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Abstract: Anthropogenic carbonates are pyrotechnological products composed of calcium carbonate,
and include wood ash, lime plaster/mortar, and hydraulic mortar. These synthetic materials are
among the first produced by humans, and greatly influenced their biological and cultural evolution.
Therefore, they are an important component of the archeological record that can provide invaluable
information about past lifeways. One major aspect that has been long investigated is the possibility
of obtaining accurate radiocarbon dates from the pyrogenic calcium carbonate that makes up most
of these materials. This is based on the fact that anthropogenic carbonates incorporate atmospheric
carbon dioxide upon the carbonation of hydrated lime, and thus bear the radiocarbon signature of
the atmosphere at a given point in time. Since plaster, mortar, and ash are highly heterogeneous
materials comprising several carbon contaminants, and considering that calcium carbonate is prone
to dissolution and recrystallization, accurate dating depends on the effectiveness of protocols aimed
at removing contaminants and on the ability to correctly identify a mineral fraction that survived
unaltered through time. This article reviews the formation and dissolution processes of pyrogenic
calcium carbonate, and mineralogical approaches to the definition of a ‘dateable fraction’ based on its
structural properties.

Keywords: calcium carbonate; calcite; aragonite; plaster; mortar; hydraulic; ash; FTIR; cathodoluminescence;
radiocarbon

1. Introduction

The ability to harness fire, called pyrotechnology, had a major impact on the cultural trajectory
of modern humans, not only in terms of food production, warmth, and protection, but also in
the development of new synthetic materials, such as lime plaster, ceramics, metals, and glass [1].
Two pyrotechnology products, lime plaster and wood ash, are composed of calcium carbonate
(CaCO3) [2]. Here, they are referred to as ‘anthropogenic carbonates’. Lime plaster is produced by
burning limestone to obtain quicklime, which is then slaked with water to form hydrated lime and
allowed to react with atmospheric CO2 to form again CaCO3 [3]. Wood ash is the byproduct of the
combustion of organics, and is mainly comprised of CaCO3 derived from the thermal decomposition
of calcium oxalate crystals mineralized by plants [4]. Besides the wealth of information that these
materials provide about human evolution, subsistence and adaptation strategies, ancient technology,
and historic architecture [2,3,5], lime plaster and wood ash may contribute to the establishment of
absolute chronologies. Both materials contain carbon of atmospheric origin, including the radiocarbon
(14C) isotope, and thus offer the possibility to obtain accurate age determinations when organic
materials are not available [6].

The potential of anthropogenic carbonates for 14C dating was first revealed in the 1960s by
Labeyrie and Delibrias [7,8], who measured the 14C content of Roman and medieval lime mortars
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(i.e., lime plaster mixed with an aggregate) and calculated their ages with a fair degree of accuracy,
considering that the study was performed before the development of the international calibration curve.
Following attempts proved overall unsuccessful due to the occurrence of geologic and/or secondary
carbonate components in lime mortars, which produced older apparent ages caused by ‘dead’ carbon
or younger ages caused by environmental carbon [9–11]. In the 1990s and 2000s, the development
of a refined carbon recovery method based on sequential acid hydrolysis of sieved fractions and the
introduction of accelerator mass spectrometry (AMS) increased the accuracy of 14C dates [12–18]. In the
last 10 years, new purification and carbon recovery methods have been implemented, and the range
extended to more challenging types of anthropogenic carbonate, such as wood ash and hydraulic
mortars, with variable results [19–28]. A recent round-robin exercise among several 14C laboratories
confirmed that well-preserved aerial lime plasters may be accurately dated, whereas complex materials
affected by hydraulic or secondary phases are still out of reach [29,30], although recent developments
in thermal decomposition of contaminant phases appear promising [19]. Urbanová et al. [31] compiled
a foresighted and up-to-date review of the history of the method and current challenges in 14C dating
of lime mortars.

All of the abovementioned studies are characterized by one common denominator: accurate
14C dates may be obtained only if a pristine pyrogenic CaCO3 fraction is isolated and targeted for
dating. A pristine fraction is defined here as an assemblage of crystals that did not undergo isotopic
alteration after nucleation, and thus can be regarded as a closed carbon system that represents the time
of formation of the artifact. In plaster/mortar, this is the pyrogenic CaCO3 produced upon carbonation
of hydrated lime. In ash, it is the CaCO3 derived from the decomposition of calcium oxalates.

Pristine pyrogenic carbonate is a fundamental requirement for two reasons: (i) geogenic and
diagenetic (secondary) phases are characterized by different formation paths compared to pyrogenic
ones and therefore their carbon isotopic signatures introduce contamination, which ultimately results
in inaccurate ages; (ii) knowing with certainty what phase is selected for AMS excludes potential bias
or educated guesswork in the interpretation of 14C measurements. Given the inherent heterogeneity of
anthropogenic carbonates, it follows that a tailored characterization approach should be deployed in
order to identify the desired target phases and avoid contaminants. However, this important aspect
has been long understudied and limited to assumptions; only in the last decade have major efforts
been put forward to assess the state of preservation of anthropogenic carbonates and understand how
this information can be used to achieve accurate dates [19,32–42]. Of these, only a few tackled the
crucial problem of defining a reference benchmark that can guide the selection of suitable archeological
materials [20–23,31,43,44]. The main challenge is to find one or more proxies for the occurrence and
preservation of pyrogenic phases that are widely applicable to anthropogenic carbonates, in a manner
similar to the conventional quality controls for charcoal and collagen, which are based on vibrational
spectroscopy and the fractionation of carbon and nitrogen isotopes [45–47].

This article reviews the formation and dissolution processes of anthropogenic carbonates found
at archeological sites, the methods used for their characterization, and mineralogical approaches to
the selection of pyrogenic CaCO3 phases, with the aim of providing context to the issue of setting the
benchmark. In particular, this review will focus on establishing criteria for sample selection based on
the basic structural properties of pyrogenic CaCO3 crystals.

2. Formation and Dissolution Processes of Anthropogenic Carbonates

2.1. Lime Plaster and Lime Mortar

Lime plaster is a binder that has been used as coating and decoration in constructions and ritual
practices (e.g., plastered floors and walls, plastered human skulls, shrines, graves) or as support
for visual art (e.g., frescoes) [1,3]. It derives from the thermal decomposition of a CaCO3 substrate,
such as limestone, travertine, and marble, to CaO (quicklime) at temperatures above 800 ◦C. CaO reacts
with liquid water to form Ca(OH)2 (hydrated lime; mineral name: portlandite), which subsequently
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incorporates atmospheric CO2 and turns back to CaCO3 upon setting [3,48]. The latter usually nucleates
as micritic calcite but in some instances, aragonite may occur as well [49–51] (Figure 1a,b). The reaction
can be summarized in three steps as follows:

CaCO3
800 ◦C
−−−−−→ CaO + CO2 (1)

CaO + H2O = Ca(OH)2 (2)

Ca(OH)2 + CO2 = CaCO3 + H2O. (3)
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Figure 1. Examples of anthropogenic carbonates. (a) Thin section of Byzantine lime plaster from 
Shivta (Israel) seen in crossed-polarized light, note the micritic appearance of calcium carbonate 
crystals; (b) scanning electron microscope (SEM) image of calcite crystals in experimental lime 
plaster; (c) Thin section of medieval hydraulic mortar from Wilson’s Arch (Israel) showing crushed 
pottery (cocciopesto) aggregates; (d) SEM image of acicular aragonite crystals in Iron Age ash from 
Megiddo (Israel). Detailed data about Shivta and Wilson’s Arch in Toffolo et al. [23] and references 
therein; data about Megiddo in Toffolo et al. [21] and references therein. Figure 1b is reproduced 
from Toffolo and Boaretto [49] with permission from Elsevier. 

2.2. Hydraulic Mortar 

Mixing hydrated lime with a reactive silicate aggregate such as volcanic ash and crushed 
ceramics promotes hydraulic reactions, which produce the calcium-silicate-hydrate (C-S-H) phases 
found in ancient cement [1,3,55,56]. In addition, there are minerals that contain carbonate groups, 
which are called layered double hydroxides (LDH). The most important are the LDHs in the 
hydrotalcite supergroup [57]. LDHs feature a layered structure that can incorporate 14C-free 
carbonate groups, and are known to exchange CO2 when exposed to the atmosphere, e.g., during 
sample preparation [53,58,59]. This process introduces modern carbon in the sample [20,34,39]. It has 
been recently shown that magnesium-silicate-hydrate (M-S-H) phases may nucleate together with 
LDHs when specific types of ceramic and ash are used as aggregates [60]. 

2.3. Wood Ash 

Calcium oxalates are biogenic minerals produced by many woody plants, and usually come in 
the form of CaC2O4·H2O (whewellite) or CaC2O4·2H2O (weddellite) [2]. Upon burning wood at 
temperatures over 400 °C, calcium oxalates release water and CO and decompose to CaCO3 [61,62], 
following this reaction: 

450
2 4 2 3 2C CaO H O CaCO H O CO⋅ ⎯⎯⎯→ + +℃   

 

(4)

The resulting ash pseudomorphs, which often exhibit the typical rhombohedral habit of 
oxalates, are the main component of ash and are always composed of calcite [4,63]. These are loosely 

Figure 1. Examples of anthropogenic carbonates. (a) Thin section of Byzantine lime plaster from Shivta
(Israel) seen in crossed-polarized light, note the micritic appearance of calcium carbonate crystals;
(b) scanning electron microscope (SEM) image of calcite crystals in experimental lime plaster; (c) Thin
section of medieval hydraulic mortar from Wilson’s Arch (Israel) showing crushed pottery (cocciopesto)
aggregates; (d) SEM image of acicular aragonite crystals in Iron Age ash from Megiddo (Israel). Detailed
data about Shivta and Wilson’s Arch in Toffolo et al. [23] and references therein; data about Megiddo in
Toffolo et al. [21] and references therein. Figure 1b is reproduced from Toffolo and Boaretto [49] with
permission from Elsevier.

Equation (3) is particularly important for dating, as atmospheric CO2 contains 14C and thus the
final product bears the signature of the atmosphere at the time of the nucleation of pyrogenic CaCO3 [6].
This makes archeological lime plaster a short-lived material, representing a specific point in time
directly related to human activities. However, it should be noted that in some cases, the carbonation of
plaster may take up to a few years to complete. This delay in the setting process is negligible for 14C
dating, unless aggregates of portlandite are preserved for tens or hundreds of years. These pose a
major problem for the accuracy of measurements, as they can carbonate at a much later time compared
to the first carbonation of the plaster and yield younger ages [23,52]. In addition, uneven burning of
raw material can produce partially calcined or unburnt geologic fragments, which end up in hydrated
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lime. These components are 14C-free and therefore ‘dilute’ the isotopic signature of the pyrogenic
binder, resulting in older ages [35].

Lime mortars are masonry binders obtained by mixing hydrated lime with an aggregate,
usually sand-sized [1,3]. A carbonate aggregate comprised of geogenic calcite (e.g., limestone
fragments) poses the same problem of unburnt and poorly burnt raw material, due to its old age [9,10].
Inert silicate aggregates, such as quartz sand, do not alter the 14C content of the mortar because they
are devoid of carbon [7,8]. On the contrary, reactive silicates like crushed ceramics (cocciopesto) and
volcanic ash (pozzolana) trigger hydraulic reactions, which facilitate contamination [53] (Figure 1c).

In some cases, dolomite [CaMg(CO3)2] was used for quicklime production instead of limestone,
particularly in regions characterized by dolomite bedrock [3,54]. Besides being a less suitable
construction material due to the slower reaction kinetics of MgO compared to CaO, and the
abovementioned problems caused by residual geogenic components, dolomitic quicklime is prone
to the formation of Mg(OH)2 (brucite) [23], which over time evolves into Mg5(CO3)4(OH)2·4H2O
(hydromagnesite), a hydrous carbonate that incorporates older/younger carbon and thus hinders
accurate dating [29,30,33].

2.2. Hydraulic Mortar

Mixing hydrated lime with a reactive silicate aggregate such as volcanic ash and crushed ceramics
promotes hydraulic reactions, which produce the calcium-silicate-hydrate (C-S-H) phases found in
ancient cement [1,3,55,56]. In addition, there are minerals that contain carbonate groups, which are called
layered double hydroxides (LDH). The most important are the LDHs in the hydrotalcite supergroup [57].
LDHs feature a layered structure that can incorporate 14C-free carbonate groups, and are known
to exchange CO2 when exposed to the atmosphere, e.g., during sample preparation [53,58,59].
This process introduces modern carbon in the sample [20,34,39]. It has been recently shown that
magnesium-silicate-hydrate (M-S-H) phases may nucleate together with LDHs when specific types of
ceramic and ash are used as aggregates [60].

2.3. Wood Ash

Calcium oxalates are biogenic minerals produced by many woody plants, and usually come
in the form of CaC2O4·H2O (whewellite) or CaC2O4·2H2O (weddellite) [2]. Upon burning wood at
temperatures over 400 ◦C, calcium oxalates release water and CO and decompose to CaCO3 [61,62],
following this reaction:

C2CaO4·H2O 450 ◦C
−−−−−→ CaCO3 + H2O + CO (4)

The resulting ash pseudomorphs, which often exhibit the typical rhombohedral habit of oxalates,
are the main component of ash and are always composed of calcite [4,63]. These are loosely termed here
‘low-temperature ash’. When the firing temperature exceeds 600 ◦C, pseudomorphs undergo further
decomposition following equation (1), in a process similar to quicklime production. Instead of slaking
with liquid water, hydrated lime is obtained from the reaction of CaO with atmospheric humidity
after the fire is extinguished, as per equation (2). Following equation (3), hydrated lime subsequently
carbonates as calcite, which is termed here ‘high-temperature ash’. Calcite is the main polymorph in
archeological high-temperature ash, although aragonite has been reported at several archeological
sites, even as the dominant polymorph [21,49,64,65] (Figure 1d).

Similar to lime plaster/mortar, high-temperature wood ash represents a short-lived material
produced by specific human activities, and may be targeted for accurate dating. In theory, the same
applies to low-temperature ash, because the carbon isotopic signature of calcium oxalates is biologically
regulated and, in several plants, it matches the signature of cellulose. However, one should take
into account the possibility of CO exchange between the decomposing calcium oxalates and the
atmosphere during firing. This phenomenon may imply a variation in the 14C content of oxalates,
since its distribution in CO does not necessarily match values measured in CO2. Regev et al. [22]
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observed a shift to lighter isotopes in the δ13C value of modern calcitic ash compared to cellulose
δ13C from the same plant, and ascribed it to the incorporation of CO derived from fossil fuel sources.
While fossil fuels are not a concern in archeological times, it is possible that pre-industrial CO pMC
(percentage of Modern Carbon) levels were higher compared to the 14C concentration of the biosphere,
and therefore CO exchange during combustion would have led to contamination. This process needs
confirmation from controlled experiments including different fuels and burning conditions.

Since ash is a powdery substance, after burial it is easily mixed with the sedimentary matrix of
the archeological site, which may include carbon contaminants. The main one is geogenic calcite,
which originates from the decay of the local bedrock, aeolian transport (e.g., loess) or soil-forming
processes (e.g., calcrete), and introduces contamination from 14C-free carbonates (geogenic) and/or
from younger organic carbon (pedogenic).

2.4. Dissolution and Recrystallization Process

The preservation of anthropogenic carbonates in sediments and standing architectures depends
mainly on two factors: water and pH. CaCO3 is stable at pH values above 8, but rapidly dissolves to
Ca(HCO3)2 (calcium bicarbonate) when exposed to water rich in H2CO3 (carbonic acid) [2]. Rain water
has a pH value of ~5.7, which may become more acidic when it incorporates acids produced by organic
activity in sediments [66]. Acidic groundwater undersaturated with respect to calcite (or aragonite)
induces the dissolution of anthropogenic carbonates buried in sediments [67], with wood ash being
more affected due to its higher porosity compared to lime plaster and mortar. When groundwater
is saturated and thus attains equilibrium, the dissolution of CaCO3 stops. Upon water evaporation,
Ca(HCO3)2 precipitates as CaCO3, but the newly formed crystals are larger and more ordered at the
atomic level compared to the original pyrogenic carbonate, following Ostwald’s Rule of Stages [68].
More importantly, carbon exchange occurs in solution between pyrogenic CaCO3 and H2CO3, leading to
contamination from older or younger environmental carbon, depending on its source. This aspect is
particularly troublesome, as the presence of secondary calcite prevents ash and plaster from being
accurately dated [43,69]. If acidic groundwater is constantly replaced, anthropogenic carbonates
will dissolve completely. As a consequence, one might expect better preservation of anthropogenic
carbonates at sites located in arid or temperate climate zones and on carbonate bedrock that can buffer
sediments, whereas tropical climate and igneous bedrock favor dissolution.

Plasters and mortars in standing architectures are not exposed to groundwater, although it is
known that rain and even humidity in air can induce the formation of secondary calcite [70–72]. In fact,
the dissolution reaction takes place in extremely thin films of water at the scale of single crystals,
which are often under 5 µm in size in well-preserved pyrogenic binders [49,73]. Therefore, secondary
calcium carbonate precipitation should also be expected in the interior of buildings.

3. Characterization Methods

As stated, anthropogenic carbonates are particularly sensitive to changes in the chemical
environment, which lead to changes in the structure and isotopic composition of CaCO3 crystals,
including loss of the initial 14C signature in lime plaster/mortar and wood ash. In addition,
other carbon-bearing secondary phases may form. These alterations can be monitored by looking
at two proxies: degree of crystallinity and fractionation of 13C.

3.1. Crystal Structure

Calcite, the main CaCO3 polymorph found in wood ash and lime plaster/mortar, can be easily
identified using X-ray diffraction (XRD) or any other method that addresses long-range atomic
order in crystals. The same applies to aragonite, dolomite, brucite, hydromagnesite, portlandite,
and LDHs, thus XRD is the best way to characterize crystalline phases in lime binders [19,53,56,74,75].
However, considering that 14C dating of anthropogenic carbonates aims at targeting pyrogenic calcite
and not its geogenic/diagenetic forms that often occur in the same sample, a complementary approach
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is required. In order to distinguish pyrogenic from geogenic/diagenetic calcite, which share the same
composition, it is necessary to use methods that address its degree of short-range order and crystallinity.
The latter is broadly defined here as the extent to which a crystal differs from perfect order in three
dimensions at the molecular level, and it is referred to in terms of domain size and defects in the
crystal structure. For instance, pyrogenic calcite exhibits lower crystallinity compared to its geogenic
counterpart, as a consequence of the relatively rapid carbonation process of Ca(OH)2 as opposed to the
slow nucleation of geologic crystals. Defects can be probed using vibrational spectroscopy [76,77].

Fourier transform infrared spectroscopy (FTIR) can identify pyrogenic calcite based on peak
broadening. Regev et al. [78] and Poduska et al. [79] showed that calcite crystals formed by different
mechanisms exhibit variations in peak broadening and intensity caused by distinct densities of
structural defects. Using FTIR in transmission mode, they demonstrated that upon repeated grinding
of the same KBr pellet, the intensity of the ν2 and ν4 absorptions of CaCO3, normalized to the intensity
of the ν3 absorption, decreases and by plotting these ratios, trendlines (‘grinding curves’) specific
to different types of CaCO3 may be drawn. Grinding curves allow detecting subtle differences in
atomic order between pyrogenic and geogenic calcite, and the method was developed to identify
human presence in the form of pyrotechnological activities. The same methodology has been applied
to pyrogenic and biogenic aragonite [51,80] (Figure 2).
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standard materials of different origin, with lime plaster and geologic evaporite being the least 
ordered and spar standards the most ordered. The shape of each curve is determined by changes in 
particle size, whereas the offset depends on the degree of local structural order. The top chart is 
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Toffolo et al. [51].  
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samples collected in attenuated total reflectance mode (ATR). ATR peaks exhibit different line and 
relative intensity profiles compared to peaks obtained from homogenized powders dispersed in a 
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standard materials of different origin, with lime plaster and geologic evaporite being the least ordered
and spar standards the most ordered. The shape of each curve is determined by changes in particle size,
whereas the offset depends on the degree of local structural order. The top chart is reproduced after
Regev et al. [78], with permission from Elsevier. The bottom chart is modified after Toffolo et al. [51].

The normalized ν2 and ν4 intensities of standard materials that provide the framework for the
grinding curve method cannot be used as reference for the same peaks in spectra of archeological
samples collected in attenuated total reflectance mode (ATR). ATR peaks exhibit different line and
relative intensity profiles compared to peaks obtained from homogenized powders dispersed in a KBr
pellet in transmission mode [81]. In addition, the standard materials of the grinding curve method
are checked against an ‘ideal’ transmission spectrum of CaCO3 obtained using quantum chemical
calculations [79]. The latter are not available for ATR spectra. Therefore, there is no relation between
ATR spectra of archeological samples and grinding curves obtained in transmission mode (including
the ν2/ν4 method [76]), and comparisons will produce misleading interpretations about the state of
preservation of samples.

Spatial information regarding the distribution of calcites characterized by different degrees of
atomic order can be obtained through the analysis of thin sections [82]. Most diagenetic calcite,
which forms mainly sparitic crystals, can be easily differentiated from pyrogenic calcite, which is
micritic [43,83]. Other polymorphs, such as aragonite, cannot be identified with certainty and thus
require the application of FTIR spectroscopy using a microscope. In reflectance mode, this method has
shown potential in distinguishing pyrogenic and geogenic/diagenetic calcite based on the position and
width of the ν3 absorption in both lime plaster/mortar and ash [23,43,84,85].

Another effective method used to distinguish pyrogenic calcite from its geogenic form is
cathodoluminescence (CL), first applied to mortar screening by Heinemeier et al. [12]. In most
geogenic carbonates, Mn2+ substituting for Ca2+ in the calcite crystal lattice produces orange CL
when the crystal is irradiated with an electron beam. Based on this phenomenon, fragments of
geogenic calcite have been identified in lime binders selected for dating [14]. A more recent application
to anthropogenic carbonates features a CL detector attached to a scanning electron microscope
(SEM-CL) [86]. This instrument setup allows high-resolution analysis of powdered samples pressed
into pellets, as well as thin sections and polished casts. Its advantages lie in the possibility to analyze
extremely small areas, in the order of a few nm, using wavelength-resolved spectra, and to identify
minor amounts of contamination that are not visible by eye through an optical microscope. Toffolo
et al. [86,87] showed that experimental pyrogenic binders exhibit blue CL due to the absence or low
occurrence of MnCO3 sites, whereas geogenic calcites exhibit orange CL, and the same trend is verified
in archeological plasters that are well preserved according to FTIR (Figure 3).

3.2. Isotopic Signature

Several studies have shown that pyrogenic CaCO3 fractionates carbon and oxygen isotopes upon
carbonation, in both lime plaster/mortar and high-temperature ash, resulting in a specific range of
δ13C values for pyrogenic calcite carbonated at ambient conditions [22,63,88–91]. This phenomenon
has been used to identify a window of δ13C values that can be used as a proxy for good preservation
of pyrogenic calcite, based on the notion that mixing with geogenic and diagenetic carbonates
shifts the δ13C to heavier values. It has been observed that values between −16 and −25%� should
reflect pristine pyrogenic calcite, as shown by experimental samples produced at different calcination
temperatures [40,63,92]. However, the application of this method to bulk archeological plaster/mortar
requires caution, as the intact binder should be separated from contaminants for accurate analysis,
especially in poorly preserved or highly-contaminated samples [35].
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Figure 3. SEM-CL spectra of calcite, modified after Toffolo et al. [87]. (a) Spectrum imaging map of
chalk showing emission colors (each pixel corresponds to one measurement); (b) Representative CL
spectrum of chalk showing high peak at ~610 nm caused by Mn2+; (c) Spectrum imaging map of lime
plaster obtained from chalk in (a,b); (d) Representative CL spectrum of lime plaster showing shoulder
at ~610 nm caused by displacement of Mn2+.

4. Assessing the State of Preservation

Recently, Urbanová et al. [31] rightly defined the ‘dateable fraction’ in lime mortars as
“the separated fine fraction of anthropogenic carbonate that has been experimentally screened for
the absence of secondary carbonate, geogenic carbonate, and spurious CO2-containing phases”.
This definition implies that samples should be characterized in order to identify the target fraction
and treated to isolate the latter for carbon recovery. In addition, the definition implies that the target
fraction can be differentiated with certainty from all contaminants based on one or more of its basic
properties, but does not actually provide a description of the ‘dateable fraction’ itself. This is not an
easy task, especially when pyrogenic calcite is mixed with secondary calcite produced by diagenetic
processes. Here, the potential of the degree of short-range atomic order in calcite crystals is examined
using FTIR and SEM-CL spectroscopy.

4.1. Initial Screening

A first glimpse of the degree of preservation of anthropogenic carbonates can be obtained using
transmission FTIR on bulk samples. If pyrogenic calcite in binders is overall intact, its normalized
ν2 and ν4 intensities will fall on or close to the experimental lime plaster trendline. On the contrary,
if substantial dissolution and recrystallization took place, values will match the trendline of wood ash,
or even limestone, as a consequence of Ostwald’s Rule of Stages. The occurrence of geogenic aggregates
leads to the same outcome. In such cases, dating should be avoided. It should be noted that transmission
FTIR probes a mixture of crystals, and therefore the resulting calcite spectrum may represent a mixed
signal (most geogenic and diagenetic components can be identified in thin section). Bearing this in
mind, if the normalized ν2 and ν4 intensities are very close to the experimental plaster curve, one can
safely assume that most of the pyrogenic calcite crystals are well preserved, and that only minor
amounts of fine geogenic/diagenetic components may be dispersed in lime binders. Clearly, several
different areas of the sample should be analyzed to track variability. Similarly, if low-temperature ash
is characterized by structural order typical of limestone, then recrystallization has taken place.

This approach has been implemented by Poduska et al. [43] in the study of Pre-Pottery Neolithic
lime plaster floors from Yiftahel (Israel). The top-coat layers exhibited the lowest degree of atomic order
(similar to experimental plaster) and were thus targeted for carbon recovery, which was performed by
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dissolving the entire layer in phosphoric acid. The measured pMC fell close to the pMC range of the site
(based on organic materials) and highlighted the occurrence of residual atmospheric/environmental
contamination from secondary calcite (Figure 4). With regard to ash, Regev et al. [22] showed that
calcite grains ranging between 1 mm and 20 µm from a Natufian ash layer at Hayonim Cave (Israel)
matched the grinding curve of geogenic calcite. The pMC of this fraction yielded older apparent ages
due to the contribution of ‘dead carbon’.
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Toffolo et al. [23] observed that a Byzantine aerial lime plaster from Shivta (Israel) exhibited
pyrogenic calcite considerably less ordered than calcite in experimental lime plaster, and rather
resembled high-temperature ash obtained by re-burning at 900 ◦C low-temperature wood ash [78]
(Figure 4). While the sample is suitable for dating, this fact gives the false impression that experimental
lime plaster is less preserved than the archeological plaster, and calls for a better understanding of the
basic properties of pyrogenic CaCO3. It is known that CaO crystallite size and carbonation temperature
play a major role in the development of pyrogenic calcite crystals [93]. This means that a less ordered
reference plaster is required, considering that the method was initially developed to distinguish
pyrogenic from geogenic calcite. The reference experimental plaster used by Regev et al. [78] was
obtained by burning limestone in a bonfire; controlled firing and carbonation conditions may help
reducing the atomic order of calcite crystals.

When pyrogenic aragonite is the main polymorph, it should be distinguished from the biogenic
form (e.g., shell aggregate in mortars). The grinding curve method has shown that this is possible
in lime plasters comprised of both aragonite and calcite, as in the case of Pre-Pottery Neolithic floor
plasters at Motza (Israel), and in aragonitic ash from Bronze Age levels at Tell es-Safi/Gath (Israel) and
Iron Age levels at Megiddo [51] (Figure 5). The latter has been accurately dated based on its primary
occurrence, since normally it does not precipitate from calcium bicarbonate. Secondary aragonite
has not been reported yet in anthropogenic carbonates, thus diagenetic phases may be confined to
secondary calcite, and aragonite targeted for dating [21].
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In the case of hydraulic mortars, Asscher et al. [44] showed that there is a negative correlation
between the state of preservation of pyrogenic calcite and the occurrence of hydraulic phases in mortars
from Caesarea Maritima (Israel), based on FTIR and XRD. Samples characterized by calcite showing
poor atomic order according to the grinding curve method feature a non-reactive silicate aggregate,
such as quartz or smectites (Figure 4). Interestingly, as observed at Shivta, some of the samples fall far
above the experimental plaster trendline. In contrast, mortars rich in hydraulic phases derived from
volcanic ash, such as LDHs, consistently present more ordered calcite, indicating that the nucleation
of the former affects the degree of atomic order of the latter, which should be avoided for accurate
14C dating.

4.2. Purified Fractions

Once well-preserved pyrogenic calcite has been identified based on its degree of local structural
order, it is necessary to separate it from other phases that may occur in the sample in order to
avoid contamination during carbon recovery, either by dry sieving [14], by settling in a water
column [20], by density in a heavy liquid [23], or by thermal decomposition of the hydraulic phases [19].
These methods might not always remove all contaminants; therefore, the quality of the purified sample
should be verified at the end of the process. Assessments should be performed at the microscopic scale,
given that even a small amount of contamination can produce significant offsets in the pMC [23,94].
After a purified fraction has been obtained, carbon is recovered as CO2 by acid hydrolysis [14] or
thermal decomposition of calcite [23].

Most contaminants, such as dolomite, hydromagnesite, portlandite, and LDHs, can be easily
detected using XRD and may be removed by repeating the purification procedure [20,29,33,34].
Carbonation of portlandite during sample treatment may be overcome by working in a controlled,
CO2-free atmosphere (e.g., argon). At this stage, the main problem is the identification of geogenic and
secondary calcite. While geogenic components are often successfully removed in water columns and
by density, secondary calcite may exhibit physical properties similar to those of pyrogenic calcite [42].
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Ricci et al. [19] developed an effective method that allows removal of hydraulic phases via
thermal decomposition of a purified fraction obtained by settling powdered lime binder in a water
column. This method was applied to medieval mortars from Cannero (Italy). LDHs decompose at
550 ◦C in vacuum, and the leftover is dissolved in phosphoric acid without further exposure to air.
A shortcoming of this approach is that small amounts of secondary calcite in the sample cannot be
detected once the sample is sealed in vacuum. However, the suspended fraction recovered by settling
can be tested using FTIR and SEM-CL before thermal decomposition. Asscher et al. [44] analyzed
purified fractions from Cannero and found that some of them where consistent with poorly ordered
calcite in experimental plaster.

Toffolo et al. [23] used transmission FTIR to characterize light fractions obtained by centrifugation
of sieved lime binders in a heavy liquid, and showed that they are less ordered than the heavy fractions,
therefore suitable for accurate dating (Figure 4). The fact that both light and heavy fractions of the
Shivta plaster are less ordered than the experimental plaster reference makes one doubt as to whether
some secondary calcite is responsible for the difference in atomic order between the two, taking into
account the observed shifts towards higher pMC values (i.e., dates younger than expected) in CO2

aliquots obtained by decomposing light fractions at 500 ◦C (Figure 5). The authors postulated that using
particles larger than 50 µm in some of the experiments introduced contamination, since secondary
crystals tend to be larger than pyrogenic ones. Contamination due to geogenic calcite appears less
likely because the pMC did not shift to lower values. Analysis of the light fractions using SEM-CL
has shown that most of the sample exhibits the blue CL characteristic of pyrogenic calcite. A few
areas, however, featured orange CL that could be consistent with diagenetic alteration [95]. This aspect
should be further investigated through the analysis of micritic and sparitic secondary crystals in
archeological samples of different age. If confirmed, a more accurate carbon recovery procedure,
based either on acid hydrolysis or thermal decomposition, is required in order to avoid the contribution
of secondary calcite.

Promising results have been obtained with ash. Regev et al. [22] dry-sieved the Natufian ash
layer from Hayonim Cave and recovered the fraction smaller than 20 µm (the size range of ash
pseudomorphs), which matched the grinding curve of experimental low-temperature ash (Figure 4).
The pMC of that fraction was consistent with the pMC range of the Natufian period, although the
absence of a short-lived, charred control sample from the same layer may question the accuracy of the
measurement. Nonetheless, charcoal from a lower layer within the same excavation locus yielded an
older age. Toffolo et al. [21] separated pyrogenic aragonite from other phases in an Iron Age ash layer
at Megiddo (Israel) using centrifugation in a heavy liquid. This purified fraction was then thermally
decomposed and the CO2 evolved at 550 ◦C yielded a pMC consistent with charred seeds recovered
in the same combustion feature and elsewhere within the same stratigraphic unit. It thus seems that
regardless of the method used to isolate the target fraction (dry sieving, density), pyrogenic calcite
and aragonite can be effectively recovered from ash due to their occurrence as single crystals rather
than intergrown minerals in a binder (Figure 1). This, of course, is entirely dependent on the degree of
preservation of sediments.

4.3. Defining the Benchmark

Adding to the definition of ‘dateable fraction’ given by Urbanová et al. [31], it is possible to state
that CaCO3 in this fraction should exhibit the same degree of local structural order of pyrogenic CaCO3

in experimental samples of lime plaster and ash. The examples described above have shown that
FTIR spectroscopy is an effective method that can distinguish pyrogenic calcite from geogenic and
secondary calcite, and pyrogenic aragonite from other forms. The initial screening allows discarding
heavily recrystallized samples. FTIR can identify other contaminants such as portlandite, dolomite
and hydromagnesite; XRD is instead required for a detailed characterization of hydraulic phases.

FTIR can identify pyrogenic CaCO3 in purified fractions as well. However, at present there
seems to be no clear-cut distinction with secondary calcite when the latter appears to be only slightly
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recrystallized and presents an infrared signature similar to that of experimental plaster. SEM-CL aids
in the correct assessment of the degree of preservation of the purified fraction, but does not solve the
problem of removing the contribution of secondary crystals during carbon recovery. Thermogravimetric
analysis could provide temperature thresholds for the thermal decomposition of secondary calcite
as opposed to pyrogenic calcite, as it is known that the latter requires a lower temperature for the
breakdown of carbonate groups [96]. The different phases could be characterized by looking at their
δ13C signature, following previous experimental studies of lime binders [40,63,92]. Toffolo et al. [23]
envisaged the application of laser-ablation for accurate carbon recovery and direct AMS dating of lime
binders, especially those characterized by large quantities of dispersed contaminants. This method,
which has been successfully applied to speleothems [97], would overcome the necessity to isolate the
target fraction by using physical means. At present, all these aspects require further investigation.

5. Conclusions

Accurate 14C dating of anthropogenic carbonates is feasible for lime binders and wood ash,
provided that contaminants are removed and that the pyrogenic CaCO3 targeted for carbon recovery is
well preserved. In this review, it was proposed to use the degree of local structural order of CaCO3

crystals as a criterion for the selection of suitable samples. This can be assessed at the molecular level
using FTIR and SEM-CL spectroscopy in both bulk samples and purified fractions, and should match
the degree of atomic order of experimental pyrogenic materials. One major problem that remains to
be solved is the contribution of secondary calcite when it is only slightly recrystallized compared to
the poorly ordered crystals of the pristine pyrogenic fraction. Reference standard materials produced
under controlled conditions may help improve the FTIR grinding curve method. In addition, refined
carbon recovery procedures may provide better means of identifying and excluding CO2 evolved from
secondary calcite.
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