence of the overlayer of partially
oxidized Mo nanoparticles, which can act as a sulfur sink and compete with TiO, for the sulfur atoms,
thereby resulting in an effectively lower sulfur coverage on the TiO, substrate, since Mo nanoparticles
have a higher affinity for sulfur. Therefore, a (3 X 1) structure, corresponding to a lower sulfur coverage,
is likely to form. We also point out that (3 X 1) domains are also formed at elevated temperatures,
as have been observed in previous experiments [24].

Given our observation that the bright spots on the “basal-bonded” Mo$S, slabs conform to a (3 x 1)
lattice, we propose that the overall rounded structure of the MoS, slabs is due to interactions of the
edges with the (3 x 1) S adsorption structure on TiO,(110). This is not surprising, as prior studies have
shown that the morphology and stoichiometry of Mo sulfides strongly depend on the interactions
with the support [56-60]. Taking into account the observation that the “basal-bonded” MoS, slabs are
oriented along the [ﬁO] direction, we present a possible atomic model to account for our experimental
findings. We take the case of the “basal-bonded” MoS, slab marked 1 in Figure 3c. The proposed
atomic model for this MoS; slab is shown in Figure 7a. In our model, a pair of opposite edges of
the MoS, slab with S- and Mo-terminations are oriented along the [ﬁO] direction of the TiO,(110)
surface with the (3 x 1) sulfur structure. The terminating S atoms along these edges interact with
both the five-fold and four-fold coordinated Ti atoms of the (3 X 1) structure. The S-S distance in
the basal plane of MoS; is 3.15 A, which matches well with the distance of 6.2 A of the alternate
Ti rows in the (3 X 1) structure of TiO,(110) facilitating an MoS, edge—substrate Ti interaction for
every alternating S atom of the MoS; edges. This may also be visualized by considering alternating
lower edge S atoms lying close to the TiO,(110) surface as belonging to the (3 x 1) TiO,(110) structure.
Furthermore, the STM images of all the “basal-bonded” MoS; slabs show that the corner sites of the
slabs appear very bright, suggesting a high metallicity of these sites. Similar bright corner sites have
been observed in Ni-promoted Mo$S, slabs supported on gold, where some slabs adopt a more rounded
shape, with corner sites having coordinatively unsaturated Ni and Mo atoms [52]. The edge sites in
these experiments have coordination numbers less than 5. Furthermore, the XAFS studies of promoted
and unpromoted MoS, catalysts supported on TiO, showed that, for small MoS, slabs, Mo atoms tend
to have coordination numbers between 4 and 5.5, resulting in sulfur-deficient edge terminations which
are stabilized by bonding to the TiO, substrate [20,21]. We propose that the terminating corner sites in
the “basal-bonded” MoS, slabs in our experiments are formed due to an unsaturated Mo atom of less
than 6 coordination number. The conformation of the MoS; slab to the (3 x 1) sulfur structure likely
stabilizes these coordinatively unsaturated Mo sites. As a comparison, we overlay the particle marked
1 in Figure 3c over our atomic model (see Supplementary Materials Figure S4). A visual comparison
clearly shows a close match between the locations of the bright spots in the STM image and locations
of coordinatively unsaturated Mo corner sites in our atomic model.
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Figure 7. (a) Possible atomic model of the “basal-bonded” MoS; slab supported on TiO,(110) with a
(3 x 1) structure due to S adsorption. (b) Possible atomic model of “edge-on” MoSy stripes supported
on TiO,(110), with a (3 x 1) structure, due to S adsorption.

In addition to the “basal-bonded” MoS, slabs, the elongated structures are also oriented along
the [ﬁO] direction of the TiO, substrate. Furthermore, these structures have rows of bright spots
that also closely fit a (3 x 1) lattice, suggesting strong substrate interactions. We first consider the
possibility of the elongated structures being formed by S atoms reacting with the TiO,(110) substrate.
The well-known (4 X 1) structure of sulfur on TiO,(110) also has a similar geometry, albeit with the rows
of bright spots separated by 3.2 A [24]. The previous experiments on S-TiO,(110) interactions showed
that the measured height difference of this structure with respect to areas of the substrate with the
(3 x 1) structure is, however, only about 0.5 A in contrast to the 7.2 + 0.2 A and 11.7 + 0.4 A measured
for the elongated structures in our experiments. The excess sulfur atoms are also not known to form any
ordered structures on TiO(110) at 650 K. Thus, we rule out the possibility that the elongated structures
are formed by sulfur atoms alone. Leliveld et al. [20,21] have observed the formation of small MoS,
clusters on a TiO, support with only 4-15 Mo atoms per slab, with most of the Mo likely bonding with
the substrate. They have suggested the formation of linear chains of MoS, oriented along the [ITO]
direction of rutile TiO, as a possible candidate structure. Chen et al. [61] and Uetsuka et al. [19] have
observed the edge-on coupling of MoS, slabs to anatase TiO, surfaces. Uetsuka et al. [18], in another
study, also reported the formation of edge-on coupled MoS; slabs on rutile TiO,(110), when pure
H,S was used as a sulfiding agent, using high-resolution transmission electron microscopy (HRTEM)
experiments. Furthermore, many MoSx-type molybdenum sulfides are known to form striped phases
on suitable substrates [58,60]. We consider the possibility of the elongated structures in our experiments
being Mo sulfide stripes. From the STM images of the sample obtained after sulfiding 0.25 ML Mo
nanoparticles, we estimated that the coverage of Mo present in the “basal-bonded” MoS; slabs is only
0.11 + 0.02 ML (see Supplementary Materials S6) in contrast to the 0.25 ML calculated from the XPS
spectra. Prior experiments of Mo on TiO, showed that the diffusion of Mo into the bulk of TiO; is
negligible as the process is thermodynamically not favorable [33,35]. We therefore conclude that the
missing Mo is present on the surface and attribute this Mo to the elongated structures observed in the
STM images. Furthermore, the observation that the elongated structures are more metallic suggests
that they are likely composed of unsaturated Mo atoms, for instance, as MoSy structures with 1 < x < 2.

Based on these observations from the STM and XPS data, we attempt to arrive at a possible atomic
model for the elongated structures. We first consider the possibility of MoS; stripes formed with their
(0001) basal plane parallel to the TiO, (110) surface. This may be visualized as a 1D “basal-bonded”
MoS,; slab. We expect such an orientation of MoS, stripes to be highly unlikely due to the high energy
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cost of such a morphology in comparison to a 2D slab containing the same number of Mo atoms.
An alternative possibility is that stripes are formed with an “edge-on” orientation such that one of
their edges is directly bonded to the TiO, support (see Figure 7b) and with the (0001) plane being
perpendicular to the TiO,(110) surface. Considering the closely matching lattice constants of MoS,
and TiO,(110) along the [ﬁO] direction, it is likely that the S edge is bonded to the TiO; surface,
such that alternate sulfur positions match with the location of an S atom of the (3 x 1) structure,
hence the observed periodicity in the STM images. Such “edge-on” MoS; stripes growing on adjacent
rows of the (3 x 1) structure could appear as the group of two to five rows observed in the STM
images. The observed STM contrasts of the row of bright spots (such as in Figure 4b) could be due
to the structure of the Mo-terminated edge of the “edge-on” MoS, stripe that is pointing upwards
towards vacuum (see Figure 7b). Based on our assignment of these stripes to the MoSy signal in
XPS, majority of the Mo atoms in such a stripe, including those on the edges, will be unsaturated.
An example of such an unsaturated Mo edge is shown in our model with alternating S~ and S,~
units. The elongated structures which appear with a higher contrast and have a measured height of
11.7 + 0.4 A (see Figure 3c) in the STM images can be explained by the formation of a second -Mo-S
layer over the “edge-on” MoS, stripe. The height difference of ~4 A matches closely with the theoretical
distance of 3.2 A. One also cannot rule out the electronic effects of charge transfer due to chemical
bonding with the substrate. Thus, the “edge-on” MoSy stripes described in our model predominantly
consist of Mo in less than the ideal coordination number of 6. The presence of under-coordinated Mo
atoms leads to an increased metallicity of these MoSy stripes, thus explaining the higher contrasts in
the STM images, in comparison to that of the “basal-bonded” MoS, slabs. In fact, our observation
that the number density of the elongated structures decreases upon increasing the amount of Mo from
0.25 to 0.49 ML, but remains relatively the same upon increasing the amount of Mo further up to
0.61 ML is in direct correlation with the XPS observations of the change in the MoS;:MoS and §27:5,2-
ratios, and can be fully explained by considering the elongated structures as unsaturated “edge-on’
MoSy stripes, as in our atomic model. Given the correlations between our proposed atomic models
and the STM and XPS data, these models are candidate structures for future theoretical research, using
DFT. This, however, is outside the scope of this work.

7

4. Conclusions

We have presented a low-temperature synthesis strategy for MoS, slabs supported on TiO,(110),
using partially oxidized Mo nanoparticles as a precursor. We have studied the MoS, slabs, using STM
and XPS, and have proposed possible atomic models. When MoS; is grown by similar low-temperature
synthesis method on single-crystal metal substrates like Au(111), with weak interactions, only the
“basal-bonded” MoS; slabs with the thermodynamically favored edges have been observed to form.
In particular, the MoSy,—Au system has been used to study the many well-known remarkable properties
of single-layer MoS; slabs. A similar effect is achieved by growing MoS, at high temperatures on
TiO,, where the sulfur-substrate interactions are circumvented due to extensive desorption of S.
The low-temperature synthesis method presented in this work is very relevant for fields such as
catalysis, where this system is synthesized industrially at similar low-temperatures and is widely
used to produce cleaner fuels. In particular, our work shows that the reaction of the substrate with
sulfur needs to be taken into account for atomic structural characterization. Furthermore, the lower
temperature not only leads to the formation of flat MoS, slabs with irregular shapes (thermodynamically
less favorable), but also to MoS stripes with large number of coordinatively unsaturated Mo atom:s,
which are likely very reactive.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-9637/3/4/41/s1.
Figure S1: Comparison of Mo/TiO,(110) precursors at Mo coverages of 0.25 ML and 0.49 ML. Figure S2: MoS,
slabs grown on TiO,(110) at Mo coverages of 0.49 and 0.61 ML. Figure S3: STM images of the exposed areas of the
TiO,(110) substrate. Figure S4: Atomic model of “basal-bonded” MoS; slabs. Table S1: Estimation of the number
density of the elongated structures from STM images. S6: Estimation of Mo coverage from the STM images.
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