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Abstract: The creation of 2D–3D architectural vector drawings constitutes a manual, labor-intensive
process. The scientific community has not provided an automated approach for the production of
2D–3D architectural drawings of cultural-heritage objects yet, regardless of the undoubtable need
of many scientific fields. This paper presents an automated method which addresses the problem
of detecting 3D edges in point clouds by leveraging a set of RGB images and their 2D edge maps.
More concretely, once the 2D edge maps have been produced exploiting manual, semi-automated or
automated methods, the RGB images are enriched with an extra channel containing the edge semantic
information corresponding to each RGB image. The four-channel images are fed into a Structure from
Motion–Multi View Stereo (SfM-MVS) software and a semantically enriched dense point cloud is
produced. Then, using the semantically enriched dense point cloud, the points belonging to a 3D
edge are isolated from all the others based on their label value. The detected 3D edge points are
decomposed into set of points belonging to each edge and fed into the 3D vectorization procedure.
Finally, the 3D vectors are saved into a “.dxf” file. The previously described steps constitute the
3DPlan software, which is available on GitHub. The efficiency of the proposed software was evaluated
on real-world data of cultural-heritage assets.

Keywords: edge detection; point-cloud segmentation; photogrammetry; 3D computer vision; cultural
heritage; SfM-MVS

1. Introduction

The creation and analysis of 3D data has attracted increasing interest from the sci-
entific community during the last decade. The understanding and analysis of 3D data
could provide solutions for perplexing and demanding tasks, e.g., the production of self-
driving cars, the automation of the production of 2D–3D architectural drawings and the
improvement of the 3D perception of robots. There are several types of 3D data provided
to the scientific community for analysis in the form of, e.g., 3D point clouds, textured 3D
meshes and voxels. A major challenge in computer vision and photogrammetry is the
association of 2D–3D data with a semantic meaning, for instance, the identification and
detection of scene objects or the materials of a construction presented in a set of images or
in a point cloud, in the same way as human perception. In this regard, several approaches
have been developed so far, investigating the semantic segmentation of 2D–3D data. The
semantic segmentation of 3D data, such as point clouds and meshes, is still an open issue,
especially for complex scenes such as cultural-heritage assets. In general, 2D edges form a
low-level semantic information incorporated into several deep-learning architectures to
extract image features which may then be used for 2D classification, 2D object detection
and 2D semantic-segmentation purposes. A plethora of methods developed so far dealing
with 3D point-cloud semantic segmentation exploit various transformations of the cloud
such as graphs and voxels or are applied directly on it. Furthermore, deep-learning image
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semantic-segmentation algorithms are combined with the photogrammetric pipeline to pro-
duce semantically rich 3D point clouds [1–3]. Additionally, 2D–3D semantic-segmentation
techniques are exploited to improve other methods such as 3D reconstruction [4,5].

Architectural drawings such as horizontal floor plans and vertical cross sections con-
stitute a valuable product for a variety of scientific fields such as engineers, archaeologists,
and craftsmen. Since ancient times, construction or, indeed, conservation works were based
on drawings. The primary role or function of working drawings is to convert design data
into construction information and to clearly communicate that information to the building
industry, code officials, product manufacturers, suppliers, and fabricators. Keeping track
of modifications and/or additions during documentation is a necessary step in obtaining
an accurate drawing set for the working system. These drawings are a valuable resource
for maintenance and troubleshooting. Up to now, drawings are printed, mainly on paper
sturdy enough to be handled outdoors and resistant to natural phenomena. In recent years,
however, digital technology has advanced remarkably and, consequently, all drawings, 2D
or even 3D, are produced and disseminated in digital form. Either in vector or raster format,
2D drawings can, nowadays, be displayed on flat screens of laptops, tablets or even smart-
phones. However, this display does not fully appeal to field experts as expected. Hence,
2D drawings are still necessary and required, as by creating a drawing more than simply
presenting a captured 3D data set, an interpretation of the subject can be provided [6].

• Accessible, platform-independent information. There are many cases when site-work
steps beyond the workstation or laptop; this may be due to cost, format compatibility
or simple practicality.

• Clarification of complex 3D spaces by use of plan, section or perspective views.
• Simplicity by showing selected information pertinent to a given project.
• Reliable perception of scale, a printed plot, either dimensioned or with a scale, allows

consistent shared experience of information, etc.

Nowadays, the creation of 2D–3D architectural drawings is a manual and time-
consuming process. Moreover, the completeness in a drawing requires careful examination
of the structure not covered by surface recording methods such as photogrammetry or
laser scanning. Additionally, the scientific community has not proposed a fully automatic
method for the construction of such drawings so far, regardless of the indispensable need
in many scientific fields. In this study, a 3D edge-detection approach which leverages 2D
edge semantic information is presented. The proposed 3DPlan algorithm which is available
on GitHub (https://github.com/thobet/3DPlan (accessed on 15 September 2022)) can also
be exploited using high-level semantic information such as image semantic segmentation,
instance segmentation and panoptic segmentation, instead of edge maps, and, thus, may
be used in various applications.

Thus far, semantic-segmentation algorithms in 2D space have been investigated more
than those in 3D space. Therefore, several approaches exploit such methods to firstly detect
and then project the 2D semantic information into 3D space [7–9]. For example, if the
images are available, image semantic-segmentation algorithms are applied and then the
2D semantic information is projected into 3D space. If the images are not available, firstly,
the 3D model is artificially “photographed” from various positions, i.e., 3D–2D projection;
then, 2D semantic-segmentation algorithms are applied to the images and, finally, the 2D
semantic information is projected back into 3D space. Several applications in drawing
creation could exploit 3D–2D line detectors such as the creation of drawings of building
facades or the creation of drawings using aerial images instead of terrestrial.

The scope of this effort is to propose a 3D edge-detection algorithm and to investigate
the exploitation of those 3D edge points to produce 3D vectors, a major step towards the
automation of the production of 2D–3D architectural vector drawings, which will still
be required by conservation experts for years to come. To be more specific, the 3DPlan
algorithm detects the 2D edges on each RGB image of a given dataset. Then, it enriches the
given RGB images with an extra channel which contains the 2D edge semantic information
produced in the previous step. The four channel images are passed into the Agisoft-

https://github.com/thobet/3DPlan
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Metashape [10] or the Mapillary-OpenSfM [11] software and a semantically enriched dense
point cloud is produced. Finally, the edge points of each edge are grouped and isolated
using their labels carried by the semantically enriched point cloud. Finally, the 3D vectors
are created using the detected groups of edge points and saved into a “.dxf” file. The steps
described are executed automatically using the 3DPlan software. An illustration of the
general idea of the 3DPlan software is presented in Figure 1.

Figure 1. General idea of the 3DPlan algorithm. The products from left to right are: the semantically
enriched point cloud visualized with true colors, semantic colors, the detected 3D edge and the 3D
vector with the dense point cloud.

The rest of the paper is organized as follows: Section 2 presents the related work,
including the traditional and deep-learning 3D edge-detection approaches presented in
the literature. The materials and methods are outlined in Section 3. In Section 4, the
results using the 3DPlan algorithm are presented, exploiting various datasets as well as
testing different parameter combinations. Section 5 presents a discussion of the results, the
contributions of the proposed algorithm as well as the parts requiring further investigation.
Finally, in Section 6, some conclusions for the proposed algorithm are drawn.

2. Related Work

The general idea of this research is the 3D edge detection for automated 2D –3D vector
drawing construction. Several methods developed so far investigate the 3D edge-detection
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task, a crucial step before the 3D edge-vectorization procedure. These methods can be
summarized into two categories, the direct and indirect. On the one hand, the direct
methods initially clean the point cloud of the unnecessary parts and the random noise
present. Then, the remaining points are grouped into clusters which are exploited to extract
the desired 3D edges. On the other hand, indirect methods transform the given point
cloud into images on which the 2D edges are detected and then projected back to 3D space,
resulting in the coveted 3D edges. Model-fitting techniques are usually involved with 3D
edge-detection methods. Bienert [12] introduced an edge-vectorization and dimension
approach exploiting smoothed point-cloud profiles. The profile is determined by cutting
the given point cloud with a plane parallel to an “origin plane” defined by XY, XZ, YZ or an
arbitrary plane and with specific thickness, and is smoothed using a line fitting approach.

A plethora of 3D edge-detection methods presented in the literature exploit plane-
intersection techniques. Nguatem, Drauschke and Mayer [13] presented an approach which
detects window and door boundaries in 3D space using plane intersection and approximate
templates of the desired shapes. Lin et al. [14] introduced the line-segment-half-planes
method which uses plane intersection to detect 3D line segments. The given point cloud
was projected into several groups of images while the group that fully describes the object
of interest was selected. Then, the 2D line segments were detected, applying the LSD [15]
algorithm. The extracted lines were filtered to remove the erroneous ones and the remaining
lines were projected back into 3D space in a “V” shape. The two non-parallel planes of
each projected “V” shape were extracted while their intersection is the desired 3D edge.
Mitropoulou and Georgopoulos, Ref. [16], presented an approach which detects 3D edges
using plane intersection and the PCL library [17]. The planes are detected by calculating
the fitted plane to each of the point triplets in the given point cloud. The planes with the
most inliers are selected, and the 3D edges are produced via plane intersection.

Apart from plane intersection, planes could be used to detect 3D edges applying
different techniques. Bazazian, Casas and Ruiz-Hidalgo [18] proposed an approach which
extracts sharp edges in point clouds exploiting a statistical method in combination with
plane fitting. More precisely, the given point cloud was segmented into regions using
the kNN algorithm and then a plane was fitted to each segment using the least squares.
Afterwards, the covariance matrix of each region as well as its eigenvalues and eigenvectors
were calculated. The 3D edges were detected determining if a point lies on an edge or on a
plane, using the surface variation formula.

The statistical quantities and matrices, e.g., normal vector and covariance matrix,
derived from a set of points, constitute worthwhile information useful to segment those
points into groups describing each of the object’s planes. Lu, Liu and Li [19] presented a
fast method for 3D line extraction exploiting statistical quantities and matrices. Initially, the
given point cloud was decomposed into smaller groups. To achieve that, a region-growing
and a region-merging technique were implemented iteratively aiming to accurately detect
each of the object’s planes. Those steps were applied calculating the covariance matrix for
each region and exploiting its eigenvalues and eigenvectors. Finally, the points of each plane
were projected on an image, an edge-detection algorithm was applied, and the detected
edges were projected back into 3D space. Dolapsaki and Georgopoulos [20] presented a
method in which the desired 3D edges are extracted using oriented high-resolution digital
images, the relationships of the analytical geometry and the properties of planes in 3D
space. The final 3D edges, in their true position in 3D space, are detected in the available
point cloud by applying some constraints. The provided method is semiautomated while
the 3D edges are detected with under 1 pix accuracy, using a calibrated camera.

Point clouds can be collected using either image-based or laser-scanning techniques.
Both approaches have advantages and disadvantages while, depending on the application,
one or both can be implemented. Alshawabkeh [21] proposed a 3D edge-detection method
using data from both image-based and laser-scanner techniques. Firstly, the point cloud
produced by the laser scanner was converted into a set of depth images. The specifications
of the depth images are considered with respect to the captured RGB images. The main
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goal of this approach was to identify the cracks presented on the facade of the Treasury
monument of Petra in Jordan. Thus, the Canny edge detector [22] was implemented on
the RGB images to extract the presented cracks. Finally, the found cracks were projected
into the 3D space using the depth information provided by the produced depth maps.
Apart from the RGB images, the Canny edge detector can be applied directly to range
images, generated from point clouds collected by laser scanners, and then reprojected into
3D space [23].

In some applications, 3D edges are used as an abstract representation of shapes. Dur-
ing 3D reconstruction procedures, such methods are commonly used as an alternative
to the time-consuming MVS procedure, aiming to generate a group of 3D edges which
fully describes the object of interest. An approach was presented by Hofer et al. [24]
in which a line-matching method is implemented exploiting the principals of epipolar
geometry. Each 3D line is determined using a depth estimation procerdure while the
line direction is calculated using the singular value decomposition technique. Finally, a
bundle-adjustment technique is provided optionally aiming to produce a more accurate 3D
line model. Bazazian and Parés, [25] presented a capsule network, named EDC-Net, which
predicts if a point lies on an edge or not, in 3D space. EDC-Net was initially trained using a
fully supervised learning approach in combination with the ABC [26] dataset. The gener-
ated model was considered as a pretrained model and, thus, was fine-tuned using a weakly
supervised transfer learning approach and the ShapeNet [27] dataset. Qi et al. [28,29] pro-
posed an innovative deep-learning architecture, named PointNet, which was applied on
the 3D object-detection, 3D part-segmentation and 3D semantic-segmentation applications
with remarkable results. The PointNet architecture was the first applied directly to 3D
point clouds, introducing a new era in 3D point-cloud analysis. Liu et al. [30] introduced
an end-to-end trainable deep network architecture which automatically generates a 3D
graph representation of a given 3D point cloud of man-made polyhedral objects such as
furniture, mechanical parts, or building interiors, etc.

Building information models (BIMs) are used in point-cloud vectorization methods.
Chuang and Sung [31] proposed a learning approach for point-cloud vectorization, which
includes a “Feature Extraction” and a “Vectorization” procedure. The approach leverages
BIM models during the training process to associate each point with attributes. To be
more specific, the approach produces 3D dense point clouds from BIMs which include
not only the geometric information but also a semantic meaning, e.g., walls, columns etc.,
exploiting the information incorporated into the BIM. The test of the proposed approach
was conducted using simple 3D dense point clouds, i.e., without semantic meaning, and a
plethora of metrics, e.g., recall, precision etc, as well. Additionally, Bassier et al. [32] labeled
3D vector models using an automated approach. The proposed method contains various
steps. Firstly, the user defines a set of parameters regarding the data under consideration.
Then, the data are cleaned from the noise present and the planar surfaces are segmented.
Afterwards the “initial labelling” step is performed using some rules. The horizontal planes
are classified into five sub categories, e.g., floors, furniture, etc., and the vertical planes into
two subcategories, i.e., wall and unidentified. Fourthly, the labels produced are enhanced
for better results. Then, an automated approach gives the opportunity to detect windows
and doors. Finally, the labeled data are exported according to their label. The authors state
that the disadvantage of the proposed approach is that it cannot be implemented using
complex surfaces characterized by a plethora of details and small parts. The described
approaches assume that a BIM model is already available. Several approaches developed
so far investigate the Scan-to-BIM problem proposing semi-automatic [33] and automatic
approaches [34]. Macher et al. [33] proposed a semi-automatic reconstruction approach of
indoor point clouds acquired by laser scanner. The authors stated that point-cloud quality
plays a significant role during the process and presented a recommendation list of steps
to achieve high-quality point clouds using laser scanners. The proposed approach can be
divided into two main categories, point-cloud segmentation and 3D reconstruction of walls
and slabs. When the reconstruction is performed, a file in the IFC format is exported in
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which the walls and slabs are included. Finally, an evaluation procedure was conducted
using datasets which were not included in the development part. Ochmann et al. [34]
proposed an automatic 3D reconstruction approach, in which the main goal is to assign a
label to each cell either as “room” or as “outside area”. The proposed method firstly detects
planes using the RANSAC algorithm. The parameters used by RANSAC are defined
according to the quality of the used indoor point cloud. Then, a point-cloud cleaning
method is applied to eliminate the outdoor points collected by the scanner due to building
openings such as windows and doors. Afterwards, an automatic binary-classification
approach is implemented to classify each point as a “room” point or “outside area” point.
Thereafter, two sets of candidates for wall and slab surfaces are extracted. Next, pairs of
contrary surfaces are detected, which are characterized as walls by approximately matching
parallel surfaces with contrary normal vectors. The wall candidates are used to create a 3D
cell complex. Finally, the result is improved using several probabilistic and optimization
steps and then it is exported. Each cell in the exported file is assigned to one room or the
outside area. The described reconstruction process was evaluated using synthetic and
real-world datasets of the construction domain. It is worth noting that the creation of simple
BIM models is not a time-consuming process in the construction domain if the building is
not characterized by details and heterogeneity. Thus, the BIMs are usually exported into
the construction domain in which the buildings are characterized by simpler geometric
shapes than the detailed cultural-heritage assets, e.g., monuments. Additionally, the 3D
reconstruction of buildings in construction is conducted for entities such as walls, floors
and slabs, which are usually characterized by continuous and smooth surfaces. Finally,
the construction becomes even more difficult when information such as the materials and
thickness of the structures should be included to BIMs.

Obrock and Gülch, [35] presented a method for producing semantically enriched
point clouds of interiors, combining deep-learning techniques with photogrammetry. More
precisely, a classifier was trained to segment images of interiors into several objects such as
floor, doors, windows, etc. Then, the blue channel of each image was replaced by a new
channel containing the corresponding ID number for each pixel. One additional variation
in this step was mentioned, in which a new channel carrying the semantic information
could be added to the existing images as a fourth channel, but, as they mentioned, this
was not applied due to technical issues. A vital disadvantage of the proposed method
was the production of false color point clouds due to the missing blue channel. Thus,
Gülch and Obrock [3] proposed an improved method either in the deep-learning or the
photogrammetric part. Firstly, a new deep-learning network was trained using manu-
ally produced ground-truth data as well as the DeepLabv3+ [36] architecture instead of
FCN-8s [37], producing more accurate semantic-segmentation results than the previous
approach. Additionally, the photogrammetric procedure was improved by proposing a
two-step approach which generates both a true-color and a semantically enriched point
cloud. To be more specific, the SfM algorithm was executed using the original RGB im-
ages calculating the relative translation and rotation of each image to the referenced one.
The calculated parameters, i.e., the exterior orientation of the images, were exploited to
reproject the semantic images generating the semantically enriched point cloud. Finally,
the obvious lines, i.e., the intersection of the wall with the floor, were extracted using a heat
map and applying the Hough–Transform algorithm. Obviously, the proposed approach
requires the generation of a dense point cloud, which is a time-consuming process, twice
to produce the true colors and the semantically enriched point clouds. Pellis et al. [2]
proposed a new workflow for 3D point-cloud semantic segmentation for cultural-heritage
buildings, using photogrammetric and dense image-matching principles. The proposed
workflow contains two major steps: firstly, the images are semantically segmented using
DeepLabv3+ and secondly, the semantic information is projected into 3D spaces exploiting
image masks. Finally, a 3D semantically enriched dense point cloud is produced, for each
semantic category.
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Edge detection is a fundamental computer vision problem. Xie and Tu [38] pro-
posed a deep-learning method for 3D edge detection called Holistically-nested Edge
Detection (HED), which leverages convolutional neural networks (CNN). According to
the authors, the HED algorithm outputs better results than the Canny edge detector.
Poma, Riba and Sappa, [39] presented an interesting deep-learning-based 2D edge detector,
named DexiNed, which produces thin edge maps and can be applied to any image without
a previous training procedure. A comparison between the detected 2D edges using state-
of-the-art models [38,40–42] and DexiNed is presented by the authors, providing useful
information for the performance of such methods. Segmentation techniques on point clouds
are divided into four categories (i) edge-based, (ii) region-growing, (iii) model-fitting and
(iv) clustering [8]. Edge-based methods transfer edge-detection information from images
to 3D point clouds aiming to describe the shape of the presented objects. Thus, the 3D
point cloud is segmented into smaller parts describing the objects. Bhanu et al. [43] de-
tect 3D edge points using several methods such as gradient computing and line fitting,
while they state that the 3D edge points constitute valuable information for 3D shape-
recognition purposes.

However, the scientific community has not proposed a fully automatic approach to
produce architectural vector drawings yet, in comparison with the unquestionable need
from a diversity of scientific fields. In this effort, an edge-based 3D point-cloud segmenta-
tion approach exploiting SfM-MVS algorithms is presented to detect 3D edge points and to
investigate the automation of the construction of 2D and 3D architectural drawings.

3. Materials and Methods

The motivation of the 3DPlan algorithm is its contribution to the unsolved problem of
the automation of the construction of 2D–3D architectural vector drawings. The proposed
methodology presents an efficient pipeline for the extraction of 3D edges from point clouds
using 2D edge semantic information from digital images. The major steps of the proposed
methodology are

1. The enrichment of the RGB images with their edge maps constructing four-channel images;
2. The usage of the four-channel images into image-based 3D point-cloud production workflows;
3. The separation of the 3D points into edge and non-edge points;
4. The 3D vectorization of 3D edge points.

3.1. Edge Maps and the Creation of Four-Channel Images

The quality of the detection of the 3D edges is strongly dependent on the quality of
the 2D edge maps. However, this effort is focused on the construction of a general software
which will be used as the base towards the automation of the production of 2D–3D archi-
tectural drawings, and not to investigate the best 2D edge-detection technique, neither the
traditional nor the more sophisticated, e.g., DexiNed [39], etc. The 3DPlan software receives
the edge semantic information in two ways (i) using a live-Canny implementation which is
a user-guided implementation of the Canny algorithm or (ii) using predefined edge maps
(an external semantic source). More concretely, using the live-Canny implementation, two
windows are opened automatically and the user defines the Canny hysteresis thresholding
parameters with the provided bars. The edge map is updated live in the first window while
the second one displays the image under process. When the user is satisfied about the de-
picted edge map, terminates the process. The two windows of the live-Canny are depicted
in Figure 2. On the other hand, the external semantic source enables the combination of
the given images with predefined edge maps and, thus, the user is not restricted to using
Canny algorithm by the providing semiautomatic tool. Additionally, the 3DPlan software
can easily adopt the more sophisticated and upcoming 2D edge-detection techniques as an
external input and, thus, be easily updated in the future. Regardless of whether live-Canny
or a different 2D edge-detection method is used, the RGB images are enriched with their
edge map resulting in four-channel images instead of the RGB. Each pixel is associated



Heritage 2022, 5 4044

with four values, i.e., RGBL and, thus, four-channel images constitute an elegant way to
carry the RGB accompanied with the 2D edge information.

Figure 2. Live-Canny interface.

3.2. Image-Based 3D Point Cloud Software

A major objective of the 3DPlan software is to produce a semantically enriched 3D
point cloud which carries the edge semantic information in the same way as the four-
channel images, i.e., each 3D point is to be associated with four values—RGBL—with
respect to the pixels used to calculate the 3D position. Two well-known Structure from
Motion and Multi View Stereo (SfM-MVS) softwares, the Agisoft-Metashape and Mapillary-
OpenSfM, were exploited during this effort.

3.2.1. Agisoft-Metashape

Agisoft-Metashape is one of the leading photogrammetric software on the market,
and was introduced in 2006 as Agisoft-PhotoScan. It has a user-friendly GUI with many
algorithms included, well-written documentation and a plethora of training videos. Ad-
ditionally, it supports Python and Java API, offering the opportunity to manipulate the
provided algorithms using programming instead of GUI. Although Agisoft-Metashape
is a closed commercial software and therefore it is not possible to modify its source code,
it has a major advantage regarding the scope of this effort: its ability to process multi-
spectral images, e.g., from satellite sensors. Hence, it enables the direct use of the default
photogrammetric pipeline exploiting the created four-channel images. To this end, a se-
mantically enriched point cloud is produced by default and without any modification. The
exploitation of the Agisoft-Metashape pipeline from the 3DPlan software is conducted
using the Python API to achieve a non-stop execution of the software. The major steps of
the developed pipeline using the Python API are described in the following steps:

1. Firstly, the “.psx” project file and one chunk inside it, are created.
2. Then, the four-channel images are added to that chunk.
3. Afterwards, the image-matching and camera-aligning algorithms are executed.
4. When the sparse point cloud is generated, a depth map of each image is produced.
5. Finally, the semantically enriched dense point cloud is created using the depth maps

and saved using the “.ply” format.

The steps described are the same as the main workflow of the Agisoft-Metashape soft-
ware using the GUI. The 3DPlan software gives the choice to the user to create the semanti-
cally enriched point cloud using the GUI, apart from the developed Python implementation.

3.2.2. Mapillary-OpenSfM

Mapillary-OpenSfM is an open-source SfM pipeline which is distributed under the
BSD-2-Clause license [44] and, thus, it has all the advantages of an open-source project,
such as the ability to adapt the source code to one’s needs. Additionally, the user has a
wide range of configuration choices for each of the workflow steps provided using a user-
friendly configuration file. The Mapillary-OpenSfM software does not have a graphical
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user interface (GUI), so the execution and management of its algorithms are performed
using terminal commands.

When the software processes four-channel images, the produced point cloud is exactly
the same as using three channel images. It was concluded that the software ignores the
existence of the fourth channel and, thus, the necessary modifications of the main branch of
the Mapillary-OpenSfM software, using the GIT version control system, were applied. The
main idea of the modified Mapillary-OpenSfM workflow was to process the label channel
like the RGB channels during the generation of the point cloud, and, finally, to include the
label value of each point in addition to its position and color values into the point-cloud
file. More precisely, the source code of the Mapillary-OpenSfM software was modified to
achieve the following:

• To eliminate the fourth channel, i.e., 2D edge map, during the feature-extraction process.
• To consider the fourth channel during the determination of the color values of each

point and, thus, associate each point with four values instead of three.
• During the execution of the OpenSfM software, the images’ dimensions are changed

for cost purposes. Thus, the software was modified to scale down the fourth channel
in the same way as the rest of the channels.

• To change the definition of the undistorted images format to “.tiff” instead of “.jpg”
using the user-friendly configuration file.

The changes described above guarantee the correlation of the pixel values of the RGBL
channels during the creation of the 3D point cloud. The correlation of pixel values is crucial
for the correct registration of the RGBL values to the 3D point-cloud file. The original
Mapillary-OpenSfM software has two variables called “labels" and “class" associated by
default, with an add-on script for manual image-annotation tasks which was not used
during this effort. The source code of Mapillary-OpenSfM was modified to use the “la-
bels” variable and the “class” position when required in order to register the label values,
extracted from the images’ fourth channel, to the point-cloud file and so to produce the
semantically enriched point cloud. The Mapillary-OpenSfM source code was forked and
the new branch called OpenSfM_3DPlan https://github.com/thobet/OpenSfM_3DPlan
(accessed on 15 September 2022), which is available on GitHub.

3.2.3. Edge and Non-Edge Points Classification and 3D Vectorization

Regardless of the chosen SfM-MVS workflow, a semantically enriched point cloud
is generated and stored in the “.ply” format. Then, the edge points are isolated from the
non-edge ones taking into account their label value. The label values range from 0 to 255
(8-bit images) due to the interpolation applied during the SfM-MVS pipeline. To this end,
an empirical threshold value, which is 100 by default, is defined and so the points with
label values greater than the threshold are considered as edge points and stored into a
point-cloud file. The rest are characterized as non-edge points and excluded from the
upcoming steps. Afterwards, the isolated 3D edge points should be decomposed into
points of each 3D edge presented into the stored point cloud. Two widely used clustering
algorithms, the RANSAC [45,46] and DBSCAN [47], are combined to determine those sets
of points. First and foremost, the DBSCAN algorithm using each points’ neighborhood,
which is defined by the “eps” value, classifies the edge points into the clusters of points
of each edge. The eps value defines the minimum distance to characterize two points
as neighboring. It is worth noting that the “eps” value should be estimated considering
the image resolution and density of the semantically enriched point cloud. Finally, the
RANSAC algorithm, using a line-fitting formula, is applied to each cluster. The inlier
points produced via the RANSAC implementation are fed into the vectorization step. The
rest are considered as noise. Then, the 3D edge vectorization is performed by exploiting
the first and the last point of the each set of inliers. Obviously, the 3D edge-vectorization
approach is not the optimal one and, thus, a better approach should be included in the
future exploiting the line-fitting parameters computed by RANSAC. Finally, the generated
3D vectors are stored using the “.dxf" format. Figure 3 displays the flowchart of the 3DPlan

https://github.com/thobet/OpenSfM_3DPlan
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algorithm. More details about the algorithm and the experiments performed until the final
version are discussed in Results (Section 4).

Figure 3. The flowchart of the 3DPlan software (above to below).
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4. Results
4.1. Oversimplified Experiments

The algorithm developed during the oversimplified experiment is an implementation
of the standard two image epipolar geometry problem called “Triangulation”, written in
Python using the OpenCV [48] library. It produces a non-optimized 3D point cloud for each
image pair, since the bundle adjustment is omitted. However, the scope of this step was to
develop the secondary Python scripts of the 3DPlan algorithm as well as to find the most
efficient method to carry the edge semantic information and then to be included in 3DPlan
software in combination with professional SfM-MVS workflows for an optimal result. To
this end, two approaches were investigated for the exploitation of the semantic information.
The first approach uses a predefined reference image, which is a duplication of the left
image of the image pair, to carry the semantic information (Figure 4). The images used
for the first experiment are from the archaeological site of the ancient Kymissala [49–51] in
Rhodes and were captured during the summer field course in photogrammetry in 2019,
which was conducted by the Laboratory of Photogrammetry SRSGE NTUA. The second
approach enriches the RGB images with an extra channel (RGBL), which contains the edge
semantic information and then feeds them into the “Triangulation” pipeline, from which a
semantically enriched point cloud is produced.

To be more specific, the first approach separates the workflow of the 3D point-cloud
generation into two steps: (i) the calculation of the 3D positions (XYZ) and (ii) the coloring
of the 3D points using the reference images (RGB). The semantic information is associated
with each point during the coloring step as each color represents a different class, i.e., the
true colors of the original image are replaced with the artificial colors of the reference image.
In fact, during the generation of the point cloud, the pixels from which the points were
created, are cached. The color value of each point is determined using the cached pixel
index and the reference image. Finally, apart from the true-color point cloud, a semantically
enriched point cloud with the false colors of the segmented image is produced (Figure 5).
This approach was developed to avoid the steps back and forth during the production of
the semantically enriched point cloud using the exterior orientations of the RGB images
and the semantically segmented images [3]. In more detail, using the “Triangulation”
algorithm, the semantically enriched point cloud is produced by exploiting the cached
pixel position of the produced 3D point. The RGB values are extracted from the original
RGB images while the labels for each point are extracted from the reference image. The
approach described is, of course, inefficient, especially in the case of datasets with hundreds
of images, since a duplication of the given images is required during the process and
the process is over-complicated. Additionally, the exploitation of the existing SfM-MVS
algorithms, which guarantees an optimal result, in combination with reference images,
constitute a time-consuming process especially in the case of commercial software without
publicly available code.

Figure 4. The image pair and reference image (Experiment 1).



Heritage 2022, 5 4048

Figure 5. The semantically enriched point cloud (Experiment 1).

On the other hand, the second approach executes the generation and the colorization
steps of the point cloud simultaneously using four-channel images instead of standard
three-channel images. The point cloud produced contains the true colors and semantic
information as well, because the semantic information follows the RGB values during the
process maintaining the correlation between the RGB values and the label value (Figure 6).
The second experiment was conducted using images from the ancient temple of Demeter
in Naxos. Regarding the scope of this effort, edge semantic information is used but higher
level semantic information could also be included as extra channels of the given RGB
images along with the 3DPlan software. Finally, the classification of the 3D points, into
semantically meaningful classes, is conducted using the label value of each 3D point. After
many experiments in which the professional SfM-MVS software was used apart from the
“Triangulation” algorithm, the approach with the four-channel images was selected to be
the most efficient between them. The first row of Figure 6 depicts the edge maps (top
to bottom). The edge semantic information was produced manually. The depicted edge
maps were converted to binary images (0, 255), constituting the fourth channel of the
original images. Then, Figure 6 depicts the semantically enriched point cloud as a 3D point
cloud and an ASCII file, in which the XYZ, RGB and L values are included. The orange
ellipses contain the detected 3D edge points, i.e., the 3D points with 255 label value into the
ASCII file.

Figure 6. The edge semantic information (first row); the semantically enriched point cloud using the
triangulation algorithm (second row).

The most important drawback of the experiment with the “Triangulation” algorithm
is the production of a non-refined point cloud and, thus, the proposed algorithm was
combined with professional software, i.e., Agisoft-Metashape or Mapillary-OpenSfM. It
is clear that the semantically enriched point cloud of Figures 5 and 6 are too far from a
well-created 3D point cloud. Consequently, the production of four-channel images, which
carry the edge semantic information, was considered a more efficient and elegant approach
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for the creation of a semantically enriched point cloud and the “Triangulation” algorithm
inappropriate for the creation of the semantically enriched 3D point cloud, as was expected.

4.2. Implementation Using Four-Channel Images and the Professional SfM-MVS Software

As discussed earlier the algorithm “Triangulation” developed for the oversimplified ex-
periment was characterized by major disadvantages. Additionally, the Agisoft-Metashape
and Mapillary-OpenSfM software constitute two of the leading photogrammetric software
on the market; thus, they are a trusted choice for the creation of the semantically enriched
3D point cloud. Section 3.2 presents the, by default, benefits of the Agisoft-Metashape
as well as the Mapillary-OpenSfM software which was modified to process four-channel
images so as to be combined with the 3DPlan software. Figure 7 depicts two of the RGB
images (first row), their corresponding manually annotated edges (second row) and the
binary edge maps (third row) used during this experiment. The set of the binary edge
maps depicted in Figure 7 was created using the red channel of the annotated images
(second row) and identifying the 255 pixels values. Eventually, the RGB images (first row)
were enriched with the binary edge maps (third row) and so the four-channel images were
produced. For this experiment, seven images from the Temple of Demeter, Naxos dataset
were used in combination with Agisoft-Metashape and Mapillary-OpenSfM software.

Figure 7. Edge semantic information used with professional SfM-MVS software.

The four-channel images were imported in both professional SfM-MVS software and
so the semantically enriched 3D point clouds were created (Figure 8a). The first row
of Figure 8a depicts the semantically enriched point cloud produced using the Agisoft-
Metashape software while the second row is the semantically enriched point cloud pro-
duced using the modified Mapillary-OpenSfM software. Each row in Figure 8a depicts
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exactly the same 3D point cloud, the difference is due to the semantic knowledge which is
carried into the 3D point-cloud file simultaneously with the RGB colors; it is possible to
change the color and so visualize the semantic information instead of the true-colors point
cloud. The white line in the black point cloud of the first row (Agisoft-Metashape) can be
observed, as well as the green line in the red point cloud of the second row (Mapillary-
OpenSfM) of Figure 8a. The visualization was made using Cloud Compare, and the colors
changed from true colors to semantic colors, by selecting scalar index instead of RGB.
Previously, the scalar index was associated with the labels of the point-cloud file. After-
wards, as is described in Section 3, the 3D points were classified into edge and non-edge
points. Figure 8b depicts the 3D edge points detected using Agisoft-Metashape (left) and
Mapillary-OpenSfM (right) software.

(a)

(b)

Figure 8. Products using professional SfM-MVS software and manually annotated edges. (a) Se-
mantically enriched dense point clouds using the Agisoft-Metashape (first row) and the Mapillary-
OpenSfM software (second row). (b) 3D edge points using the Metashape (left) and the OpenSfM
software (right).

4.3. Implementation of the 3DPlan Software

The proposed algorithm (3DPlan) is divided into three sections: (i) the user interface,
(ii) the environment setting and (iii) the execution of the developed approaches according
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to the user’s choices. In fact, it is impossible to produce manually annotated edges like
Figure 7 for all the edges and all the images of a dataset and so automated methods were in-
cluded. To be more specific, the 3DPlan algorithm includes the live-Canny implementation
(Figure 2), which gives the opportunity to the user to set and evaluate simultaneously the
Canny’s parameters, as well as the “external source” option which gives the opportunity to
the user to exploit any 2D edge-detection method. Moreover, 3DPlan software includes
the developed algorithm, which enriches the given RGB images with the corresponding
edge map as a fourth channel. Additionally, it includes the developed combination of the
DBSCAN and RANSAC algorithms, to group the detected edge points into sets of points
belonging to each edge and the algorithm which uses the detected group of 3D points,
vectorizes them and saves the 3D vectors to a “.dxf” file.

3DPlan User Interface

The 3DPlan algorithm user interface includes a series of questions which are posed
to the user at the terminal/command line as well as several informative messages during
the execution of the software, e.g., date/time and execution progress. The user must select
which method they prefer, answering some questions (Figure 9). It should be mentioned
that the user interface was implemented with a defensive perspective, providing a set of
useful functions such as the “message”, “error message” and “input check”, handling the
entire process. For instance, Figure 9 depicts a false answer (red circle), and the response
of the 3DPlan algorithm (red rectangle). First and foremost, the user defines the number
of the channels of the input images (three or four) into the SfM-MVS workflow. Secondly,
the user selects the approach that will be executed to create the semantically enriched
point cloud. The choices provided are the (i) Agisoft-Metashape, (ii) Mapillary-OpenSfM
and the (iii) Triangulation. The Agisoft-Metashape approach contains the (i) Python and
(ii) GUI implementation and so the user must select which one will be used during the
process. Regardless of the selected point-cloud production approach, the 3DPlan algorithm
creates a new folder called “Lines” in the 3DPlan directory. Thirdly, the user selects the
approach which will be used to determine the edge semantic information, the first choice is
the (i) live-Canny and the second one is the (ii) external semantic source. Finally, the user
must define the format of the given three-channel images which will be used to produce
the four-channel images. The next steps are executed depending on the selected algorithm,
which will be used to produce the semantically enriched point cloud (Figure 3).

Figure 9. Questions of the 3DPlan user interface.

4.4. The Environment Setting and the Execution of the Algorithm

Simultaneously to the user’s responses to the interface, the 3DPlan algorithm con-
structs the environment within which the algorithm will be executed according to the user
choices, e.g., it creates the directory in which the final product will be stored, or manipulates
the OpenSfM software by creating new folders, copying the four-channel images to the
expected from the algorithm folder inside the OpenSfM installation and executing the
terminal commands in order to use OpenSfM algorithms, etc. The OpenSfM installation
and the 3DPlan software must be in the same folder (“parent directory” in Figure 10). The
general folders’ structure is depicted in Figure 10. The three-channel images, i.e., the given
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dataset, is stored into the “rgb” folder; the “lib” folder contains the Python source code.
When the four-channel images are created, they are stored into the “Images” folder. The
semantically enriched 3D point cloud, as well as the 3D edge points and the 3D vectors, are
stored in the “Lines” folder. In case of already-produced 2D edge maps, these are stored
into the “semantic_images” folder to be exploited by the 3DPlan algorithm and, finally, to
create the four-channel images. The “Labels” and “Blur_rgb” folders are used for optional
debugging/monitoring purposes.

Figure 10. The general folders’ structure.

The steps of the proposed approach are presented in Section 3 and Figure 3. The
experiments were conducted using the 3DPlan software in combination with several RGB
images from (i) the Ancient Temple of Demeter and (ii) the Old Police Station in Monolithos,
Rhodes, datasets. The results are depicted in Figures 11a–d and 12a–d.

(a)

(b)

Figure 11. Cont.
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(c)

(d)

Figure 11. The proposed approach and the Temple of Demeter in Naxos dataset. (a) The semantically
enriched dense point cloud. (b) The detected 3D edges. (c) The detected 3D edge points of each edge
(left) and 3D noise points (right). The colors of each class (left) seem to be the same for large regions
of the point cloud. In fact, there are not the same colors, but colors with minimal change in color
values due to the existence of hundreds of classes. (d) 3D vectors with the sparse point cloud.

(a)

(b)

Figure 12. Cont.
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(c)

(d)

Figure 12. The proposed approach and the Old Police Station dataset. (a) The semantically enriched
dense point cloud. (b) The detected 3D edges. (c) The detected 3D edge points of each edge (left)
and 3D noise (right). The colors of each class (left) seem to be the same for large regions of the point
cloud. In fact, there are not the same colors, but colors with minimal change in color values due to
the existence of hundreds of classes. (d) 3D vectors with the sparse point cloud.

5. Discussion

The proposed approach has individual steps which should be evaluated separately.
The main scope of this effort was the detection of the 3D edges into the produced point
cloud using 2D edge semantic information. In fact, the quality of the detection of the 3D
edges, using the 3DPlan algorithm, is inextricably linked to the quality of the detection of
the 2D edges. The proposed algorithm contains a live-Canny implementation in which the
user handles Canny drawbacks, such as misdetections due to textured areas or the shadows
present. Additionally, the 3DPlan algorithm includes a blurring implementation using
a Gaussian kernel, which, in combination with the live-Canny, produces better results,
although misdetections and wrong eliminations are not completely confronted. In general,
a plethora of traditional and modern 2D edge-detection approaches are presented in the
literature. Thus, the 3DPlan algorithm offers the user the opportunity to exploit any 2D
edge-detection method easily and effectively using the “external semantic source” choice.
To be more specific, the user can produce images’ edge maps using a technique of his choice
and then save them into the “semantic images" directory. The 3DPlan algorithm will enrich
the given RGB images with their edge maps included in the “semantic images" directory;
hence, the 3DPlan algorithm can be easily combined with all the existing and upcoming
2D edge-detection techniques, thus following the evolution of such techniques. The main
contributions of the 3DPlan algorithm are:

1. The creation of four-channel images using the given RGB images and their label channel.
2. The creation of a semantically enriched point cloud exploiting the four-channel images

in combination with professional SfM-MVS software.
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3. The modification of the Mapillary-OpenSfM software in order to create semantically
enriched point clouds using four-channel images.

4. The detection of the 3D edges with the most feasible accuracy with respect to the
quality of the 2D edge semantic information.

5. A software, which is available on GitHub (https://github.com/thobet/3DPlan (ac-
cessed on 15 September 2022)) and could be used as a base for more sophisticated
approaches to the automation of the production of 2D–3D architectural drawings.

5.1. Creation of Four-Channel Images

The combination of the RGB images with their label channel for the production of the
RGBL images was evaluated. To be more precise, after the generation of the RGBL images,
they were decomposed into their channels, i.e., R, G, B and L. The primary channels, i.e., R,
G and B, were combined and saved while the L channel was saved separately. The initial
RGB images were compared with the new RGB images by subtracting from each other
and no differences were observed. Hence, it was concluded that the RGB images were
unaffected during the process of adding the extra L channel. Apart from the RGB images,
the same comparison was performed for the label channels. The described procedure is
illustrated in Figure 13.

Figure 13. RGBL image check procedure.

5.2. Classification of 3D Points into Edge and Non-Edge Points

Apart from the quality of the 2D edge-detection technique, the classification of the 3D
points into edge and non-edge points contributes to the detection of the 3D edge points
with the best possible accuracy. During the classification procedure, the label value of each
point is taken into account to classify it as an edge or non-edge point. Ideally, the label
values must be either 0 or 255, representing the non-edge and edge points, respectively. The
generated label values, using the Agisoft-Metashape and the modified Mapillary-OpenSfM
workflows, rang between 0 and 255 because the images are resized during the execution of
the SfM-MVS pipelines to reduce the computational cost of the algorithms. Additionally,
some 2D edges were not detected in all the images in which they are depicted, due to the
weaknesses of the performed 2D edge-detection technique and so the mean value of the
pixels associated with the 3D point is not equal to 255. To this end, a threshold value, which
is used as an empirical classification criterion, was included into the 3DPlan algorithm.
The idea is that the 3D points with values larger than the threshold constitute the “strong”
edge points in contrast to those with values smaller than the threshold, which constitute
the “weak” edge points. The label value of the non-edge points is equal to zero. This
process filters the detected edge points and stores the “strong” ones. The remaining edge
points using a classification criterion equal to 0, 100, 150 and 200, respectively, are depicted
in Figure 14.

https://github.com/thobet/3DPlan
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Figure 14. Remaining edge points using threshold value equal to 0, 100, 150, 200, respectively.

5.3. 3D Edge Points of Each Edge and 3D Vectorization

Afterwards, the “strong” edge points are fed into the DBSCAN algorithm, which
aims to decompose the detected points into clusters presenting the points of each edge.
Two variables are defined, i.e., the “min samples” and the “eps”. The “min samples” sets
the minimum number of points required into a cluster to be validated and defined as a
value larger than two to eliminate sets of clusters, which are more likely to be erroneous
because the clusters with small number of points describe areas with a sparsity of 3D points,
and, thus, are considered as noise. The “eps” value defines each point’s neighborhood and
so it must be smaller than the average distance between the 3D points in order to separate
them efficiently, into points of each 3D edge. Afterwards, the points of each edge are
imported into the RANSAC algorithm, in which the inliers are considered using line fitting
and used into the 3D vectorization step. The results of the combination of the DBSCAN
and RANSAC algorithms as well as the 3D vectorization step need further investigation
(Figures 11c,d and 12c,d). In this effort, the 3D vectorization procedure is conducted using
the first and the last point of each cluster produced using the RANSAC algorithm; this
procedure must be changed in order to exploit the information of each point into the
cluster to fit the most accurate 3D line. To this end, the parameters calculated from the
RANSAC algorithm could be exploited during the vectorization step. Moreover, different
clustering algorithms and statistical methods could be applied to future implementations
to separate the 3D points into points of each edge. Additionally, different implementations
using the provided algorithms (DBSCAN and RANSAC) must be performed to investigate
their performance using several combinations of their parameters. The clustering and 3D
vectorization tasks constitute a first investigation of the problem and, obviously, further
analysis is essential.

5.4. 3D Point-Cloud Characteristics and Post-Processing

The characteristics of the created 3D point cloud play a significant role in the product’s
quality and, thus, the performance of the SfM-MVS workflows is vital. More concretely, a
point cloud with reduced noise, dense distribution of points and without a lack of infor-
mation constitute a high-quality product and so the 3DPlan algorithm could detect and
separate the 3D edges with the most feasible accuracy. To this end, the 3DPlan algorithm
was linked with the Agisoft-Metashape and the modified Mapillary-OpenSfM software.
The semantic information is passed to the semantically enriched point cloud, exploiting
the professional software and the four-channel images. Figures 11a,b and 12a,b depict the
semantic information passed to the 3D space correctly, with respect to the label channels. In
addition to the professional SfM-MVS software, the 3DPlan algorithm includes the “Trian-
gulation” algorithm. The “Triangulation" algorithm is not an accurate and recommended
approach for the 3D edge-detection task, after all, the scope of that algorithm was the devel-
opment of the secondary Python scripts and not the production of a professional SfM-MVS
software. Apart from the generation of the point cloud, a post process of it, e.g., removing
the ground points or the blue points coming from sky, etc., could improve the 3D edge-
detection task. Several experiments using a post-processed point cloud could be performed
to validate the performance of the 3DPlan algorithm using high-quality point clouds. In
addition, software performance and the complexity of the object under investigation affect
the quality of the product. For instance, the Old Police Station dataset, which is built of
stones, presents several misdetections because stones’ edges are similar to noise and, thus,
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are eliminated during the process (Figure 15). Additionally, the stones are characterized by
textured areas and shadows, which make the edge-detection procedure difficult. Hence, a
plethora of experiments using different threshold values should be conducted in each case
study, during the execution of the 3DPlan algorithm, to find the optimal parameters and so
the most accurate result. Finally, the modified Mapillary-OpenSfM approach is available
only for the Ubuntu distribution while the Agisoft-Metashape approach is available for
any operating system and so the 3DPlan algorithm can be executed using every operating
system. The Mapillary-OpenSfM is a non-commercial software and, thus, the 3DPlan
algorithm can be used by everyone. Additionally, during the execution of the 3DPlan
algorithm, no extra mathematical equations are included, apart from those used from the
SfM-MVS software and, thus, additional errors are not embedded.

Figure 15. Close view of the 3D edge points (white) and all the rest of the Old Police Station dataset.

6. Concluding Remarks and Future Work

In this effort, an open-source 3D edge-detection and vectorization algorithm written
in Python is presented. To be more specific, the RGB images, which are used for the point-
cloud production, are enriched with an extra channel, which contains the edge semantic
information. Afterwards, professional SfM-MVS pipelines are exploited to produce the
semantically enriched point cloud. In fact, the 3DPlan algorithm works with point clouds
produced by the SfM-MVS process only. Eventually, the 3D edge points are firstly separated
and then classified into the points of each edge. Each cluster is passed into the vectoriza-
tion step from which the 3D vectors are created and saved using the “.dxf” format. The
3DPlan software can be combined with any 2D edge-detection technique as well as with
any 2D image-segmentation technique, e.g., semantic segmentation, instance segmentation,
panoptic segmentation etc., to pass the label channel information into 3D space. Addi-
tionally, it uses professional and guaranteed SfM-MVS software (Agisoft-Metashape and
Mapillary-OpenSfM) for the generation of the semantically enriched point cloud. Apart
from that, during the execution of the 3DPlan algorithm, extra mathematical equations are
not included, such as plane intersection, and, thus, additional errors are not embedded
to the 3D edge-detection process. On the other hand, the clustering approach, i.e., the
combination of the DBSCAN and RANSAC algorithms, suffers from several erroneously
detected clusters. Apart from that, the 3D vectorization procedure is over-simplified with-
out the exploitation of the entire information of each cluster, i.e., every detected 3D edge
point, and, thus, a further investigation and development of those methods is required.
The presented results contain too many artifacts and the output drawings contain too many
vectors, due to the aforementioned disadvantages, so except from the improvement of the
existing steps, simplification and topology analysis steps should be included in 3DPlan
software. Additionally, a GUI of the 3DPlan software could be produced in order to be
convenient for a plethora of users. The detected edges using a georeferenced point cloud
and the 3DPlan software can be compared with the real edges captured by conventional
surveying methods (total station) to evaluate the precision of the process. More precisely,
we could measure a specific edge using a total station, then digitally measure the same edge
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detected by the 3DPlan algorithm and, finally, subtract one from the other to evaluate the
precision of the detected 3D edge. In fact, the evaluation should be conducted for a large
number of specific edges, to draw accurate conclusions. In Section 2, some methods which
exploit BIM models are presented. The creation of a detailed BIM is difficult especially into
the cultural-heritage domain, which is characterized by complexity and heterogeneity. In
Section 2, edge-detection methods are investigated more than methods using BIM because
the proposed approach investigates a simple yet efficient pipeline to detect 3D edges ex-
ploiting 2D edge semantic information in combination with professional SfM-MVS software.
Additionally, the poor 2D edge semantic information is one of the major reasons for the
detection of erroneous 3D edge points by the 3DPlan software and, thus, an improved 2D
edge-detection procedure would produce better edge semantic information to feed into
the 3DPlan software. Moreover, a comparison between the traditional and deep-learning
2D edge-detection approaches should be conducted to find the most suitable one for the
automation of the production of architectural vector drawings. An investigation of the
efficiency of the 3DPlan software applied to objects with several characteristics such as
complexity, size, etc., could be also conducted. Furthermore, another interesting investiga-
tion could be the implementation of the 3DPlan algorithm for the detection of multiple and
more complex objects or a detailed semantic segmentation in 3D space. To conclude, the
3DPlan software extracts 3D edges with the most feasible accuracy, depending on the 2D
edge-detection technique and can be executed by everyone, in any operating system.

Author Contributions: Conceptualization, A.G.; Methodology, A.G. and T.B.; Software, T.B.; Valida-
tion, T.B. and A.G.; Formal analysis, T.B.; Writing—original draft preparation, T.B.; Writing—review
and editing, T.B. and A.G.; Supervision, A.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partially funded by the General Secretariat of Research and Technology
through an EU matching funds project.

Data Availability Statement: The data and material used in this research were provided by the
Laboratory of Photogrammetry of NTUA and originate from previous projects. The python code
of the 3DPlan software is available on Github [https://github.com/thobet/3DPlan (accessed on
15 September 2022)]. The Python code of the new branch of the Mapillary-OpenSfM software is avail-
able on GitHub [https://github.com/thobet/OpenSfM_3DPlan (accessed on 15 September 2022)].

Acknowledgments: The authors would like to thank PhD Candidate in NTUA, Elisavet (Ellie) K.
Stathopoulou for her advice during this effort.The Python code is available on GitHub.

Conflicts of Interest: There are no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:
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