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Abstract: A key summary statistic in a stationary functional time series is the long-run covariance
function that measures serial dependence. It can be consistently estimated via a kernel sandwich
estimator, which is the core of dynamic functional principal component regression for forecasting
functional time series. To measure the uncertainty of the long-run covariance estimation, we consider
sieve and functional autoregressive (FAR) bootstrap methods to generate pseudo-functional time
series and study variability associated with the long-run covariance. The sieve bootstrap method
is nonparametric (i.e., model-free), while the FAR bootstrap method is semi-parametric. The sieve
bootstrap method relies on functional principal component analysis to decompose a functional time
series into a set of estimated functional principal components and their associated scores. The scores
can be bootstrapped via a vector autoregressive representation. The bootstrapped functional time
series are obtained by multiplying the bootstrapped scores by the estimated functional principal
components. The FAR bootstrap method relies on the FAR of order 1 to model the conditional mean of
a functional time series, while residual functions can be bootstrapped via independent and identically
distributed resampling. Through a series of Monte Carlo simulations, we evaluate and compare the
finite-sample accuracy between the sieve and FAR bootstrap methods for quantifying the estimation
uncertainty of the long-run covariance of a stationary functional time series.

Keywords: sieve bootstrap; dynamic functional principal component analysis; functional autoregres-
sive of order 1; vector autoregressive representation; long-run covariance; plug-in bandwidth

1. Introduction

Functional data often arise from the measurements obtained by separating an almost
continuous time record into natural consecutive intervals, for example, days, weeks, or
years; see [1]. The functions thus obtained form a time series {Xt, t ∈ Z} where each Xt
is a random function Xt(u) for u lies within a function support range I ∈ R. Examples
include an intraday cumulative return of a financial asset in [2] and the intraday volatility
of a financial asset in [3]. When continuum is not a time variable, it presents a general class
of functional time series, examples of which include yearly age-specific mortality rates and
near-infrared spectroscopy curves. For an overview of a functional time series analysis,
consult the monographs of [4–7].

Analyzing time-series data presents a crucial challenge related to incorporating the
temporal dependence inherent in functional observations denoted by X = (X1, . . . ,Xn)⊤

and ⊤ represents matrix transpose. The presence of this temporal dependence renders
even basic statistics inaccurate. This issue is illustrated by estimating the unknown mean
function µ = E(X ) of a functional time series. The standard sample mean, X n = 1

n ∑n
t=1 Xt,

proves inefficient in the presence of strong serial correlation. As demonstrated in [8], it is
possible to decompose a scalar-valued time series as Xt = µ + ϵt. Where ϵt is independent
and identically distributed (i.i.d.), Xn is the ordinary least squares estimator of µ. How-
ever, when a correlation exists among the errors (ϵ1, . . . , ϵn), the optimal linear unbiased
estimator of µ becomes the generalized least squares estimator. Let In = (1, . . . , 1)⊤ and
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∆n represent the sample covariance function of a time series of functions X with the t, s
element given by Cov(Xt, Xs). The generalized least squares estimator is then expressed
as µ̂ =

(
I⊤n ∆−1

n In
)−1 I⊤n ∆−1

n X, where ⊤ symbol denotes matrix transpose. µ̂ represents a
weighted average of X where the weights depend on the sample covariance function.

Apart from the mean, the sample covariance is also inefficient in the time-series
setting (see [9] for a remedy). Given that various statistics rely on accurately computing
the sample mean function, the serial correlation in functional time series complicates the
calculation of other summary statistics, including the long-run covariance function of
stationary functional time series discussed in Section 2.

In functional time series analysis, a key objective is to draw statistical inferences about
the sampling distribution of ϑ̂n, a statistic that estimates the parameter of interest, ϑ. The
focus extends beyond obtaining a consistent estimator; there is also a keen interest in
gauging the variability associated with ϑ and constructing confidence intervals (CIs) or
performing hypothesis tests. When confronted with such challenges, resampling method-
ologies, particularly bootstrapping, emerge as the most practical solution, involving the
generation of samples from the available data to model the sampling process from the
entire population.

In the functional time series literature, Refs. [10,11] introduced a residual-based
bootstrap for functional autoregressions. Their work demonstrated that the empirical distri-
bution of the centered sample innovations converges to the distribution of the innovations
concerning the Mallows metric (also known as Wasserstein distance). Ref. [12] provided
theoretical results for the moving block and tapered block bootstrap, Ref. [13] introduced
a maximum entropy bootstrap procedure, and [14] examined functional autoregressions,
deriving bootstrap consistency as both the sample size and the order of functional au-
toregression tend to infinity. Taking a nonparametric perspective, Ref. [15] employed a
residual-based bootstrap procedure to construct confidence intervals for the regression
function; Ref. [16] proposed a kernel estimation of the first-order nonparametric functional
autoregression model and its bootstrap approximation; Ref. [17] explored a sieve bootstrap
procedure for constructing pointwise or simultaneous prediction intervals.

The presence of serial dependence in functional time series complicates matters. The
bootstrap method needs to be customized to ensure that the resampled functional time
series maintains an asymptotically similar dependence structure to the original functional
time series. We consider a sieve bootstrap method of [14] and a FAR bootstrap method
of [13] to quantify the estimation uncertainty of the long-run covariance of a stationary
functional time series in Section 3.

The reminder of the article is organized as follows. Via a series of simulation stud-
ies in Section 4, we compute the Hilbert–Schmidt norm of the difference between the
bootstrapped and sample long-run covariance functions. Similarly, we compute the Hilbert-
Schmidt norm of the difference between the sample and population long-run covariance
functions. From the two norms, we evaluate the empirical coverage probabilities obtained
from the sieve and FAR bootstrap methods and compare them with a set of nominal
coverage probabilities. In Section 5, we apply the sieve bootstrap method to construct
80% confidence intervals of the long-run covariance function of the monthly sea surface
temperature from January 1950 to December 2020. Section 6 concludes with some ideas on
how the bootstrap methods presented here can be further extended.

2. Estimation of Long-Run Covariance Function
2.1. Notation

It is commonly assumed that random functions are sampled from a second-order
stochastic process X in L2, where L2 is the square-integrable functions residing in Hilbert
space H. Each realization Xt satisfies the condition ∥Xt∥2 =

∫
I X

2
t (u)du < ∞ with a

function support range I , inner product ⟨ f , g⟩ =
∫
I f (u)g(u)du for any two functions,

f and g ∈ L2(I), and induced squared norm ∥ · ∥ = ⟨·, ·⟩. All random functions are
defined on a common probability space (Ω, A, P). The notation X ∈ Lp

H(Ω, A, P) is used
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to indicate that, for some p > 0, the condition E(∥X ∥p) < ∞. When p = 1, X has the mean
curve µ = E(X ); when p = 2, X has the covariance function C(u, v) = Cov[X (u),X (v)] =
E{[X (u)− µ(u)][X (v)− µ(v)]}, where u, vs. ∈ I .

2.2. Estimation of Long-Run Covariance Function

To provide a formal definition of the long-run covariance function, suppose that
{Xt(u), u ∈ I}t∈Z is a set of stationary and ergodic functional time series. By stationary,
the moments of a stochastic process, such as mean, variance, and autocorrelation, do not
change over time. It is a key property for the sieve bootstrap of [14] to go backwards in
time. In terms of ergodicity, it implies that the long-term statistical behavior of the process
can be deduced from a sufficiently long realization of that process.

At the population level, the long-run covariance function is defined as

C(u, v) =
∞

∑
ℓ=−∞

γℓ(u, v),

γℓ(u, v) = cov[X0(u),Xℓ(v)]

is a well-defined element of L2(I2) under mild weak dependence and moment conditions
(see [18]). From the autocovariance function, one can define the fourth-order cumulant
function as

Ψℓ,r,θ(u, v) = E[X0(u)Xℓ(v)Xr(u)Xθ(v)]− γℓ(u, v)γθ−r(u, v)− γr(u, u)γθ−ℓ(v, v)− γθ(u, v)γr−ℓ(u, v)

A key condition is the existence of the finite fourth-order moment, i.e.,

∞

∑
ℓ,r,θ=−∞

∣∣∣∣∫ ∫
Ψℓ,r,θ(u, v)dudv

∣∣∣∣ < ∞.

Since the bootstrap methods are designed to study the variability associated with the
long-run covariance function, it is a crucial condition that a finite fourth-order moment
exists. For example, such a condition can be met for Gaussian processes, where sample
autocovariance functions have simpler variance expressions due to zero-value fourth-order
cumulants.

Via right integration, c denotes the Hilbert–Schmidt integral operator on L2 given by

c( f )(u) =
∫
I
C(u, v) f (v)dv, (1)

whose eigenvalues and eigenfunctions are related to the dynamic functional principal
components, and (1) provides asymptotically optimal finite-dimensional representations
of the sample mean of dependent functional data. Therefore, it is important to study the
inference of the long-run covariance function and its associated covariance operator.

A sandwich estimator can estimate the long-run covariance function at the sample
level using the observations X1(u), . . . ,Xn(u). The sandwich estimator is defined as:

Ĉh,q(u, v) =
n

∑
ℓ=−n

Wq

(
ℓ

h

)
γ̂ℓ(u, v),

where h is called the bandwidth parameter,

γ̂ℓ(u, v) =


1
n

n−ℓ

∑
t=1

[
Xt(u)−X (u)

][
Xt+ℓ(v)−X (v)

]
, ℓ ≥ 0

1
n

n

∑
t=1−ℓ

[
Xt(u)−X (u)

][
Xt+ℓ(v)−X (v)

]
, ℓ < 0,
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is an estimator of γℓ(u, v) with X (u) = 1
n ∑n

t=1 Xt(u). Wq is a symmetric weight function
with bounded support of order q, which satisfies the following properties:

Wq(0) = 1, Wq(u) ≤ 1, Wq(u) = Wq(−u), Wq(u) = 0, if |u| > ι for some ι > 0,

and Wq is continuous on [−ι, ι], and 0 ≤ limx→0 |x|−q(1 − Wq(x)) < ∞. Depending on the
choice of the kernel function, the commonly used Bartlett, Parzen, Tukey–Hanning, and
Quadratic spectral kernel functions have their corresponding orders q = 1, 2, 2, and 2.

The estimation accuracy of the kernel sandwich estimator depends on the selection
of the bandwidth parameter. Typically, one has to under-smooth in bandwidth selection
to avoid bias problems (cf. [19]). The bandwidth parameter can be selected via a plug-
in algorithm of [18]. To minimize asymptotic mean-squared normed error, Ref. [18]
recommends that a flat-top kernel function of [20] is used with a fixed bandwidth h = n

1
5 in

the pilot estimation stage, coupled with a final Bartlett kernel function. The Bartlett kernel
function is defined as:

W1(η) =

{
1 − |η| for |η| ≤ 1;
0 otherwise.

The plug-in bandwidth selection method minimizes the asymptotic mean-squared error
between the estimated and population long-run covariance functions. The asymptotic
mean-squared error can be defined as

E∥Ĉh,q −C∥2 =
h
n

(
∥C∥2 +

( ∫
C(u, u)du

)2
) ∫ ∞

−∞
W2

q (x)dx + h−2q∥C(q)∥2 + o
(

h
n
+ h−2q

)
.

3. Bootstrap Methods

In Section 3.1, the sieve bootstrap can be viewed as a nonparametric bootstrap pro-
cedure. The FAR(1) bootstrap described in Section 3.2 is an alternative semi-parametric
bootstrap procedure, which shows a superior accuracy in [13].

3.1. Sieve Bootstrap

The basic idea of the sieve bootstrap method of [14] is to generate a functional time
series of pseudo-random elements X ∗

1 ,X ∗
2 , . . . ,X ∗

n , which appropriately imitate the depen-
dence structure of the functional time series at hand. The sieve bootstrap begins with center-
ing the observed functional time series by computing X c

t = Xt −X n for t = 1, 2, . . . , n. Via
Karhunen–Loève representation, the random element Xt can be decomposed in two parts:

Xt =
∞

∑
i=1

ξi,tvi

=
m

∑
i=1

ξi,tvi +
∞

∑
i=m+1

ξi,tvi, (2)

where m denotes the number of retained functional principal components. While the first
term on the right-hand side of (2) is considered the main driving part of Xt, the second
term is treated as a white noise component.

In the original work of [14], m was chosen by a generalized variance ratio criterion.
The criterion relies on a threshold parameter, which can be arbitrary. Following the early
work by [21], the value of m is determined as the integer minimizing ratios of two adjacent
empirical eigenvalues given by

m = arg min
1≤m≤mmax

{
λ̂m+1

λ̂m
× 1

(
λ̂m

λ̂1
≥ τ

)
+ 1

(
λ̂m

λ̂1
< τ

)}
,

where mmax is a pre-specified positive integer, τ is a pre-specified small positive number,
and 1(·) is the binary indicator function. With prior knowledge about a possible maxi-
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mum of m, it is unproblematic to choose a relatively large mmax, e.g., mmax = #{m|λ̂m ≥
1
n ∑n

m=1 λ̂m} [22]. Since small empirical eigenvalues λ̂m are close to zero, we adopt the
threshold constant τ = 1

ln[max(λ̂1,n)]
to ensure consistency of m.

We compute the sample variance operator 1
n ∑n

t=1 X c
t ⊗X c

t , and extract the first m set
of estimated orthonormal eigenfunctions (v̂i, i = 1, 2, . . . , m) corresponding to the m largest
estimated eigenvalues. By projecting functions onto these orthonormal eigenfunctions, we
obtain a m-dimensional multivariate time series of estimated scores; that is,

ξ̂i,t = (⟨X c
t , v̂i⟩)⊤, i = 1, 2, . . . , m, t = 1, 2, . . . , n

ξ̂t = (ξ̂1,t, . . . , ξ̂m,t)

We fit a vector autoregressive (VAR) process of order p to the time series of estimated
scores;

ξ̂t =
p

∑
j=1

Âj,p ξ̂t−j + êt, t = p + 1, p + 2, . . . , n,

where (Â1,p, . . . , Âp,p) is a set of regression coefficients at various lags from 1 to p, and
êt denotes the residuals after fitting the VAR(p) model to the m-dimensional, vector time
series of estimated scores ξ̂1, ξ̂2, . . . , ξ̂n. The order p of the fitted VAR model is chosen using
a corrected Akaike information criterion (AIC) [23], that is, by minimizing

AIC(p) = n log
∣∣∣Σ̂e,p

∣∣∣+ n(nm + pm2)

n − m(p + 1)− 1
,

over a range of values of p, and Σ̂e =
1
n ∑n

t=p+1 êt ê⊤t is the variance of the residuals.
Given the VAR is an autoregressive process, it requires a burn-in period to eliminate

the effects of starting values. With a burn-in sample of 50, we generate the vector time
series of scores

ξ∗t =
p

∑
j=1

Âj,pξ∗t−j + e∗t , t = 1, 2, . . . , (50 + n),

where we use the starting value ξ∗t = ξ̂t for t = 1, 2, . . . , p. The bootstrap residuals e∗t are
i.i.d. resampled from the set of centered residuals {êt − en, t = p + 1, p + 2, . . . , n}, and
en = 1

n−p ∑n
t=p+1 êt.

Through the Karhunen–Loève expansion in (2), we obtain bootstrap samples

X ∗
t = X n +

m

∑
i=1

ξ∗t v̂i + U∗
t,m, (3)

where U∗
t,m are i.i.d. resampled from the set {Ût,m − Un, t = 1, 2, . . . , n}, Un = 1

n ∑n
t=1 Ût,m

and Ût,m = X c
t − ∑m

i=1 ξ̂i,tv̂i. We discard the first 50 generated X ∗
t observations and keep

(X ∗
50+1,X ∗

50+2, . . . , X ∗
50+n) as the bootstrap generated pseudo time series.

3.2. Functional Autoregressive Bootstrap

When the weakly stationarity condition satisfies for a functional time series {X1, . . . ,Xn},
a parametric estimator of the conditional mean can capture most of the correlation among
functional time series. Among all parametric estimators, the FAR of order 1 is widely
used; see [24], who derived one-step-ahead forecasts based on a regularized form of the
Yule–Walker equations. We consider the FAR(1) model to estimate the conditional mean,
and the model can be written as

Xt = µ + ρ(Xt−1 − µ) + ϵt, t = 2, . . . , n,
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where ϵt denotes an error term with a mean of zero and ρ = Γ(1)/Γ(0) represents the
first-order autocorrelation operator. From a set of functional time series, the variance and
first-order autocovariance functions Γ(0) and Γ(1) are estimated by the sample variance
and autocovariance

Γ̂(0) =
1
n

n

∑
t=1

X c
t ⊗X c

t , Γ̂(1) =
1
n

n−1

∑
t=1

X c
t ⊗X c

t+1,

where X c
t = Xt − 1

n ∑n
t=1 Xt and ⊗ denotes a tensor product which is a means of combining

vectors from different Hilbert spaces to form a new vector in a larger Hilbert space.
When the FAR(1) model is the correct parametric model for modeling the underlying

data-generating process, the best linear predictor of X c
t given the past values X c

t−1 is
given by

X̂ c
t = ρ̂X c

t−1,

where ρ̂ = Γ̂(1)/Γ̂(0). Since Γ̂(0) may be unbounded, a regularization technique, such as
ridge estimator, can be adopted (see, e.g., [24]). The ridge estimator adds a random noise to
the Γ̂(0) to make it invertible. The one-step-ahead residual function is then given by

ϵ̂t = X c
t − X̂ c

t , t = 2, . . . , n.

Let ϵ̂c
t = ϵ̂t − 1

n−1 ∑n
t=2 ϵ̂t be centered realizations of a stochastic process. The centering is

important to ensure that the resulting bootstrap approximation is free of a random bias that
does not vanish in the limit (see also [25]). The residual functions can be resampled with a
replacement from the centered residual functions (see [13], Section 3.2 for more details).

4. Simulation Study

We introduce our simulation setup in Section 4.1, while the evaluation metrics are
presented in Section 4.2. Simulation results for the FMA processes are shown in Section 4.3,
while simulation results for the FAR processes are presented in Section 4.4.

4.1. Simulation Data Generating Processes (DGPs)

Let {Bt(u),−∞ < t < ∞, u ∈ [0, 1]} denote i.i.d. standard Brownian motions.
Following [18], we generate a set of stationary functional time series from the
following DGPs

FARϕ(ω) : Xt(u) =
ω

∑
k=1

ϕkXt−k(u) + Bt(u)

FMAψ(q) : Xt(u) = Bt(u) + ψ
q

∑
k=1

Bt−k(u),

where FARϕ(ω) is the functional analog of an autoregressive process of order ω, and
FMAψ(q) is the functional analog of a moving average process of order q. The coefficients
ϕk and ψ are scalar chosen to mimic various dependence structures. We consider a total of
six DGPs: FAR0.5(1), FAR(−0.6,0.09)(2), FMA1(0), FMA0.5(1), FMA0.5(4), FMA0.5(8).

In Figure 1, we show perspective plots of the long-run covariance function estimates
from a set of samples following the FAR0.5(1) process. Using the kernel sandwich estimator
in Section 2, we display the estimated long-run covariance function for n = 100, 300, 500
and the theoretical long-run covariance.
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Figure 1. Three-dimensional perspective plots of the long-run covariance function estimators with
simulated data from the FAR0.5(1) model using the sandwich estimator with a plug-in bandwidth
selection method of [18] for sample sizes of n = 100, 300, and 500 along with the theoretical long-run
covariance (lower right).

We compute the Hilbert–Schmidt norm of the difference between the estimated and
actual long-run covariance functions. For this simulated example, the values of the Hilbert–
Schmidt norm are 114, 58, and 47 when n = 100, 300, and 500, respectively. As the sample
size increases, the Hilbert–Schmidt norm decreases for this data-generating process. This
phenomenon practically justifies the kernel sandwich estimator can consistently estimate
the population long-run covariance function.

To assess the strength of temporal dependence, we compute a functional analog of the
autocorrelation function (ACF), defined as

∥γ̂ℓ∥∫
γ̂0(t, t)dt

,
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where ∥ · ∥ denotes the L2 norm. Unlike the univariate ACF, functional ACF only measures
the strength of the temporal dependency since ∥γ̂ℓ∥ ≥ 0. Proposed by [26], the functional
ACF is a graphical indicator for the order selection of functional moving average (FMA)
processes. Table 1 presents the estimated functional ACF averaged over 200 replications
for 6 DGPs. The DGPs exhibit different levels of dependence structures. When the process
follows an FMA1(0), the autocorrelations at all lags are similar. When the process follows an
FMA0.5(8), there is still a strong dependence even at lag 5, highlighting a strong persistence
in the functional time series.

Table 1. Estimated functional ACF averaged over 200 replications for various DGPs.

DGP lag1 lag2 lag3 lag4 lag5

FAR0.5(1) 0.3979 0.1967 0.1298 0.1172 0.1112
FAR(−0.6,0.09)(2) 0.4396 0.1914 0.1242 0.1178 0.1140
FMA1(0) 0.0923 0.0930 0.0912 0.0922 0.0959
FMA0.5(1) 0.3961 0.1123 0.1113 0.1107 0.1153
FMA0.5(4) 0.6365 0.4647 0.3055 0.1849 0.1653
FMA0.5(8) 0.7068 0.5986 0.4974 0.4024 0.3134

4.2. Simulation Evaluation Metrics

Let C = ψ(F0) be the population long-run covariance whose distribution is unknown,
where ψ is the function that defines C. Although the distribution of a statistic is unknown,
we can approximate it by an empirical distribution of F1. Let X ∗ = (X ∗

1 ,X ∗
2 , . . . ,X ∗

n ) be a
set of bootstrap sample of size n drawn from the empirical distribution F1. Let F ∗

1 be the
estimate of F0 re-computed from the bootstrap sample X ∗.

Let D(Ĉn, C) be the distance of the long-run covariance functions between the popula-
tion and sample levels. Let D(Ĉ∗

n , Ĉn) be the distance of the long-run covariance functions
between the original and bootstrap samples.

To evaluate the finite-sample performance of the bootstrap procedures, we compute
the bootstrap CIs of the long-run covariance. As a performance measure, L2 distance
metrics are used for constructing CIs. The Hilbert–Schmidt norm is defined as

Tn ≡
∥∥∥C(u, v)− Ĉn(u, v)

∥∥∥
HS

=

{∫
u∈I

∫
v∈I

[
C(u, v)− Ĉ(u, v)

]2
dudv

} 1
2
. (4)

Given a set of original functions {X1,X2, . . . ,Xn}, we draw B = 400 bootstrap samples
for each of the R = 200 replications. The same pseudo-random seed was used for all the
procedures to ensure the same simulation randomness. We compute the Hilbert–Schmidt
norm of the difference between the bootstrap and sample long-run covariance functions
for each replication. By sorting the norm values, we find a threshold value, denoted by
T∗,threshold

n , that 100(1 − α)% of the norm values are included.
Based on 200 replications, we compute the empirical coverage probability as 1

200 ∑200
r=1 Ir,

where Ir = 1(T∗,threshold
n ≤ Tn) and 1{·} denotes a binary indicator function. Our evalua-

tion procedure presents a partial view by only showing only the distributional approxi-
mation of ∥C(u, v)− Ĉn(u, v)∥HS by ∥Ĉ∗

n(u, v)− Ĉn(u, v)∥HS instead of the distributional
approximation of Ĉn(u, v)− C(u, v) by Ĉ∗

n(u, v)− Ĉn(u, v). Due to the infinite dimensional-
ity of functional data, some estimators of an infinite-dimensional parameter may not have
an asymptotic result [27].

4.3. Simulation Results of the FMA Processes

Based on the Hilbert–Schmidt norm introduced in (4), we could determine the empiri-
cal coverage probability, calculated as the ratio of the number of observations that fall into
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the constructed confidence intervals to the total number of observations. For a range of
nominal coverage probabilities from 0.5 to 0.95 in a step of 0.05, we display the nominal
and empirical coverage probabilities in Figure 2 for the four chosen FMA processes. As the
order of FMA processes increases from lag 0 to 8, it becomes more difficult to estimate the
long-run covariance function with the same sample size.

The sieve bootstrap is the method that follows comparably close to the nominal
coverage probabilities. We calculate the coverage probability difference (CPD), the absolute
difference between the empirical and nominal coverage probabilities. In Table 2, we present
the average CPD values over a set of nominal coverage probabilities ranging from 0.5 to 0.95
in a step of 0.05. For the four FMA processes, the sieve bootstrap is generally recommended.
The bootstrap methods produce relatively large CPD values as the temporal dependence
increases. As the sample size n increases, the performance of the sieve bootstrap improves,
but it is not necessary for the FAR bootstrap. A possible reason is the model misspecification
issue between the chosen model and the data-generating process.
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Figure 2. Cont.
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Figure 2. Empirical vs. nominal coverage probabilities of the four FMA processes when n = 100 (left
column) and n = 300 (right column).

Table 2. When the data-generating processes are the FMA processes, we compute the averaged CPD
over a set of nominal coverage probabilities from 0.5 to 0.95 in a step of 0.05 between the FAR and
sieve bootstrap methods.

n = 100 n = 300

FAR Bootstrap Sieve Bootstrap FAR Bootstrap Sieve Bootstrap

FMA1(0) 0.1010 0.0525 0.1560 0.0490
FMA0.5(1) 0.0845 0.1280 0.1280 0.0825
FMA0.5(4) 0.4905 0.3935 0.2310 0.3105
FMA0.5(8) 0.7250 0.6245 0.6870 0.5590

4.4. Simulation Results of the FAR Processes

In Figure 3, we display the nominal and empirical coverage probabilities for estimating
the long-run covariance of stationary functional time series among the bootstrap methods.
We consider two FAR processes in which the serial dependence changes from FAR(1) to
FAR(2). The FAR bootstrap method is recommended between the two bootstrap methods.
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Figure 3. Empirical vs. nominal coverage probability of the FAR processes when n = 100
(left column) and n = 300 (right column).

From Figure 3 and Table 3, the FAR bootstrap is the method that follows comparably
close to the nominal coverage probabilities. When FAR(1) is the true data-generating
process, the FAR bootstrap is expected to perform the best. When the model is misspecified,
the FAR bootstrap still outperforms the sieve bootstrap, reflecting some degree of model
robustness. From the averaged CPD values, the FAR bootstrap is recommended with the
smallest values for the two FAR processes. As the sample size increases from n = 100 to
300, the CPD values decrease for the bootstrap methods.

Table 3. When the data-generating processes are the FAR processes, we compute the averaged CPD
over a set of nominal coverage probabilities from 0.5 to 0.95 in a step of 0.05 among the FAR and sieve
bootstrap methods.

n = 100 n = 300

FAR Bootstrap Sieve Bootstrap FAR Bootstrap Sieve Bootstrap

FAR0.5(1) 0.1880 0.3390 0.0910 0.2535
FAR−0.6,0.09(2) 0.1475 0.2650 0.1180 0.2015



Forecasting 2024, 6 149

5. Monthly Sea Surface Temperature

We consider a time series of average monthly sea surface temperatures in degrees
Celsius from January 1950 to December 2020, available online at https://www.cpc.ncep.
noaa.gov/data/indices/ersst5.nino.mth.91-20.ascii (accessed on 31 January 2024). These
sea surface temperatures are measured by moored buoys in the “Niño region” defined by
the coordinates 0–10◦ South and 90◦–80◦, West. In this case, each curve represents one year
of observed sea surface temperatures. There are N = 852 discrete univariate time series
data points, which are converted into n = 71 monthly curves. The discretized functional
time series, which consists of δ = ⌊N/n⌋ discrete data points, is given by

Xt(ui) = {xw, w ∈ (δ(t − 1), δt]}, t = 1, 2, . . . , n,

where i = 1, 2, . . . , 12 denotes 12 discrete data points within a year. A univariate time series
display of the monthly sea surface temperature is given in Figure 4a, with the same data
shown in Figure 4b as a time series of functions.
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Figure 4. Graphical displays of monthly measurements of the sea surface temperatures from January
1950 to December 2020: (a) a univariate time series display; (b) a functional time series display via
rainbow plot. The curves in the distant past are shown in red, while the most recent curves are shown
in purple.

We examine the stationarity assumption of this dataset by applying a test procedure
of [28]. Under the null hypothesis that the functional time series is stationary, based on
the p-value of 0.684, we cannot reject the null hypothesis at the customarily 5% level of
significance.

We apply the sieve bootstrap method to construct 80% confidence intervals of the
long-run covariance function of the dataset. The sample estimated long-run covariance is
shown in Figure 5a, and the lower and upper bounds of the 80% CIs are shown in Figure 5b
and Figure 5c, respectively.

https://www.cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.91-20.ascii
https://www.cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.91-20.ascii
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Figure 5. Sample long-run covariance function estimated by the kernel sandwich estimator, and the
estimated 80% lower and upper bounds of the estimated long-run covariance function: (a) sample;
(b) lower bound; and (c) upper bound.

6. Conclusions

We apply two bootstrap methods, namely the sieve and FAR bootstrap methods, to
generate bootstrap samples of stationary functional time series. Via a series of simulation
studies, we study several data-generating processes for stationary functional time series.
The data-generating processes can be split into the FMA and FAR processes. We compute
the distance between the sample and population long-run covariance functions for each
data-generating process. For each bootstrap sample, we estimate its long-run covariance
function and compute its distance from the sample’s long-run covariance. With the two
distances from 200 replications, we compute empirical coverage probability for a set of
nominal coverage probabilities ranging from 0.5 to 0.95 in a step of 0.05. The sieve bootstrap
is generally recommended when the data-generating process is generated from the FMA
processes. The FAR bootstrap is advocated when the data-generating process stems from
the FAR processes. To determine whether a functional time series is generated from a FAR
process, one can apply a hypothesis test of [29].

Our finding highlights the importance of model specification for stationary func-
tional time series and further confirms the estimation difficulty associated with strongly
dependent functional time series. The bootstrap validity hinges on the existence of the
fourth-order moment and works for Gaussian processes. If the underlying process is
non-Gaussian, the bootstrap is known to fail (cf. [30,31]). This is because the variance
of the limiting distributions depends on the fourth-order cumulants; the bootstrap may
not approximate these fourth-order cumulants. The hypothesis tests of [32] are useful for
testing the normality of functional time series. In future research, one may develop hypoth-
esis tests to examine whether or not a stochastic process is generated from a heavy-tailed
distribution with an infinite second or fourth moment.
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