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Abstract: Lanthanide ion-doped upconversion nanoparticles (UCNPs) that can convert low-energy
infrared photons into high-energy visible and ultraviolet photons, are becoming highly sought-after
for advanced biomedical and biophotonics applications. Their unique luminescent properties enable
UCNPs to be applied for diagnosis, including biolabeling, biosensing, bioimaging, and multiple
imaging modality, as well as therapeutic treatments including photothermal and photodynamic
therapy, bio-reductive chemotherapy and drug delivery. For the employment of the inorganic
nanomaterials into biological environments, it is critical to bridge the gap in between nanoparticles
and biomolecules via surface modifications and subsequent functionalisation. This work reviews
the various ways to surface modify and functionalise UCNPs so as to impart different functional
molecular groups to the UCNPs surfaces for a broad range of applications in biomedical areas.
We discussed commonly used base functionalities, including carboxyl, amino and thiol moieties that
are typically imparted to UCNP surfaces so as to provide further functional capacity.

Keywords: upconversion; nanoparticles; lanthanide; surface modification; functionalisation; ligand
engineering; silanisation

1. Introduction

Extensive research over the past decade has led to an expanded understanding and development
of nanomaterials for their considerably broad use across both the scientific and technological spectrums,
with disciplines such as nanomedicine, biotechnology, and forensics exhibiting excellent potential
for application. Recent advancements have seen the evolution of nanoparticles for their uses in
theranostics, including bioimaging, selective therapeutic delivery and biosensing applications where
theranostics is a concept that was derived to describe the development of specific, individualised
therapies for diseases, whilst merging therapeutic and analytical approaches through multi-modal
application [1,2].

The intrinsic photo-physical properties of upconversion nanoparticles make them particularly
attractive candidates for diagnostic operations whilst offering the capability to phototherapy.
A comprehensive and wide-ranging selection of surface modification methods allows for the
specific design of physico-chemical, toxicological, and pharmacological properties, demonstrating
their promising versatility across a myriad of practical applications [3–5]. Therefore, the surface
modification approaches for UCNPs are selected basically depending on improvements to nanoparticle
biocompatibility whilst allowing them to be protected from surrounding aqueous media, thus
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enhancing both the dispersion and denaturation stability of the nanoparticles, preventing their
dissolution into ionic species [4,6,7].

Popular choices for the surface modification of UCNPs include molecular ligands or silanisation
as they naturally encapsulate and shield the nanoparticles from external interactions, thus substantially
minimising nanoparticle dissolution and unwanted exchanges [5,8]. Another important role of the
surface modified polymer molecules or silica shell is to provide further functionality to the UCNPs for
desired operations. Design-enhanced colloidal stability [5,9–17] and bio-conjugation [2,15,16,18–26] are just
a few examples from the extensive of significant benefits that can be gained from the functionalisation
of UCNPs with functional moieties. There is a small range of common base functional moieties,
including carboxyl (–COOH), amino (–NH2) and thiol (–SH) groups, but their utilisation across a broad
spectrum of applications differs. Environmental influences such as pH, magnetic fields, light, salts,
and temperature are manipulated in various ways so as to achieve success through interactions with
these functional moieties [27]. Although the moieties can be the same, the desired effect of the external
influences may be completely opposing based on the given application.

2. Surface Modifications

Commonly synthesised UCNPs are typically capped by surfactant ligands (such as oleate) that
aid in the stabilisation of the particles from aggregation. The ligands help to control the growth
of the nanoparticles via surface co-ordination while also acting as a solvent during synthesis [5,28].
However, these ligands tend to exhibit strong hydrophobic qualities or have minimal functional
moieties for further application [3–5,7,29]. Additionally, hydrophilic ligands used in hydrothermal
synthesis that co-ordinate via amine or carboxylic groups can be used in the synthesis to impart
hydrophilicity but may not supply or allow the modification of necessary functional moieties for
desired use [3,5]. Therefore, subsequent modification of UCNPs surfaces allows for specifically
tailored or additional physical, chemical or biological attributes, which differ from those originally
present on the nanoparticles, to be augmented onto the material surface. This confers changes to
hydrophilicity, surface charge and surface energy amongst other properties, for their use in aqueous
mediums (specifically in biological systems) [5–7]. Biocompatibility is a significant priority in the
design of surface modifications for particles that are intended for use in nanomedical applications,
however, a lack of ubiquitous and consistent methodology in the field presents a substantial obstacle
along the way to further developments [30]. Moreover, nanoparticles intended for use in biomedical
applications require uniformity in morphology and size which presents a greater difficulty in obtaining
ideal samples [29].

Various modification strategies exist that have tried to develop universal methods and overcome
these limitations but stability in aqueous environments is still a considerable challenge [10]. The four
main strategies for surface modification include: (a) ligand engineering [2,3,5,7,9,10,12,31]; (b) layer-by-
layer assembly [2,3,5,7,32]; (c) ligand attraction [2,3,5,7,33]; and (d) surface polymerisation [2,3,5,6,
11,13,15–17,34–39]. Each modification method as well as the specific molecules selected, has its own
benefits and hindrances. While there are many ways to modify the surfaces of UCNPs, this review
aims at covering the two most popular methods, that being ligand engineering and silanisation.

2.1. Ligand Engineering

Ligand engineering comprises two methods of surface modification. The first being the oxidation
of ligands present on UCNPs surfaces (e.g., oleate) via an oxidiser such as the Lemieux-von
Rudloff reagent or ozone. Figure 1 shows a typical ligand oxidation process, which could result
in terminal carboxylates, aldehydes or epoxides [5,17,40]. The oxidative alteration of ligands is not a
commonly used approach to UCNPs surface modification due to the poor dispersal in aqueous
media of resultant UCNPs and the limited variability in functional moieties [4,5,29]. Although
ligand oxidation exhibits no influence on morphology or size of UCNPs [41,42], work conducted
by Naccache, R. et al. (2009) [43] determined that prolonged oxidation (>2 h) of oleate ligands on
NaGdF4: Yb3+, Ho3+ UCNPs resulted in an MnO2 precipitate that was challenging to remove, reduced
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the hydrophilicity of the UCNPs in water and significantly weakened the luminescent emission of the
particles. Interestingly, Deng, R. et al. (2011) [42] found that the addition of glutathione (GSH) in low
amounts to MnO2-modified NaYF4: Yb3+, Tm3+ UCNPs led to a substantial recovery of emission from
the particles. It is asserted that the enhancement of the optical properties was a result of GSH-mediated
reduction of MnO2 to Mn2+. Therefore, in the case of prolonged oxidation, it may be possible to remove
the MnO2 and recover emission of the particles if necessary.

Surfaces 2018, 1, x FOR PEER REVIEW  3 of 27 

ligands on NaGdF4: Yb3+, Ho3+ UCNPs resulted in an MnO2 precipitate that was challenging to 

remove, reduced the hydrophilicity of the UCNPs in water and significantly weakened the 

luminescent emission of the particles. Interestingly, Deng, R. et al. (2011) [42] found that the addition 

of glutathione (GSH) in low amounts to MnO2-modified NaYF4: Yb3+, Tm3+ UCNPs led to a 

substantial recovery of emission from the particles. It is asserted that the enhancement of the optical 

properties was a result of GSH-mediated reduction of MnO2 to Mn2+. Therefore, in the case of 

prolonged oxidation, it may be possible to remove the MnO2 and recover emission of the particles if 

necessary. 

 

Figure 1. Scheme of the oxidation of oleate with the Lemieux–von Rudloff reagent (MnO4−/IO4−). 

Note that the dimensions of the NPs and ligands are not to scale. Reprinted with permission from 

[41]. Copyright 2008 American Chemical Society. 

The second method defined under ligand engineering is the ligand exchange process, which is 

an effective technique to replace hydrophobic ligands on the UCNPs surface with the ligands that 

exhibit both greater affinity and hydrophilicity. The process is easy to operate, and exhibits a 

negligible effect on the morphology of the yielded UCNPs. The driving force behind this reaction is 

that hydrophilic ligand has a stronger coordination ability to lanthanide ions than the original 

hydrophobic ligand [44]. Figure 2 is the scheme of the ligand exchange process for surface 

modification of UCNPs. A ligand exchange reaction does not necessarily involve full replacement of 

all the hydrophobic ligands present on the surface, however, the complete exchange of ligands is 

ensured if an excess of the new ligand is added to a suitable solvent at elevated temperatures, with 

the choice of solvent being reliant on the dynamic solvability of both the hydrophobic and new 

hydrophilic ligands [5]. 

 

Figure 1. Scheme of the oxidation of oleate with the Lemieux–von Rudloff reagent (MnO4
−/IO4

−).
Note that the dimensions of the NPs and ligands are not to scale. Reprinted with permission from [41].
Copyright 2008 American Chemical Society.

The second method defined under ligand engineering is the ligand exchange process, which is an
effective technique to replace hydrophobic ligands on the UCNPs surface with the ligands that exhibit
both greater affinity and hydrophilicity. The process is easy to operate, and exhibits a negligible effect
on the morphology of the yielded UCNPs. The driving force behind this reaction is that hydrophilic
ligand has a stronger coordination ability to lanthanide ions than the original hydrophobic ligand [44].
Figure 2 is the scheme of the ligand exchange process for surface modification of UCNPs. A ligand
exchange reaction does not necessarily involve full replacement of all the hydrophobic ligands present
on the surface, however, the complete exchange of ligands is ensured if an excess of the new ligand is
added to a suitable solvent at elevated temperatures, with the choice of solvent being reliant on the
dynamic solvability of both the hydrophobic and new hydrophilic ligands [5].
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Various hydrophilic ligands have been introduced onto the surfaces of UCNPs via ligand
exchange, including ligands such as citrate [3,5,29], hexanedioic acid [3,5,29], polyethylene glycol (PEG)
derivatives [5,10,29,31], 6-aminohexanoic acid [3,5,46], polyacrylic acid (PAA) derivatives [10,43,47],
and phosphate derivatives [10,31,48]. Newly affixed ligands tend to require a certain length in order
to be able to provide functionality that can be accessible for subsequent modification but this can be
advantageously used in the design of nanoparticle stability. For instance, 1,10-decanedicarboxylic
acid (DDA) has been demonstrated to closely crosslink NaYF4: Yb3+, Er3+ UCNPs and Fe3O4 NPs via
terminal carboxylic acid moieties. Due to the short length of the DDA ligand compared to the oleate
ligand, oleate concentration could be optimized so as to functionalise the UCNPs with both oleate
and DDA in an advantageous manner via the balance of the ligand exchange progress dynamically.
The length of the oleate ligands prevent undesired interactions with anchored carboxylic acid groups
present on the shorter DDA ligands by means of steric hindrance, thereby preventing substitution
of the crosslinker [49]. Preferably, the newly affixed ligands should be multidentate as the type and
number of co-ordination sites on the hydrophobic and hydrophilic ligands strongly influence the
efficacy of the exchange. For example, the higher co-ordination displayed by carboxylates makes
them a favoured choice over amine-containing ligands, particularly when coating positively-charged
UCNPs (i.e., NaYF4: Yb3+, Er3+) [50].

2.1.1. Carboxyl Moiety Modified UCNPs via Ligand Engineering

The exchange of ligands present on as-synthesised UCNPs with ligands exhibiting a carboxylic
acid functional moiety would be the most effective method of modification under ligand engineering
to impart such functionality. Due to the hydrophilic properties exhibited by carboxyls as well as the
ease of coupling between carboxylic moieties and amine residues commonly found on biomolecules,
it is a prevalent functionality for bio-sensing applications [41,51–53]. Furthermore, an additional
benefit gained by carboxyl functionalisation is the capability to store particles for lengthier periods
at an alkaline pH due to deprotonation of the terminal hydroxyl present on the carboxylic acids.
The presence of a formal negative charge gives rise to a larger negative zeta potential and, thus,
greater colloidal stability of the sample, substantially reducing agglomeration of the nanoparticles
over time [17]. Table 1 summarised the surface modified UCNPs via ligand engineering with carboxyl
moieties and their corresponding applications.

Table 1. Summary of surface modified UCNPs via ligand engineering with carboxyl moieties.

UCNPs Ligand Coordinating
Moiety

Functional
Moiety

Method of
Functionalisation Application Ref.

NaYF4:Yb3+, Tm3+ DTPA Carboxylate Carboxylic
Acid EDC Chemistry

Hg2+ DNA-based
biosensor

[51]

NaYF4:Yb3+, Tm3+ DPTA Carboxylate Carboxylic
Acid

DNA-based
biosensor [52]

NaYF4:Yb3+, Tm3+ PAA Carboxylate Carboxylic
Acid

EDC/NHS
Chemistry

Ligase assisted
DNA-based

biosensor
[53]

NaYF4: Yb3+, X3+

(Ho3+, Er3+ or Tm3+)
AA Carboxylate Carboxylic

Acid
DNA-based

biosensor [41]

NaYF4: Yb3+, Er3+ SOC-Chitosan Carboxylate Carboxylic
Acid

Ligand
Exchange

ZnPc-based
photodynamic

Therapy
[54]

NaYF4: Yb3+, Er3+ MA-PEG Carboxylate Maleimide
UCNP-based
platform for

bio-application
[55]

NaYF4: Yb3+, Er3+ PAA Carboxylate Carboxylic
Acid Electrostatic

Interactions

pH-manipulated
drug delivery [56]

NaGdF4: Yb3+, Er3+ Citrate Carboxylate Carboxylic
Acid

Multifunctional
liposomal

nanocarriers
[26]
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Two representative works published by Kumar and Zhang (2009–2010) [51,52] established the
realisation of DNA-based bio-sensors via the modification of NaYF4: Yb3+, Tm3+ UCNP surfaces with
diethylenetriaminepentaacetic acid (DTPA). A ligand exchange with oleate allowed for modification
of DTPA onto the UCNPs surface whereby exposed carboxyl groups were then coupled to terminus
–NH2 groups on ss-DNA via carbodiimide chemistry without the addition of NHS derivatives. Whilst
the bio-sensors are similar in concept, they are slightly different in practice. The first sensor [51] relies
on ss-DNA that is present on the surface of the UCNPs to convert to a hairpin conformation following
interactions with free Hg2+ ions in solution. The change in conformation not only entraps the free Hg2+

ions but an intercalating dye (SYBR Green I) that is also present in solution. When the nanoparticles
are excited, their emission is absorbed by SYBRG (~477 nm) followed by SYBRG emission between
490–520 nm thus indicating entrapment of Hg2+ and the realisation of a DNA-based mercuric ion
bio-sensor. The secondary sensor [52] works via the conjugation of complimentary ss-DNA in solution
to the ss-DNA present on the UCNPs surface. If complimentary ss-DNA successfully links to the
UCNP, the intercalating dye (SYBRG) present in the solution gets trapped between the cross-linked
DNA, so when the UCNPs are excited their emission is absorbed by the dye and a subsequent emission
at 490–520 nm is seen. This signals the presence of complimentary DNA, which aims to be correlated
to identify diseases, mutagens or pathogens by association.

Using the same carboxy group exposed on the UCNPs surface, further work conducted by Wang
and Zhang (2014) [53] determines a ligase-assisted DNA-based bio-sensor by addition of surface
carboxyls through ligand exchange of oleate-capped NaYF4: Yb3+, Tm3+ with poly(acrylic) acid.
Amine-terminated ss-DNA was conjugated to the UCNPs via carbodiimide and NHS chemistry,
followed by introduction of an intercalating dye (SYBRG), complementary ss-DNA target ss-DNA
into solution. The ss-DNA present on the UCNPs as well as the complementary ss-DNA in solution
are matching segments to the target ss-DNA, where a successful match leads to DNA hybridisation
followed by ligation, dehybridisation of target DNA and a subsequent hairpin formation between the
segments (Figure 3). Ligation of the DNA and subsequent hairpinning would not occur if the segments
of ss-DNA were mismatched to the target ss-DNA in solution. As a consequence, this mechanism of
action allows for both accurate selectivity and sensitivity regarding determination of target ss-DNA
presence. Furthermore, system temperatures during the experiment were manipulated to achieve
desired results; this is due to hybridisation occurring at low temperatures and dehybridisation
occurring at high temperature, so alteration of temperatures allowed for the acceleration of these
processes. Advantageously, the addition of PAA to the surface of the UCNPs allowed for polymeric
encapsulation of the nanoparticle cores, which is ideal for the protection from the surrounding aqueous
environment, thus prolonging the storage life of the particles.

Although not a typical approach, the oxidation of ligands present on the surface of UCNPs
as-synthesised can also be a means of achieving bio-sensing capabilities. Research conducted by
Chen et al. (2008) [41] demonstrated the biosensing application of various lanthanide-doped UCNPs
(NaYF4: Yb3+ with activator variations of Er3+, Ho3+ or Tm3+) coated with azelaic acid (AA) ligands.
The oleate-capped UCNPs were directly oxidised via addition of the Lemieux-von Rudloff reagent,
yielding an exposed terminal carboxylic acid group on the azelaic acid ligands. Addition of the
carboxyl moiety imparted both hydrophilicity and bio-conjugation functionality, thus allowing
the subsequent cross-linking of streptavidin to the terminal carboxyls via carbodiimide chemistry
involving NHS. The streptavidin was further conjugated to capture-DNA that was added to solution
with complimentary reporter-DNA attached to a TAMRA quencher. Given that the complimentary
reporter-DNA successfully conjugates to the capture-DNA present on the UCNPs, the quencher would
then be located in close proximity to the UCNP. This allows for luminescent resonance energy transfer
(LRET) to occur as phosphorescence emitted by the UCNP is absorbed by the quencher due to the
absorption spectrum of the quencher overlapping the green emission (~544 nm) of Er3+.
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The use of carboxyl moieties is not limited to biosensor applications but can also be used for
multi-modal theranostic purposes as well, with one possible example being the use of chitosan coated
UCNPs for their use in photo-dynamic therapy as demonstrated by Cui et al. [54]. Amphiphilic
chitosan (specifically N-succinyl-N′-octyl chitosan) was coated onto NaYF4: Yb3+, Er3+ UCNPs
whereby the hydrophobic photosensitiser ZnPc was loaded into the chitosan. However, due to
the amphiphilic nature of the chitosan (SOC), it can be either coated via layer-by-layer attraction
(hydrophobic interactions with surface residing oleate alkyl chains) due to exposed octyl groups on
SOC or through a ligand exchange via terminal carboxyl groups. Either process would not change
the overall mechanism of the application but the latter would be an example of carboxyls being used
exclusively for their co-ordination abilities (in the same way oleate coordinates to UCNPs). ZnPc was
loaded internally into the SOC via hydrophobic interactions whereby excitation of the UCNPs leads to
660 nm visible light emission that activates the release of reactive oxygen species (ROS) from activated
ZnPc molecules. The researchers determined a loading capacity of 10.8%, a marked improvement
from a comparison where ZnPc loading in mesoporous silica showed only ~0.1% loading capacity [57],
most likely due to the hydrophilic nature of the silica. Furthermore, induced cell apoptosis was
determined in MCF-7 cells as a result of successful ROS release, thereby indicating the successful
realisation of an UCNP-based photodynamic therapy system.

Similarly, Liebherr et al. (2012) [55] developed colloidally-stable NaYF4: Yb3+, Er3+ UCNPs
via ligand exchange of oleate with maleimide-polyethylene glycol (MA-PEG) that exhibits terminal
carboxyl groups. The carboxyl groups were used to coordinate the MA-PEG to the UCNPs, thus
resulting in exposed thiol-sensitive maleimide groups that can be used for bioconjugation. Coupling
of FITC-labelled γ-globulin to the UCNPs was accomplished through addition of tris(2-carboxyethyl)
phosphine (TCEP), a reduction agent that reduces existing cysteine disulphides present in the
γ-globulin, allowing for thioether bond formation with the exposed maleimide groups. Confirmation
of successful coupling was proven via the measuring of fluorescence of the labeled γ-globulins on
both activate and inactive maleimide-functionalised UCNPs whereby active UCNPs demonstrated
greater relative red emission while dispersed in water than inactive UCNPs. The reported UCNPs can
be utilised as a platform in various bioconjugation applications involving thiols, such as biosensing,
bioimaging, and therapeutic delivery.
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The aforementioned examples represent not only the various ways to modify the surface of
UCNPs with terminal carboxyls but for the most part, typical applications involving the carboxyl
moiety being used for the addition of hydrophilic properties, biomolecule cross-linking capabilities
and/or co-ordination capabilities. However, surface moieties can exhibit complex multi-functional
properties that can give rise to effective utilisation in various applications. Jia et al. (2013) [56]
developed surface modified NaYF4: Yb3+, Er3+ UCNPs with poly(acrylic) acid for their use in a
pH-triggered controlled drug delivery system that demonstrates various functionalities of terminal
carboxyl groups in practice. At a neutral pH, the anti-cancer drug doxorubicin (DOX) was bound
to terminal carboxyl groups residing on the poly(acrylic) acid surface via electrostatic interactions
following deprotonation of the carboxyls. As DOX exhibits a positive charge, it becomes tightly bound
to the negatively charged carboxyls, leading to the conjugation of DOX molecules surrounding the
surface of the UCNPs. Moreover, alteration of pH conditions can be used to manipulate desired
operations; the loading rate of DOX was determined to be high in weakly alkaline environments
(approx. 1% at pH 2, and 32% at pH 7) whilst the rate of release was determined to be high in acidic
environments. Further assessment by the group testified to successful drug delivery within in vitro
HeLa cells by cytotoxicity assays, where cell viability decreased by 50%. In this case, the carboxyl
moieties demonstrate multi-functionality, that being: (1) the capacity to conjugate the anti-cancer
drug DOX; (2) the control of the rates of both loading and release via manipulation of environmental
pH; (3) imparting hydrophilic properties to the UCNPs so as to increase biocompatibility through
surface residing carboxyls; and (4) coordinating poly(acrylic) acid to the UCNPs through internal
carboxylate interactions.

Finally, NaGdF4: Yb3+, Er3+ UCNPs were modified to achieve multifunctional upconverting
liposomal nanocarriers for their use in anti-cancer drug delivery treatments by Huang et al. (2016) [26]
The surface of the UCNPs was modified with citrate ligands which exhibit tri-carboxyl moieties that
demonstrate multiple functionalities in practice (as shown in Figure 4). Firstly, deprotonation of the
carboxyls leads to subsequent coordination of the citrate ligands to the surface of the UCNPs via a
terminal carboxylate moiety. The two remaining surface carboxyl groups then are used to (1) impart
hydrophilic properties to the UCNPs; (2) provide a hydrophilic environment for the loading of the
anticancer drug DOX; and (3) conjugate as well as stabilise DOX molecules through ionic interactions
(carboxylates exhibit a net negative charge whilst DOX exhibits a net positive charge). As DOX has
an absorption range overlapping with part of the UCNP emission range (515 nm–570 nm), UV–VIS
can be used to quantify the loading capacity of the UCNPs. Following encapsulation of the UCNPs in
a liposome made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol in a ratio of
2:1, DOX was loaded into Lipo@DOX and UCNP@DOX@Lipo samples. It was determined that the
loading efficiency of Lipo@DOX was 98% whilst UCNP@DOX@Lipo demonstrated a loading efficiency
of 72%, the group asserted that this is most likely due to the decreased internal volume of the liposome
from UCNPs occupying internal space. Passive drug release of the UCNP@DOX@Lipo particles was
tested in both solutions of phosphate buffered saline (PBS) (imitates in vitro conditions) and 50% foetal
bovine serum (FBS) in PBS (imitates in vivo conditions), with passive leaking only accounting for 6%
loss of DOX in PBS over a 12 h period at 37 ◦C. As the overall passive release was minimal, PBS can be
considered a viable storage solution whilst passive release of 39% in 50% FBS + PBS solution indicates
the influence of external factors, such as serum protein and lipid bilayer destabilisation interactions
that further the complexity of application in vivo.
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Figure 4. Schematic representation showing the structures of the blank liposome, Lipo-UCNPs,
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transfer occurred from UCNPs to DOX, where the upconverted green emission is partially absorbed by
the DOX. Reprinted with permission from [26]. Copyright 2016 American Chemical Society.

2.1.2. Amino Moiety Modified UCNPs via Ligand Engineering

Much like carboxyl moieties, amino groups are favoured due to the hydrophilic properties they
impart onto UCNPs and their ability to also be cross-linked via the well-established carbodiimide
coupling protocol. Conversely, they exhibit positive charges at physiological pH which may be
desirable for certain applications. The summary of the surface modified UCNPs via ligand engineering
process with amino moieties is exhibited in Table 2.

Table 2. Summary of the surface modified UCNPs via ligand engineering with amino moieties.

UCNP Ligand Coordinating
Moiety

Functional
Moiety

Method of
Functionalisation Application Ref.

NaYF4: Yb3+, Tm3+ PEA Phosphate Amino EDC/NHS
Chemistry

Remotely
triggered

anti-cancer
system

[25]

NaYF4: Yb3+, Tm3+ PEA Phosphate Amino Reductive
Amination

Solid-phase
biosensing [58]

NaGdF4: Yb3+, Er3+ PMAM Amino Amino
Nucleophilic

Thiourea
Formation

Targeted lectin
recognition [59]

An exchange between oleate and o-phosphorylethanolamine (PEA), which exhibits both terminal
amino and phosphate groups, was carried out on NaYF4: Yb3+, Tm3+ UCNPs in research conducted
by Fedoryshin et al. (2014) [25]. The exchange led to the affixing of primary amines to the surface of
the particles for their use in a remotely triggered anti-cancer drug delivery system (as displayed in
Figure 5). As phosphate exhibits both greater coordination sites and binding affinity than carboxylates,
the exchange favours the replacement of oleate carboxylate groups with terminal phosphates [10].
Conjugation of the photocleavable prodrug ONB-5-FU to the UCNPs via carbodiimide chemistry
involved the addition of NHS, resulting in the formation of an amide bond. Due to ONB-5-FU
exhibiting an overlapping UV absorption range with that of UV emission range of the UCNPs,
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excitation of UCNPs resulted in 364 nm UV light emission that efficiently photocleaved the prodrug.
This allowed for detachment and consequent release of 5-fluorouracil, where cleavage is proposed to
occur at the C-N bond that couples ONB and 5-FU. It was determined that the rate of release could
be tuned with laser power output (10, 30 and 80 mW) and that as high as 77% of the prodrug was
effectively released via remote triggering through NIR excitation in comparison to traditional direct
UV excitation. Laser excitation at 80 mW resulted in an observed initial rate constant (ko) of 130 µM
min−1 while, conversely, at 10 mW, a ko of 18 µM min−1 was observed.
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Figure 5. (a). Modification of water-soluble PEA-capped UCNPs coupled with ONB-FU. (b) NIR
excitation (980 nm) of the UCNPs resulted in upconverted photo luminescent emission at 364 nm used
for photocleaveage of ONB-FU and subsequent release of 5-fluorouracil. Reprinted with permission
from [25]. Copyright 2014 American Chemical Society.

Similarly, work presented by Doughan et al. (2014) [58] utilises PEA to realise a biosensing
application through solid-phase covalent immobilisation of UCNPs (Figure 6). A significant problem
presented to the applications of UCNPs in aqueous mediums is the agglomeration of particles in
solution, which can be overcome through the use of UCNPs in solid-phase at interfaces. Standard
as-synthesised NaYF4: Yb3+, Tm3+ UCNPs were transitioned to a hydrophilic phase via a ligand
exchange with oleate ligands present on the UCNPs and PEA. The phosphate moiety of the PEA
coordinates to the surface of the UCNPs whilst the terminal amines extend outward, providing
hydrophilicity and conjugation capabilities.

Glass slides, which were used as the interface medium, were functionalised with surface silanol
groups by washing with NH4OH and HCl in the presence of H2O2. Subsequently they were amine
functionalised via (3-aminopropyl)trimethoxysilane (APTMS) followed by reductive amination with
sodium cyanoborohyride (NaBH3CN). The resulting aldehyde-functionalised glass slides provided
an interface for which the PEA-modified UCNPs could now be coupled and immobilised to through
covalent bonding. Incubation of the glass slides over 2 h followed drop spotting of UCNPs with
NaBH3CN on desired locations so as to allow reductive amination to occur and the formation of a
subsequent alkyl amine bond between the underside of the UCNPs and slide (as shown in Figure 6).

The surface residing amino groups on the UCNPs were functionalised with thrombin after residual
aldehyde groups on the slide were inactivated with ethanolamine in the presence of NaBH3CN.
Amine-modified thrombin specific aptamer-1 was drop cast onto active UCNP spots after the surface
amines were reacted with glutaraldehyde. As quantum dots (QDs) exhibit a spectral overlap with
UCNPs, displaying an absorbance over their emission range (~330–490 nm), they can be used as
effective energy acceptors in an LRET-based energy donor-acceptor system of UCNPs and QDs. As a
result, QDs were functionalised with thrombin specific aptamer-2 and subsequently incubated for
6 h with UCNPs so as to allow the aptamers to attach. If the aptamers have successfully attached,
the UCNPs will undergo a LRET process with the QDs when excited at 980 nm. Confirmation and
quantification can be achieved via the consequent QD emission at 614 nm and peak ratio, whereby
it was determined that the assay showed strong selectivity for thrombin through control testing.
In contrast to 0.1 µM thrombin, a 1 µM solution of BSA displayed a signal that was 80% lower while
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also demonstrating a signal that was 90% lower for the non-specific adsorption of QDs onto the surface
of the interface.Surfaces 2018, 1, x FOR PEER REVIEW  10 of 27 
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use in the detection of thrombin (grey) using thrombin-specific aptamer-1 (red) and aptamer-2 (blue).
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An endeavour to produce carbohydrate-coated UCNPs for lectin recognition was undertaken
by Bogdan et al. (2010) [59]. After NaGdF4: Yb3+, Er3+ UCNPS were synthesised with oleate ligands
present on the surface, they subsequently underwent a ligand-exchange with poly(amido)amine
(PMAM). As PMAM exhibits four terminal amino moieties, one moiety can exchange and co-ordinate
to the UCNP surface while the remaining three groups provide both hydrophilicity and further
bioconjugation capabilities. Synthetic multivalent carbohydrates demonstrate efficient inhibition of
protein-carbohydrate interactions due to strong binding affinities. Therefore, by cross-linking synthetic
carbohydrates to the UCNPs, the UCNPs gain the ability to interact and detect bacteria or virus
infections. The synthetic carbohydrate p-isothiocyanatophenyl a-D-mannopyranoside was coupled to
the UCNPs via thiourea bond formation between the terminal amino groups residing on the UCNP
surface and the terminal thiocyanate on the synthetic carbohydrate. Further testing through an LRET
assay led to the determination that the mannose moiety successfully conjugated to protein receptors
by use of a RITC-labelled plant lectin Con A (RITC-Con A). As the RITC-Con A absorption overlaps
with the emission range of the UCNPs (550 nm), it gives off a characteristic emission at 585 nm that
can indicate successful attachment of the carbohydrate to protein receptors after UCNP excitation.
The group demonstrated that there was a matching boost in acceptor fluorescence to UCNP green
emission decline after excitation of the UCNPs at 980 nm. Furthermore, the addition of Gd3+ to the
nanocore allows for great contrast when imaging via magnetic resonance imaging (MRI) as it exhibits
a considerable magnetic moment.

2.1.3. Thiol Moiety Modified UCNPs via Ligand Engineering

Equivalently to carboxyl and amino moieties, thiol moieties can be used to co-ordinate to
UCNPs, impart hydrophilicity and grant the capability to further conjugate biomolecules for
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extended application. Although they cannot undergo carbodiimide reactions, thiols can present
an alternative option for operations where carboxyl and amino cannot be applied effectively. Table 3
summarised the surface modified UCNPs via ligand engineering with thiol moieties and their
corresponding applications.

Table 3. Summary of the surface modified UCNPs via ligand engineering with thiol moieties.

UCNP Ligand Coordinating
Moiety

Functional
Moiety

Method of
Functionalisation Application Ref.

Fe3O4/NaYF4:
Yb3+, Er3+ MUA Carboxylate Thiol Affinity to

Fe3O4

Fe3O4 enhanced
superparamagnetic

UCNPs
[49]

NaYF4:
Yb3+, Er3+ TGA Thiol Carboxylic

Acid
Electrostatic
Interactions

Ag+-assisted
photothermal therapy [60]

Yb3+, Tm3+:
BaF2/Ln3+:SrF2

TGA Thiol Carboxylic
Acid

Ligand
Exchange

Dual-mode
luminescence

Active-core/Active-shell
synthesis of UCNPs

[61]

NaYF4:
Gd3+, Eu3+ MPA Thiol Carboxylic

Acid
Combined optical and

MR imaging [62]

Successful development of superparamagnetic Fe3O4/NaYF4: Yb3+, Er3+ hybrid nanoparticles
was demonstrated by Shen et al. (2010) [49] whereby 11-mercaptoundecanoic acid (MUA) was surface
modified onto NaYF4: Yb3+, Er3+ UCNPs via a ligand exchange with oleate ligands present on the
as-synthesised particles. As MUA exhibits both terminal thiol and carboxylic moieties, it displays
the ability to co-ordinate to the UCNPs via the carboxyl moiety whilst being capable of further
cross-linking through residual thiol moieties. These thiol moieties play a crucial role in the cross-linking
process due to the specific affinity they boast toward Fe3O4 NPs. Compared to UCNPs coated with
1,10-decanedicarboxylic acid (DDA) which exhibits terminal carboxyl moieties, the UCNPs@MUA
were not only smaller in size than the UCNPs@DDA but also absorbed Fe3O4 NPs more densely. It is
inferred that the MUA perhaps inhibits the growth of Fe3O4 on the surface of the UCNPs due to a
robust interaction between Fe and S. Furthermore, the group present evidence to support effective
magnetic separation ability whereby they explain that the ligand spacing between Fe3O4 and the
UCNPs allows for the superparamagnetic properties of Fe3O4 to be kept intact.

Inversely, research by Dong, B. et al. (2011) [60] establishes the use of the thiol moiety as
a co-ordinating moiety to the surface of NaYF4: Yb3+, Er3+ UCNPs for therapeutic photothermal
applications (as displayed in Figure 7). Notably, it has been reported that ligands which have been
exchanged to UCNP surfaces via thiol coordination require additional functionalisation so as to
undergo cell internalisation effectively [5]. As-synthesised UCNPs underwent a ligand exchange with
thioglycolic acid (TGA). Absence of the characteristic -SH peak at 2600 cm−1 as determined via FTIR
analysis led the group to assert that the -SH group is not only responsible for the connection to the
UCNPs but the impartation of hydrophilic properties as well. The deprotonation and subsequent
negative charge exhibited by the now surface residing carboxyl moieties was used to conjugate
Ag+ ions to the surface of the UCNP, forming an Ag+ ionic shell. Addition of the Ag+ shell to the
nanoparticles granted an increase in temperature when the UCNPs were excited at 980 nm, compared
to UCNPs without the Ag+ shell present on the surface. Ag+-coated UCNPs in solution reached an
increased temperature of 303 K compared to 293 K from uncoated and irradiated UCNPs at the same
power density range. Further tests led to the determination of significantly reduced cell viability of
both HepG2 and BCap-37 cells, whereby after 20 min of irradiation viability reached as low as 4.62%
and 5.43%, respectively.
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Figure 7. Schematic representation of the preparation of NaYF4 :Yb3+,Er3+@Ag-NPs. Reprinted with
permission from [60]. Copyright 2011 The Royal Society of Chemistry.

Similarly, a novel method for the synthesis of sub-10 nm Ln3+-:BaF2/Ln3+:SrF2 UCNPs was
developed by Chen et al. (2011) [61], where Ln3+ = La – Lu. Synthesis of Tm3+, Yb3+:BaF2/Ln3+:SrF2

active-core/active-shell UCNPS was followed by exchange of the terminal oleate ligands with TGA
for the sole purpose of aqueous dispersal. Again, the thiol moiety co-ordinates to the surface of
the UCNPs whilst the terminal carboxyl moieties reside on the surface of the UCNPs can grant
further bioconjugation abilities. Design of an active-core/active-shell provides NIR-NIR dual-mode
luminescence due to the upconverting emission of Tm3+ at 802 nm upon excitation of Yb3+, as well as
the NIR downconverting emissions both of Yb3+ at 975 nm and Nd3+ at 1054 nm. Furthermore, shell
encapsulation of the core allows for protection of core ions from external interaction such as solvents
and ligands that may cause vibrational deactivation.

Lastly, related work published by Kumar et al. (2009) [62] also establishes the use of the thiol
moiety as a co-ordinating moiety to the UCNP surface for a combined optical and magnetic resonance
imaging application. After the synthesis of NaYF4: Gd3+, Eu3+ UCNPs, as-present oleate ligands were
exchanged with 3-mercaptopropionic acid (MPA), a ligand that has both a thiol and carboxyl moiety
incorporated into its structure. The thiol moiety of MPA co-ordinates to the surface of the UCNPs
whilst the residual carboxyl moieties provide further functionality by means of bioconjugation. Various
tumour-specific antibodies were conjugated to the nanoparticles, such as anti-mesothelin, anti-claudin
4, transferrin via carbodiimide chemistry between terminal amino groups on the antibodies and
the surface carboxyl groups of the UCNPs. Confocal images of Panc 1 cells confirmed substantial
enhancement of cell uptake for antibody modified UCNPs compared to UCNPs without antibody
modification, a result of a receptor-mediated process. Furthermore, it has been reported that
corresponding receptors to the antibodies are overexpressed on the surface of these particular cells [63]
and as a result, a high amount of UCNPs can be seen targeting and binding specifically to the receptors
on the surface of the cells.

2.2. Silanisation of UCNPs

Silanisation, a popular method for UCNP surface modification due to well-established surface
chemistry [3], allows for the controlled growth and simultaneous functionalisation of a silica shell
on UCNPs. Dense (dSiO2) [18,64,65] and mesoporous (mSiO2) [11,15,25,37,39,66,67] silica shells are
common surface modifications to UCNPs due to enhanced bio-compatibility and stability within
hydrophilic mediums, such as biological fluids, and present minimal influence on luminescence [5].
Encapsulation of nanoparticles in a silica shell coating allows them to be protected from surrounding
aqueous media, thus enhancing both the dissolution and denaturation stability of the nanoparticles
and preventing their dissolution into individual ionic species [4,6,7]. This aids in avoiding the release
of toxic ions comprising the nanoparticles and a substantially decreased likelihood of an anaphylactic
response. Furthermore, the chemically inert nature of silica (SiO2) ensures that no degradation of the
shell will occur whilst terminal hydroxyl (–OH) groups on the surface of the shell allow for subsequent
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functionalisation (–COOH, –NH2 or –SH) and/or conjugation of biomolecules that can be used for
bio-sensing as well as drug and gene delivery applications [4–6,35,36,40,65].

The option to simultaneously functionalise the silica shell during synthesis or post-
synthesis can be done easily with silanes that typically undergo a further condensation
reaction at the terminal hydroxyls present on the silica shell surface. Examples of such silanes
include (3-aminopropyl)trimethoxysilane [4,5,36,37,65] (APTES) which imparts amine (–NH2)
functionalisation, carboxyethylsilanetriol [4,5,17,68] (CEST) that provides carboxylic (–COOH)
functionalisation and (3-mercaptopropyl)trimethoxysilane [37,69] (MPTMS) which grants thiol
(–SH) functionalisation. Amine-terminated functional groups are the most common silica surface
functionalisation, followed behind by carboxyl functionalisation [3–5,29,36]. This is due to the
hydrophilic nature of these moieties and, as previously stated, the established coupling process
between these functional groups and many biomolecules via carbodiimide chemistry that links amines
and carboxylics to form an amide bond [3–5,7,34]. One of the most notable advantages of silanisation
is ability to tune the thickness of the silica shell, a variable that is dependent on the concentration of
the selected silyl ether. This is particularly useful in both the realisation of drug delivery systems and
bioassays where the thickness of the shell can be optimised for drug loading as well as luminescent
resonance energy transfer (LRET) mechanisms where by luminescent energy emitted by the UCNPs is
commonly transferred to a bio-conjugated compound or biomolecule [3,19,24,25,29,30].

2.2.1. Carboxyl Moiety Modified UCNPs via Silanisation

Functionalisation of silica with carboxyl moieties is a common approach for the preparation
of UCNPs for various biomedical operations. The negatively-charged electrostatic interactions they
exhibit may be attractive in use. Furthermore, their use in forming amide bonds with biomolecules
through well-established carbodiimide chemistry makes them desirable candidates. A summary of the
surface modified UCNPs via silanisation with carboxyl moieties can be seen in Table 4.

Table 4. Summary of the surface modified UCNPs via silanisation with carboxyl moieties.

UCNP Silica
Type

Functional
Moiety Method Application Ref.

NaYF4: Yb3+, Er3+ dSiO2
Carboxylic

Acid Electrostatic
Interactions

RCA-120 functionalised UCNPs
for biolabeling [17]

NaYF4: Yb3+, Er3+ and
NaGdF4: Yb3+, Er3+ dSiO2

Carboxylic
Acid/Amino

Electraphoretic separation and
purification of UCNPs@dSiO2

[70]

NaYF4: Yb3+, Er3+ dSiO2
Carboxylic

Acid
EDC/NHS
Chemistry

Highly sensitive DNA-based
biosensor [20]

NaYF4: Yb3+, Er3+ dSiO2
Carboxylic

Acid Oligonucleotide-based biosensor [22]

A versatile system for biolabeling applications was developed by Liu et al. (2012) [17] following
the dense silanisation of NaYF4: Yb3+, Er3+ UCNPs. As-synthesised UCNPs with residing oleate
capping agents underwent a reverse microemulsion reaction with TEOS to provide shell thicknesses
between 1.5 nm and 6 nm. Silica shells not only provide hydrophilicity to the UCNP but also allow
for protection of the UCNP nanocore via encapsulation, as well as granting further functionalisation
capabilities by interaction with residual surface silanol groups. Following the coating of silica, addition
of CEST to the UCNP solution led to terminal triol groups undergoing condensation with the surface
silanols, a result of ammonia-assisted hydrolysation. Ultimately, a robust ether bond is formed
between the UCNPs and CEST, therefore, affixing terminal carboxyl groups to the surface of the
UNCPs. Furthermore, the effects of pH on the carboxyl moieties were investigated (displayed in
Figure 8), demonstrating that while the particles displayed excellent colloidal stability at alkaline pH,
an increase in particle aggregation (correlating with particle size) is seen at neutral pH. Although
this data demonstrates the ability to store the nanoparticles long-term in alkaline solutions, it also
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highlights the greatest obstacle in the field, which is the difficulty in obtaining monodispersed and
un-agglomerated nanoparticles for use at a biological pH. This behaviour can be explained by the
protonation of the terminal carboxylate groups (and an increase in the concentration of protons) at
lower pH levels. The addition of a proton to the carboxylate neutralises the formal negative charge held
by the hydroxyl group and, thus, reduces the previous amount of repulsion between the negatively
charged carboxlate and silica shell, leading to an increase in agglomeration (and hence greater particle
size). To demonstrate the biolabeling and LRET application of the UCNPs, the group conjugated
Ricinis Communis Agglutinin (RCA 120) to the UCNPs so as to provide interaction with HeLa cells.
Upconversion luminescence microscopic imaging illustrated that no upconversion was observed
when UCNPs@dSiO2-COOH were incubated with HeLa cells whilst UCNPs coupled with RCA-120
demonstrated significant upconversion, suggesting the RCA-120 successfully targeted and interacted
with the HeLa cells.
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Figure 8. Zeta-potential and DLS size distribution as a function of the solution pH value. Reprinted
with permission from [17]. Copyright 2013 Royal Society of Chemistry.

The use of agarose gel electrophoresis for the detection, separation and purification of various
UCNPs based on their surface charge was reviewed by Hlaváček et al. (2014) [70]. Various UCNPs
(NaGdF4 and NaYF4: Yb3+, Er3+) were coated with dSiO2 and subsequently functionalised with either
APTES or CEST (as displayed in Figure 9). Following this, bare UCNPs@dSiO2, UCNPs@dSiO2-COOH
and UCNPs@dSiO2-NH2 were separated onto vertical agarose gel whereby electrophoresis was
carried out for 30 mins at 100 V. Separation of particles can be done size-dependently due to both the
terminal silanol groups (pKa = 7.0) and carboxyl groups (pKa = 4.5) providing a pervasive negative
charge across the surface of the UCNPs. UCNPs exhibiting bare silica shells demonstrated a longer
diffuse zone than carboxylated UCNPs, with bare silica particle being observed to form several
distinct bands. Furthermore, a fraction of the bare particles did not entire the agarose gel with the
formation of several bands indicates varying clumps of agglomerated nanoparticles. Conversely,
UCNPs functionalised with terminal carboxyl groups exhibited only a single band when separated
under electrophoresis, indicating monodispersed and unagglomerated particles. Moreover, it was
determined that fluorescently doping the UCNPs for greater characterisation did not affect the overall
surface charge, size or agglomeration of particles. Following electrophoretic separation, the terminal
carboxyl groups were inked to terminal amino groups present on the bovine serum albumin (BSA)
via carbodiimide chemistry. To further test the separation abilities of the particles via electrophoresis,
the newly bioconjugated particles were added to agarose gel under electrophoresis. Although the
presence of the UCNPs was well-defined in a single band, the electrophoretic mobility of the particles
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was substantially reduced following bioconjugation. Separation via electrophoresis not only led to
single band separation of conjugated UCNPs but of excess BSA as well, thus successfully allowing the
separation of conjugated UCNPs from left over BSA reagent.
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Figure 9. (a) Schematic drawing of silica-coated UCNPs. UCNPs were coated with either a (b) bare or
(c) carboxylated (black dots) silica shell. In parallel approaches, fluorescein (green) was added to the
(d) bare or (e) carboxylated silica shell. Reprinted with permission from [70]. Copyright 2014 American
Chemical Society.

Alonso-Cristobal et al. (2015) [20] developed carboxyl-functionalised UCNPs@dSiO2 as a platform
for a highly sensitive DNA-based sensor (displayed in Figure 10). Following the synthesis of NaYF4:
Yb3+, Er3+ UCNPs, the particles were subsequently coated with a dSiO2 shell via reverse microemulsion.
Additionally, the surface silanols groups were condensated with APTES to provide terminal amine
functionality and hydrophilicity. However, the terminal amine groups were subsequently subjected
to a reaction with succinic anhydride, leading to a ring open reaction that results in formation of
an amide bond and affixation of terminal carboxyl groups to the silica shell as shown in Figure 10).
Not only does the conversion to carboxyl moieties provide greater hydrophilicity to the UCNPs but
it provides the capability to bioconjugate ss-DNA covalently through its terminal amino group. By
using carbodiimide chemistry, the terminal carboxyl groups were used to consequently form an amido
bond between the UCNP and ss-DNA. As ss-DNA can undergo hybridisation with complementary
strands of DNA, complementary DNA attached to graphene oxide (GO) was added to a solution of
UCNP@dSiO2@ss-DNA. Hybridisation of the DNA leads to double stranded DNA (ds-DNA) that
does not actively interact with the attached GO and therefore allows emission from the UCNPs to
be observed once excited at 980 nm. Conversely, non-complementary DNA attached to GO will not
undergo hybridisation with ss-DNA present on the UCNP and therefore will interact with the GO.
As the absorption spectrum of GO completely overlaps with that of the emission spectrum of the
UCNPs, the emission of the UCNPs is quenched via an LRET process. The system described here
permits the realisation of a highly selective and sensitive DNA-based biosensor that can qualitatively
detect DNA through a turn “on”/turn “off” mechanism.
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Figure 10. An experimental scheme for the modification of UCNPs by Alonso-Cristobal et al.
for a LRET-based DNA sensor. Reprinted with permission from [20]. Copyright 2015 American
Chemical Society.

In a similar manner, Mendez-Gonzalez et al. (2017) [22] functionalised NaYF4: Yb3+, Er3+ UCNPs
for their use in an oligonucleotide-based sensor (shown in Figure 11). The particles were coated with a
dSiO2 shell where they were then subsequently functionalised with APTES to provide hydrophilicity to
the UCNPs. Following this, the residual amino groups were reacted with succinic anhydride to afford
terminal carboxyl terminals to the surface of the silica shell via a ring opening reaction as previously
mentioned. As a result, the formation of a newly formed amide bond between the terminal amines on
the UCNP and the anhydride give rise to carboxyl moieties on the surface of the UCNPs. Although the
carboxyl moieties provide greater hydrophilicity than the amine groups, their main role is to provide
cross-linking capabilities. They granted the opportunity to cross-link azide-modified ss-DNA to the
surface carboxyl groups via carbodiimide chemistry interaction with terminal amino groups present on
the DNA. As a consequence, the now terminal azide group present on the surface of the UCNPs affords
the ability to undergo highly selective and sensitive click chemistry reactions. The double bonds
present on the terminal azide groups can undergo 1,3-dipolar cycloaddition with the alkyne bonds
present on the dibenzocyclooctyne (DBCO), which has been modified onto an end of biotin-modified
complementary ss-DNA. After addition of the DBCO-ssDNA-biotin into a solution containing the
carboxyl-modified UCNPs, the UCNPs were selectively trapped on a streptavidin-coated surface via
click chemistry interaction. Consequently, upconversion emission intensity, which was proportional to
the target concentration present in the sample, was emitted on UCNP excitation at 980 nm. Not only
can this system be used as a screening device to detect both RNA and DNA oligonucleotides but the
group also determined a substantially low detection limit of around 1 × 10−17 moles (100 fM).

2.2.2. Amino Moiety Modified UCNPs via Silanisation

Surface functionalisation of silane modified UCNPs with amino moieties can be considered to be
the most prevalent of the base functionalisations for silica modifications. As aforementioned, this is
due to their ease of involvement with familiar carbodiimide chemistry, the additional hydrophilicity
that they impart and the positive charge that they can exhibit. A summary of surface modified UCNPs
via silanisation with amino moieties can be seen in Table 5.
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Table 5. Summary of the surface modified UCNPs via silanisation with amino moieties.

UCNP Silica
Type Functional Moiety Method Application Ref.

NaYF4: Yb3+, Er3+ dSiO2
Amino/Carboxylic

Acid
Electrostatic
Interactions

Investigation of the effect of
surface charge on cellular

internalisation
[71]

NaYF4: Yb3+, Tm3+ dSiO2 Amino EDC/NHS
Chemistry

Photocaged and controlled
chemotherapy System [72]

NaYF4: Yb3+, Tm3+@
NaYF4

mSiO2 Amino Azobenzene-gated remotely
triggered drug delivery system [24]

NaYF4: Yb3+, Er3+ mSiO2 Amino Targeted delivery of siRNA [73]

A unique research angle taken by Zhang et al. (2014) [71] investigated the surface charge of dSiO2

coated NaYF4: Yb3+, Er3+ UCNPs and their effect on both cellular interactions as well as cytotoxicity.
The dSiO2 was functionalised with terminal surface carboxyls via the use of carboxyethylsilanetriol
(CEST), which allowed for conjugation of NH2-PEG-NH2 ligands by the use of carbodiimide chemistry
involving sulfo-NHS. The formation of an amide bond resulted in UCNP@dSiO2@PEG-NH2 particles
that exhibit terminal amino groups, undergoing protonation at physiological pH and resulting
in positively charged surface moieties. The cellular internalisation and uptake of the UCNPs
was measured via luminescence and inductively-coupled plasma mass-spectrometry (ICP-MS).
Upconversion luminescent intensity was found to be highest for UCNPs@dSiO2@PEG-NH2 followed
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by UCNPs@dSiO2-COOH when imaged after incubation with HepG-2- and HeLa cells, with
measurements conducted via ICP-MS confirming the uptake efficiency of the particles. Further
testing through the use of a conventional MTT assay determined the amine terminated nanoparticles
to have substantially greater cytotoxicity than the carboxyl terminated particles. Moreover, ICP-MS
measurements determined UCNPs@dSiO2@PEG-NH2 to release greater intracellular amounts of Y
ions than UCNPs@dSiO2-COOH, as a response to intracellular ROS. Overall, it was determined that
a net positive surface charge account for greater cell internalisation of particles and, thus, a greater
cytotoxicity than those with a net negative surface charge, for HepG-2 and HeLa cells.

Chien et al. (2013) [72] showcases the development of a targeted and photocontrolled caged
chemotherapy UCNP-based system (illustrated in Figure 12) where NaYF4: Yb3+, Tm3+ UCNPs
are coated by TEOS to provide a dSiO2 shell. They were subsequently functionalised with APTES,
thereby imparting terminal amino groups to the surface of the UCNPs and greater hydrophilicity.
Successful functionalisation of the amino groups to the surface of the silica was confirmed through
an additional coupling of N-succinimidyl 3(2-pyridyldithio)-propionate (SPDP) to the amine groups,
which can then be cleaved through reduction of its disulphide bond by dithiothreitol (DTT). The
cleavage results in the release of pyridine-2-thione (P2T) and demonstrates absorbance at 343 nm
that can be used to quantify the release of the P2T and subsequently the successful functionalisation
as well as occupation of the amino groups. DOX molecules were thiolated followed by consequent
conjugation to the surface residual SPDP molecules where release of DOX molecules can be monitored
and quantified via consequent P2T release absorbance at 343 nm as well as fluorescent emission of
free-DOX in the supernatant, at 555 nm. It was determined that ~2/3 of the amino groups were
occupied by SPDP, allowing for further conjugation of remaining residual surface groups with PEG
molecules via carbodiimide chemistry involving NHS. As PEG exhibits terminal carboxyl groups,
they were used to further cross-link folic acid (FA) via the terminal -NH2 FA groups by a subsequent
carbodiimide reaction. The targeting capabilities of FA coupled with lysosomal enzymes and their
ability to cleave the SPDP disulphide bond allows for the realisation of a targeted chemotherapy
delivery method. Moreover, the group demonstrated further functionalisation between the terminal
FA-COOH groups and 2-nitrobenzylamine (NBA), a photocaging molecule via another carbodiimide
reaction. The photocaging functionality displayed by NBA can allow for the remote triggering of
NBA removal and subsequent uptake by desired cells in a localised region. Although this design is
impressive in approach, both inefficient endocytosis and folate receptor expression levels inhibit the
overall release of doxorubicin when used in application.

Liu et al. (2013) [24] examined the controlled release of doxorubicin from NaYF4: Yb3+,
Tm3+@ NaYF4 core shell UCNPs that were functionalised with azobenzene-gated mesoporous silica
(as demonstrated in Figure 13). After the coating of mSiO2, it is possible to separately functionalise the
surface of the silica shell as well as the pores of the silica. Consequently, APTES was modified with
4-(phenyl)azobenzoyl chloride via the terminal APTES amino group followed by condensation of the
resultant N-(3-triethoxysilyl)propyl-4-phenylazobenzamide with terminal hydroxyl groups present
inside the mSiO2 pores. The surface of the silica shell was functionalised with APTES, imparting
terminal amino groups that were then used to cross-link TAT peptides via carbodiimide chemistry,
for enhanced cellular uptake. Following the loading of DOX, it was determined that the positive zeta
potential (+2.2 mV) of doxorubicin allowed for strong attachment to the inside of mesopores due to
the negative zeta potential (−40.6 mV) exhibited by the silica, leading to strong charge interactions
and hydrogen bond formations with residual terminal silanols on the silica surface. Advantageously,
this charge-charge interaction allows for doxorubicin to be transported throughout aqueous mediums
with minimal to no loss of the drug from the pores unless remotely triggered via conformations
in the azobenzene molecule (Figure 13). These are a result of LRET mechanisms arising from both
UV and visible light emissions of the UCNP after excitation at 980 nm, where the absorption range
of the azobenzene molecule (330 nm–440 nm) partially overlaps with the emission range of the
UCNPs (350 nm–450 nm). Furthermore, it is demonstrated that visible light emission resulted in a
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trans conformation of the molecule whilst conversely UV light emission result in a cis conformation,
thus resulting in a wagging motion that pushes out the loaded DOX molecules in a localised region.
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Although the following research does not directly involve the mesoporous encapsulation of
UCNPs, the same principles can easily be applied to mSiO2 coated UCNPs for drug delivery
applications. Manzano et al. (2008) [74] investigated the effect of amine functionalised mesoporous
silica on the controlled drug delivery of ibuprofen. They determined the amine functionalisation to
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have increased drug loading capacity by ~10% (due to conjugation of drug to surface of particles
as well as pores) as well as resulting in a controlled, slow release of ibuprofen in comparison to
non-functionalised, irregular shaped mesopores. This is due to the interactions between the positively
protonated −NH+

3 groups within the pores and negatively-charged -COOH moiety present on
the ibuprofen. Further research conducted by Basaldella and Legnoverde (2010) [75] determined
the effects on sulphonic and amine functionalised mesoporous silica in the delivery of cephalexin,
which exhibited a two-step prolife: (i) fast delivery (<5 h) and (ii) slow release (>30 h). Similarly,
they demonstrated that the slower rate of delivery (>30 h) was attributed to the presence of terminal
amines interacting with the -COOH moiety present on cephalexin. Contrastingly, mesoporous silica
spheres functionalised with terminal sulphonic acid led to a fast drug release rate (<5 h) due to a lack
of interaction between cephalexin and the sulphonic acid, regardless of the amino moiety present
on cephalexin. The extensive research in mesoporous aided drug-delivery displays the tremendous
potential in individualised delivery methods for both specific drug molecules and treatments, with
additional diagnostic capabilities if coupled with UCNPs.

Lastly, Jiang, S. et al. (2009) [73] demonstrate coated NaYF4: Yb3+, Er3+ UCNPs with
mSiO2 for their use in the targeted delivery of small interfering RNA (siRNA) to cancer cells.
The surface silanols groups exhibited by mSiO2 were used in a condensation reaction to couple
N-[3-(trimethoxysilyl)propyl]ethylenediamine (AEAPTMS) to the UCNPs. Following this, the newly
affixed terminal amino groups were used to further functionalise the UCNPs with an Anti-Her2
antibody by reaction of its terminal amino group through carbodiimide chemistry. Addition of the
antibody allowed for the targeting of surface Her2 receptors that are overexpressed on SK-BR-3 cells
and was coupled to the UCNPs via carbodiimide chemistry. Subsequently, absorption of siRNA into
the mesopores of the silica was achieved via incubation with the UCNPs in solution, after which the
gene silencing effect of the siRNA was studied via an exogenous luciferase gene expression assay.
Down-regulation of the luciferase gene expression was measured to be 45.5% whilst control samples
did not illustrate any down-regulation of the expression, allowing for the successful realisation of a
targeted siRNA delivery system. Furthermore, an MTT assay was used to assess the cytotoxicity and
subsequent cell viability of SK-BR-3 cells, with cell viability being determined to be above 98.6% with
a UCNP concentration less than 50 µg mL−1, while a decrease to 92.5% when the concentration was
increased to 80 µg mL−1 was observed.

2.2.3. Thiol Moiety Modified UCNPs via Silanisation

Thiol moieties tend to be the least common of the three base functionalisations for silica, perhaps
mainly due to the large variety of biomolecules that exhibit terminal amino or carboxyl moieties,
therefore allowing easy coupling to the same moieties due to the great extent of which the methodology
surrounding carbodiimide chemistry has been covered. Thiols are particularly ideal for applications
which involve a thiol-sensitive maleimide moiety that can be interacted with by thiol moieties present
on the surface of UCNPS [72,76]. Table 6 summarised the surface modified UCNPs via silanisation
with thiol moieties.

Table 6. Summary of the surface modified UCNPs via silanisation with thiol moieties.

UCNP Silica
Type

Functional
Moiety Method Application Ref.

NaYF4: Yb3+, Tm3+ dSiO2 Thiol Thiol-Maleimide
“Click” Chemistry

Photocaged UCNPs for remotely
triggered cellular transduction [76]

NaYF4: Yb3+,
Tm3+/Au-NP

dSiO2 Thiol Sulfur-Gold Bond
Interaction

UCNPs with attenuated X-Ray
interaction as a theranostic platform [77]

Work conducted by Gao et al. (2015) [76] saw the development of a photocaged upconversion
based system that could allow for the remote triggering of intracellular signal transduction via the
excitation of UCNPs (displayed in Figure 14). Specifically, NaYF4: Yb3+, Tm3+ were surface modified
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with a dSiO2 shell after which they were subsequently functionalised with terminal thiol groups
via the addition of MPTMS. The thiol groups provide additional hydrophilicity to the nanoparticles
(on top of the hydrophilicity imparted by the silica shell), thus affording them to be compatible with
physiological medium as well as providing further functionality pathways. Following this, PEG3000
was grafted onto the dSiO2 surface through interaction of terminal thiol-sensitive maleimido groups
exhibited by the PEG molecules with the newly affixed terminal thiol groups.
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Further conjugation of previously prepared protein kinase A (PKA) and photocaged PKA to the
UCNPs was undertaken, whereby the protein was immobilised via electrostatic interactions [78].
The activity of the PKA was determined by measuring the formation of NADH as a result of
phosphorylation of the peptide after coupling with lactate dehydrogenase and pyruvate kinase, leading
to oxidation. As PKA can unbundle and disintegrate stress fibres in cells, the group demonstrated
that the caged PKA UCNPs caused no disintegration of stress fibres in REF52 cells, resolving that
the UCNPs were enzymatically inert if they were not intentionally irradiated with UV or NIR
light. Furthermore, disintegration of stress fibres was confirmed quantitatively through the staining
intensities of nanoparticle regions relative to background stained stress fibres in the cells. This is
a particularly interesting application of UCNPs as there have been minimal attempts at designing
remotely-activated enzymatic systems in regards to upconversion.

The development of hybrid nanoparticles consisting of both lanthanide-doped UCNPs and
gold (Au) nanoparticles was exhibited by Wang et al. (2011) [77], which displayed attenuated X-ray
interaction. After synthesis of NaYF4: Yb3+, Tm3+ UCNPs, the group coated the particles with a
dSiO2 shell followed by subsequent functionalisation via MPTMS to provide surface thiol moieties.
Due to the particularly sturdy interaction exhibit between Au and thiolates, the citrate present on
the as-synthesised Au-NPs can be replaced by the terminal thiol moieties present on the UCNP silica
shell surface. Thus, mixing of the two nanoparticle solutions can lead to effective hybridization
between the UCNPs@dSiO2 and Au-NPs, leading to UCNPs@dSiO2@Au-NPs. Furthermore, it is
asserted that the thiolate ligands on the particles can aid in the prevention of particle agglomeration
through steric driven repulsion, thus imparting greater colloidal stability when the particles are
dispersed in aqueous solutions. As Au-NPs exhibit luminescent absorption near ~541 nm, they can be
effectively used as an energy acceptor in a system whereby UCNPs act as energy donors via LRET
mechanisms. This is due to a close overlap with upconversion emission exhibited by UCNPs at
~541 nm and leads to the quenching of upconversion luminescence. However, it was determined
that the UCNPs@dSiO2@Au-NPs still exhibited significant upconversion luminescence in comparison
to unhybridised particles. Furthermore, it was demonstrated that the UCNPs@dSiO2@Au-NPs had
greater X-ray attenuation than unhybridised Au-NPs at the same concentration. This system can serve
as a platform that can allow for the realisation of various diagnostic, as well as therapeutic applications
due to the great multi-modal functionality it exhibits.
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3. Conclusions

There is a multitude of ways in which it is possible to approach the surface modification of
UCNPs to provide various functional moieties for further use in applications such as biosensing,
bioimaging, and drug delivery. As discussed, the primary base functionalities (–COOH, NH2 and
-SH) can imparted onto the surfaces of UCNPs through techniques such as ligand exchange and
silanisation. These functionalities can be used to coordinate ligands to the surfaces of UCNPs, as well
as grant hydrophilic properties to the UCNPs for their use in aqueous mediums, which is a key
objective for bio-applications. Moreover, the affixation of these functional moieties provides further
capabilities such as bio-conjugation. Amino and carboxyl groups are evidently favoured modifications
due to the extensive methodology surrounding carbodiimide chemistry, the popularity of which
can be explained by the abundance of terminal carboxyl and amino groups on biomolecules. DNA
and protein are common examples of such biomolecules that are actively conjugated to UCNPs
for their use in various bio-applications and can be coupled to UCNPs via carbodiimide chemistry.
Surface modifications themselves offer functionality, with silica for example providing encapsulation
of the nanocore thereby protecting it from unwanted external stimuli. As a result, dissolution and
desaturating of the particles are substantially decreased. Mesoporous silica and polymeric ligands
can grant the ability to load therapeutic drug cargo or photosensitisers, an advantage over ligands
which require external conjugation of drugs or biomolecules that may display unwanted interactions
due to their placement on the surface of particles. Furthermore, it allows for complex design around
the working mechanisms of the desired application, for example, separate functionalisation of mSiO2

pores to the surface can award greater control over mechanisms such as drug release times whilst
maintaining the ability to specifically target and localise treatment. Although there only a few base
functionalities, the way they are utilised in various applications can be extremely diverse given the
necessary conditions for the operation. Manipulation of properties via pH changes, temperature
and electrostatic characteristics, for example, can allow for these same functional moieties to be used
differently and more effectively to achieve either similar or drastically different goals.
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