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Abstract: Remotely sensed data play a crucial role in monitoring the El Niño/La Niña Southern
Oscillation (ENSO), which is an oceanic-atmospheric phenomenon occurring quasi-periodically with
several impacts worldwide, such as specific biological and global climate responses. Since 1980, Earth
has witnessed three strong ENSO events (1982–1983, 1997–1998, 2015–2016). In September 2022, La
Niña entered its third year and was unlikely to continue through 2024. Instead, since 2022, forecasts
have pointed to a transition from La Niña to a Neutral phase in the summer or late 2023. The onset of
El Niño occurred around April 2023, and it is anticipated by sophisticated models to be a strong event
through the Northern Hemisphere winter (December 2023–February 2024). The aim of this study is to
demonstrate the ability of the combination of two new methods to improve the accuracy of the above
claim because El Niño apart from climate anomalies, significantly impacts Earth’s ecosystems and
human societies, regulating the spread of diseases by insects (e.g., malaria and dengue fever), and
influencing nutrients, phytoplankton biomass, and primary productivity. This is done by exploring
first the previous major El Niño events in the period January 1876–July 2023. Our calculations show
that the ongoing 2023–2024 El Niño will not be the strongest.

Keywords: El Niño; non-linear dynamics; natural time analysis; symmetry breaking; receiver
operating characteristics; nowcasting; extreme events; entropy

1. Introduction

Walker and Bliss [1] observed that when Tahiti’s air pressure at sea level was stronger
than average, Darwin’s was weaker, and vice versa. After several decades, this “Southern
Oscillation” (SO) was also linked to a known phenomenon since the 19th century of warmer
than average ocean water off the Pacific coast of South America (Peru-Ecuador). This peaks
annually around Christmas and is therefore called El Niño (the little boy—the birth of
Christ), a name dating to the 1800s. However, this term has been used in more recent
years for the enhanced warmings that occur every 3–7 years (measured by the sea surface
temperature (SST) along the Peru–Ecuador coast) [2]. The opposite condition is called La
Niña [3].

The coupling of these two phenomena provides the pattern of the El Niño Southern
Oscillation (ENSO) [4]. Despite its origins in the tropical Pacific Ocean, the climatic effects
of ENSO are felt worldwide (e.g., from droughts in Indonesia and Australia to storms
and floods in Ecuador and the USA) due to the changes it causes in global atmospheric
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circulation patterns. For this reason, ENSO is recognized as the primary influencer of
natural changes in the Earth’s climate system [5]. Traditionally, a measure of the large-
scale variations in atmospheric pressure between the western and eastern tropical Pacific
(between Tahiti and Darwin, Australia) is the Southern Oscillation Index (SOI), which
indicates the state of the SO, particularly during episodes of El Niño and La Niña [6].

These enhanced interactions between the ocean and atmosphere result in important
consequences for people and ecosystems across the globe, with sometimes catastrophic
effects on the ecological system [7,8]. These extreme occurrences have the potential to
cause secondary impacts on food availability and costs, as well as heatwaves, wildfires,
and other intense weather events. These effects can lead to further economic and political
ramifications, such as famines and political unrest [9,10]. The biological consequences of an
El Niño event also include sudden population growth or decline that can lead to population
genetic problems and adaptability to future environmental changes [11]. Also included is
the outbreak of epidemics of diseases transmitted by insects, due to the decrease in rainfall
and the increase in temperature in various regions of the world (e.g., Colombia), which
cause high mosquito breeding rates [12].

While we mostly understand how ENSO works and its effects around the world, we
still don’t know how ENSO will change as the planet warms and what its effect on global
weather and climate will then be [13]. For example, we know that El Niño is a source of
anomalous ocean conditions that lead to specific biological responses that regulate nutrients
and phytoplankton biomass, impacting marine life and primary productivity [14]. Effects
on higher organisms such as fish, seabirds, and marine mammals are also suggested, but
several years of additional observations are required to determine them precisely [15]. In
this regard, coral records and other proxies suggest that ENSO has been happening for
thousands of years. Studies as well as the most recent Intergovernmental Panel on Climate
Change report conclude that there is no agreement among climate models on how ENSO
will be affected by climate change [16].

Climate models play a vital role in predicting El Niño events and providing early
warnings to mitigate their impact. Scientists use ocean-atmosphere models to simulate
El Niño patterns, considering factors like solar activity and volcanic aerosols. Achieving
accurate climate forecasts involves understanding current climate conditions, incorporat-
ing slow-changing elements of the climate system, and utilizing sophisticated models.
Detecting the onset of El Niño requires grasping teleconnections and utilizing various
models, including the El Niño–NAE Teleconnection, the Season-Dependent Predictability
Barrier for El Niño, and the Multi-Model Prediction System for ENSO. The latter involves
a multi-model ensemble of five dynamical coupled models with different complexities,
parameterizations, and resolutions to enhance seasonal climate predictions related to El
Niño and SO. Despite the challenges, detecting El Niño remains a crucial focus with global
implications [11,13,16].

One way to detect the arrival of El Niño is to analyse satellite and ocean measurements
of SST. After three consecutive La Niña years, the spring of 2023 saw the return of El Niño,
according to data from the Sentinel-6 Michael Freilich and Sentinel-3B satellites (Figure 1).
The main purpose of the Sentinel-6 Michael Freilich satellite is to accurately gauge the
height of the ocean. On the other hand, the Sentinel-3 satellite is specifically built to measure
various aspects such as sea surface topography, sea and land surface temperature, and even
colour [17].

Because in its presence, warmer water expands to fill more volume while colder water
contracts, ocean warming causes a rise in sea surface height that can be detected by satellite
measurements and thus signal the occurrence of El Niño. A commonly used measure of
ENSO strength is the mean SST anomaly (or the Oceanic Niño Index-ONI, i.e., the variations
of the 3–month running average of the SST) in the Niño–3.4 region of the equatorial Pacific,
a box extending from 170◦ E–120◦ E and 5◦ S–5◦ N (Figure 1 (top)). According to the latest
estimates (of 14 December 2023) (Figure 1 (bottom)), El Niño will continue during the
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Northern Hemisphere winter, while the transition to a neutral ENSO state is favoured in
April–June 2024 (with a 60% probability).
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Figure 1. (Top): Two–year record of SST in the Niño–3.4 (the temperature anomaly of the surface of 
the central tropical Pacific Ocean currently defined as the departure from the 1991–2020 average). 
The grey lines represent all El Niño events since 1950, along with the purple line showing the current 
event. (Bottom): Official ENSO probabilities for the Niño–3.4 SST index (5° N–5° S, 120° W–170° W), 
updated 14 December 2023 (Credit: NOAA climate.gov). (https://www.cpc.ncep.noaa.gov/prod-
ucts/analysis_monitoring/enso_advisory/ensodisc.shtml, accessed on 10 January 2024). 
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Figure 1. (Top): Two–year record of SST in the Niño–3.4 (the temperature anomaly of the surface
of the central tropical Pacific Ocean currently defined as the departure from the 1991–2020 average).
The grey lines represent all El Niño events since 1950, along with the purple line showing the current
event. (Bottom): Official ENSO probabilities for the Niño–3.4 SST index (5◦ N–5◦ S, 120◦ W–170◦ W),
updated 14 December 2023 (Credit: NOAA climate.gov). (https://www.cpc.ncep.noaa.gov/produc
ts/analysis_monitoring/enso_advisory/ensodisc.shtml, accessed on 10 January 2024).

The condition for the presence of El Niño is for this anomaly to equal or exceed 0.5 ◦C,
persisting for several months. Glantz and Ramirez [10] suggested that a temperature
increase of 0.7 ◦C serves as a critical threshold signifying the onset of an El Niño event,
allowing ample opportunity for policymakers to implement necessary mitigation strategies.
When the anomaly exceeds 1.0 ◦C, it is considered that El Niño is of moderate strength,
while 1.5 ◦C is the threshold for a strong event.

The climate models attempt to predict the features of the upcoming ENSO events to
provide in time the necessary reliable information to the population to get safety measures
well in advance [18]. However, the predictions provided by the models are sometimes not
accurate enough because the ocean-atmosphere system is complex and complicated. For
example, on 29 September 2015, the Australian Government Bureau of Meteorology (BOM)
reported that “The 2015 El Niño could be the strongest El Niño since 1997–98” and that the
2015–2016 El Niño event “was likely to peak towards the end of 2015” (http://www.bom.go
v.au/climate/enso/archive/ensowrap_20150929.pdf, accessed on 10 January 2024). Similar
information was also reported on 8 October 2015 by the Climate Prediction Centre, National
Centres for Environmental Prediction, NOAA/National Weather Service (http://www.cpc.

https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml
http://www.bom.gov.au/climate/enso/archive/ensowrap_20150929.pdf
http://www.bom.gov.au/climate/enso/archive/ensowrap_20150929.pdf
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_oct2015/ensodisc.pdf
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_oct2015/ensodisc.pdf
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ncep.noaa.gov/products/analysis_monitoring/enso_disc_oct2015/ensodisc.pdf, accessed
on 10 January 2024).

However, Varotsos et al. [19] indicated that the 2015–2016 El Niño was expected to be
quite “moderate to strong” and not “one of the strongest on record”, as that of 1997–1998,
by applying the new analysis described in detail in [20] on the SOI time series for the period
1876–2015. That analysis employed a non-linear dynamics tool for detecting precursory
signals of strong El Niño occurrences. The 2015–2016 El Niño event was “moderate to
strong” and not “one of the strongest events on record.”

There are several statistical methods employed to predict El Niño events, such as
ENSO Teleconnection Maps, Deep Learning-Based Forecasting, Retrospective El Niño
Forecasts, and Benchmarking Prediction Skill, e.g., [9,18].

In this paper, we focus on the already ongoing 2023–2024 El Niño event, which
according to model forecasting is expected to be a strong event during the Northern
Hemisphere winter (December 2023–February 2024) (e.g., [21]. We attempt to improve the
accuracy of predictions made by employing two new algorithms. The first algorithm allows
the detection of precursory signals of the ENSO phase through the utilisation of the SOI
time series analysis recently developed by Varotsos et al. [20], which has been successfully
used to nowcast (i.e., short-range forecasting) the past three strong ENSO events. The
second one is a recently developed nowcasting method that is applied to ONI and SOI.

2. Materials and Methods

For our research, we use average monthly SOI values over the period January
1876–July 2023, obtained from the Long Paddock website entitled Monthly SOI Phase
1887–1989 Base (https://data.longpaddock.qld.gov.au/SeasonalClimateOutlook/South
ernOscillationIndex/SOIDataFiles/MonthlySOIPhase1887%E2%80%931989Base.txt, ac-
cessed on 10 January 2024). The SOI dataset, used in this analysis, is calculated using
Troup’s formula [13,14], as follows:

SOI = 10 × [PA(Tahiti) − PA(Darwin)]/SDD (1)

where PA represents the pressure anomaly. As mentioned above, the SOI is calculated by
comparing the monthly average air pressure at Tahiti and Darwin, and then subtracting
the long-term average of this difference for the specific calendar month (using data from
1887 to 1989 as a basis for normalization purposes) see https://www.longpaddock.qld.go
v.au/soi/ (accessed on 10 January 2024) for more details. The Standard Deviation of the
Difference (SDD) represents the variability of this difference for the same calendar month
during the base period of 1887 to 1989. It’s worth noting that Troup’s monthly SOI from
1876 onwards is derived from the normalized mean sea level pressure difference between
Tahiti and Darwin.

In addition, in this study, we use monthly mean values of ONI anomalies from January
1950 to April 2023, obtained from NOAA (https://www.cpc.ncep.noaa.gov/data/indices
/oni.ascii.txt, accessed on 10 January 2024).

2.1. Natural Time Analysis of SOI Values

We create a new time series Ei = (SOIi+|SOImin|) with i = 1, 2, . . . , N, where
SOIi(SOImin) is the i-th event (minimum value) of the original SOI dataset and N is the
total number of SOI events, over the entire period (January 1876 to July 2023). We then use
the technique of “natural time analysis” (NTA), matching each event Ej with the quantity
Nj denoting the order of the occurrence Ej against the total number of events within a
window of k events, i.e., Nj = j/k, with j = 1, 2, . . . , k. Thus, we introduce a new sequence
of pairs (Nj, Ej) where Ej > 0, using the order of events as a measure of time instead of the
conventional clock time (t) [22–25].

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_oct2015/ensodisc.pdf
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_oct2015/ensodisc.pdf
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_oct2015/ensodisc.pdf
https://data.longpaddock.qld.gov.au/SeasonalClimateOutlook/SouthernOscillationIndex/SOIDataFiles/MonthlySOIPhase1887%E2%80%931989Base.txt
https://data.longpaddock.qld.gov.au/SeasonalClimateOutlook/SouthernOscillationIndex/SOIDataFiles/MonthlySOIPhase1887%E2%80%931989Base.txt
https://www.longpaddock.qld.gov.au/soi/
https://www.longpaddock.qld.gov.au/soi/
https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt
https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt
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However, the quantity is as follows:

Pj =
Ej

∑k
j=1 Ej

, j = 1, 2, . . . , k,

could be considered as a probability, since Pj > 0 and ∑k
j=1 Pj = 1 [22,25], so we try to

calculate the entropy of SOI events in the natural time domain as follows:

Sk = ∑k
j=1 PjNjln(Nj)−

(
∑k

j=1 PjNj

)
ln
(
∑k

i=1 Pi Ni

)
(2)

The entropy Sk is calculated for a sliding window of k-length, each time by 1 month,
running the entire SOI time series of the N-events. Then, we again use Equation (2)
to calculate the entropy, but this time, considering the time reversal in each window,
i.e., P′

j = Pk−j+1, with j = 1, 2, . . . , k, (see [19,25]). The obtained entropy (S′
k) is different

from Sk and the quantity ∆Sk = Sk − S′
k indicates the time symmetry breaking; see, e.g.,

Section 7.1 and Appendix A3 of [25].
Positive values of ∆Sk correspond to a decreasing time series in natural time, and

when ∆Sk exceeds a certain threshold, extremely small SOI events occur, revealing El Niño
(see details in [19,25]).

Furthermore, Varotsos et al. [19,20] suggested that the most useful window size for the
above-described analysis is k = 20 events (months). Thus, we herewith calculate ∆S20 for
the past 20 months, and this window is sliding, each time by 1 month, and run the entire
SOI time series of N-events.

We also use the well-known Receiver Operating Characteristics (ROC) method (see [26])
to estimate the most appropriate threshold (for ∆S20) that could be used as a forecasting
tool for small SOI events. ROC allows [26] the evaluation of predictions in an unbiased
manner and is widely applied in many fields, including medicine, see, e.g., [27–29]. ROC
depicts the “true positive rate” (i.e., the percentage of correctly predicted cases over the total
number of (positive) cases to be predicted) as a function of the “false positive rate”, which
is the percentage of false alarms over the total number of negative cases. Depending on the
number of the available positive and negative cases examined the statistical significance of
each point in the ROC plane can be estimated using the method described in [30]. For the
case of our study, when ∆Sk=20 is equal to or exceeds a certain threshold (∆Sthresh) during
the i-th month of the total period under study, an event low SOIi+1 (less than or equal to a
specific value T) is predicted for the next month. If this is verified, then we have a “true
positive prediction”. Conversely, in case ∆S20 < ∆Sthresh and SOIi+1 > T, then we have
a “true negative prediction”, while the other two combinations lead to errors (see details
in [19]).

2.2. Estimation of the Probability Density Function of ∆S20

In order to estimate the probability density function (PDF) of ∆S20 we employ the
kernel density estimator approach, see, e.g., [31]:

fN(∆S20) =
1

NBN
∑N

i=1 K
(

∆S20 − Ti
BN

)
(3)

In Equation (3), Ti is the observed value of ∆S20 during the period January 1880-July
2023, and N is the total number of these observations. Following [32], we choose the kernel

K(x) =

{
3(1−x2)

4 , |x| < 1
0, |x|≥ 1

and BN = 10.25 σ
N0.34 with σ the standard deviation of the observed

∆S20 values.
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2.3. The Modified Natural Time Analysis Method for Nowcasting ONI Anomalies

The Modified Natural Time Analysis (M-NTA) utilized for nowcasting involves the
following steps:

Initially, the cumulative number (CN) of ONI values equal to or exceeding a specific
x-value is computed. Subsequently, the logarithm of CN is plotted against the x magnitude,
and regression analysis is conducted on the log(CN) versus x plot to unveil the distribution
of ONI anomalies.

Following this, the NTA is employed to examine exceptional events within the time
series of ONI anomalies. By disregarding clock time and focusing on “natural time”, an
index is generated representing the order of occurrence of an event divided by the total
number of events in the time series [22–25,33,34]. Consequently, high ONI values (with
x ≥ x2) are identified in the studied time series, and the cumulative numbers CN1 and CN2
of ONI values with magnitude x ≥ x1 and x ≥ x2, respectively (where x1 < x2) occurring
after this high ONI value until the end of the time series is calculated.

Ultimately, the M-NTA is utilized to forecast the occurrence rate of future extreme
ONI events, based on the estimated mean occurrence rate of the lowest (and most frequent)
ONI values.

3. Results and Discussion
3.1. Experience Gained from Forecasting Previous Major El Niño Events as a Guide for Forecasting
the 2023–2024 El Niño Using the ‘Natural Time Analysis”

Our first objective is to study the evolution of the current 2023–2024 El Niño based on
the conclusions drawn from the forecast analysis proposed by Varotsos et al. [19] regarding
the 2015–2016 El Niño. In this context, we apply the method developed in [19,20] to the
SOI dataset for the period from January 1876 to July 2023. All SOI values are considered as
small, medium, or large SOI events.

Following the classification of the previous El Niño occurrences derived by the BOM
(http://www.bom.gov.au/climate/enso/enlist/, accessed on 10 January 2024), we now
consider a threshold value T = −14 (see also Section 2 and Figure 1 of [19]). We herewith
present in Figure 2 the true positive rate (i.e., the number of true positive predictions in all
cases with SOIi+1≤ T = −14) versus the false positive rate (i.e., the number of false positive
predictions for all cases with SOIi+1 > −14) for various ∆Sthresh-values.
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point of the f -curve (red line) with the maximum distance of the diagonal line y = x. The slope of the
tangent line (blue line) through that point of the f -curve is unity.

http://www.bom.gov.au/climate/enso/enlist/


Forecasting 2024, 6 193

It is important to highlight that the optimal prediction method results in a data point
located at the upper left corner or coordinate (0, 1), of the ROC space. This point signifies a
perfect balance between sensitivity (no false negatives) and specificity (no false positives),
achieving 100% accuracy in both aspects. Points located on the diagonal line y = x represent
random guesses, with a distribution that hovers around this line for a limited number
of trials (refer to [30]). Conversely, points situated above the diagonal signify accurate
prediction outcomes (superior to random guessing), whereas points below the diagonal
suggest inadequate results (inferior to random guessing).

The obtained ROC curve (for the studied period January 1876 to July 2023) best fits a
function of the form f (x) = a1 + a2

√
x + a3xd. So, we find that the point x0 of the f -curve

with the maximum distance d(x) from the diagonal line y = x (i.e., d(x) = |x−(a1+a2
√

x+a3xd)|√
2

)
is associated with ∆Sthresh = 0.0035. This value is exactly equal to the ∆Sthresh-value sug-
gested by Varotsos et al. [19] (for their studied period of January 1878–October 2015). We
note that the slope of the tangent line through the point x0 of the f -curve (i.e., the derivative
f ′(x0)) is unity (Figure 2).

Figure 3 illustrates the temporal evolution of monthly SOI events and the entropy
change ∆S20 in natural time under time reversal, from January 2010 to July 2023. To assess
if the 2015–2016 El Niño event can be categorized as “very strong” or even more “one of
the strongest on record”, we again use the classification of past El Niño events provided by
the BOM (http://www.bom.gov.au/climate/history/enso/, accessed on 10 January 2024).
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Figure 3. Monthly SOI events (blue line, right scale) as a function of time along with the change of
entropy ∆S20 in natural time in a time-reversed pattern (red line, left scale), in the period January
2010–July 2023. The average minimum negative SOI values are illustrated, accompanied by 1σ
standard deviation bands denoting “weak, weak to moderate, moderate, moderate to strong” (green
band) and “strong, very strong” El Niño events (yellow band), represented by coloured areas. The
black line represents the alarm triggered when ∆S20 exceeds the threshold value ∆Sthresh = 0.0035 (red
straight line). Note: SOI values are shifted by 1 month to facilitate a straightforward comparison.

Figure 3 displays the average minimum negative SOI value, depicted by the coloured
areas. These areas are accompanied by the 1σ standard deviation bands for two categories:
“weak, weak to moderate, moderate, moderate to strong” (green band) and “strong, very
strong” (yellow band) El Niño events. We notice in Figure 3 that the monthly SOI events
for the period 2015–2016 remain in the green zone and on the yellow border.

Furthermore, looking at Figure 1 in Varotsos et al. [19], it appears that the SOI time
series during the period 2015–2017 presents a less pronounced downward trend compared

http://www.bom.gov.au/climate/history/enso/


Forecasting 2024, 6 194

to the corresponding ones during El Niño events of previous periods such as 1982–1983
and 1997–1998 (see Figure 4).
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Figure 4. As depicted in Figure 3, exclusively for the El Niño occurrences of 1982–1983, 1997–1998
(the two most intense of the previous century), and the ongoing 2023–2024.
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These observations lead to the conclusion that the forecasting analysis suggested by
Varotsos et al. [19] has been thoroughly confirmed, and the El Niño event of 2015–2016 was
more accurately described as a “moderate to strong” occurrence rather than being labelled
as “one of the strongest on record”.

3.2. On the Progress of the 2023–2024 El Niño Event Using the ‘Natural Time Analysis”

Based on our above-described experience from the forecasting of the earlier major El
Niño events, we proceed to our second objective to further investigate claims for a very
strong 2023–2024 El Niño. However, as clearly shown in Figure 4, the monthly SOI events
during January 2021–May 2023 remain above the green zone after an increasing trend, and
an abrupt decline occurs in June 2023 without foreshadowing a strong El Niño. Moreover,
the variation of ∆S20 during the El Niño event of 2023–2024 is not as intense as during the
El Niño events of 1982–1983 and 1997–998, and an alarm (i.e., S20 ≥ ∆Sthresh) is detected
only in May and June 2023.

To estimate the extent of ∆S20 variation (associated with SOI variation), we plot in
Figure 5 the histogram of ∆S20 and the PDF obtained by the kernel estimation method
described in Section 2.2.
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Figure 5. The black curve on the left scale represents the PDF of ∆S20 while the corresponding
histogram is shown as red bars on the same scale. These values were obtained from the ∆S20 time
series spanning from January 1880 to July 2023. Additionally, the blue points on the right scale depict
the variation of ∆S_20 over time along the vertical axis. Blue arrows indicate the ∆S20 values that
exceed the 99% percentile, p99% = 0.02 of the total dataset (p99% is depicted with the vertical dashed
black line). These extremes are characterized by correspondingly strong El Niño events. The red
points and label show the ∆S20 values from January 2021 to July 2023.

3.3. Forecasting El Niño Events Using the “Modified Natural Time Analysis” Applied to ONI

We now investigate the distribution of ONI values, labelled by x, over the period from
January 1950 to April 2023, using the Modified Natural Time Analysis (M-NTA) described
in Section 2.3. By applying the non-parametric Kolmogorov Smirnov (KS) test, we test the
hypothesis Ho: the sample values follow a normal distribution against H1: the sample
values do not follow the normal distribution (Figure 6a). The calculated KS-statistic Dn
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and the corresponding p-values are 0.043 and 0.076, respectively. From 0.076 > 0.05, we
conclude that the dataset fits the normal distribution well at the 95% confidence level.
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However, this is inconsistent with the quantile-quantile (Q-Q) plot shown in Figure 6b,
which is a graphical method for assessing whether two data sets come from populations
with a common distribution. The vertical axis depicts the sample quantiles, while the
horizontal axis represents the theoretical quantiles. According to Figure 6b, the ONI values
seem to diverge from the normal distribution, and the inconsistency is mainly attributed
to the extreme values of the data set. To clarify this point, we apply a newly developed
nowcasting method, suggested by Varotsos et al. [30–32]. This method is a modified NTA
(M-NTA), and its steps are described below:

(1) We plot the logarithm of the cumulative number (CN), see Section 2.3, of the ONI
observations, equal to or above a certain x-value versus the x magnitude (Figure 7).
For high ONI values, regression analysis reveals a statistically significant linear fit
between logCN and x. The best linear fit is achieved for the range (−0.11, 1.93):

logCN = a1 + a0 · x (4)

(2) The F-test (t-test) suggests that the calculated values of R2 = 0.99 (a0 = −0.69 and
a1 = 2.67) are statistically significant (at 95% confidence level), thus giving indications
that high ONI values may follow a semi-logarithmic distribution resembling the
Gutenberg-Richter (GR) law [34–37].

(3) To fit ONI values above rollover (i.e., x ≥ 1.93), we use an upper-truncated GR model
developed by [38]

CN
′ = 10a1 · (10a0x − 10a0xmax) (5)

where the values a0 and a1 are derived from Equation (4) and xmax = 2.72 is chosen to
obtain the most accurate approximation.
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(4) Next, we use the M-NTA (see Section 2.3) to study the exceptional events in the time
series of ONI anomalies. The x1 value is chosen as the average of the ONI dataset (i.e.,
−0.003), while the value x2 = 0.826 corresponds to the mean increased by the standard
deviation of the dataset.
The above-mentioned technique allows us to precisely test the accuracy of the GR fit by
examining whether two values with a constant difference x2 − x1 have a constant ratio:

CN2

CN1
= 10a0·(x2−x1) = constant (6)

where a0 is estimated from Equation (4) and CN1, CN2 is the cumulative number of
ONI values with magnitude x ≥ x1 and x ≥ x2, respectively.

(5) Indeed, we plot the pairs (CN1, CN2) in Figure 8a, and an almost perfect linear fit
f (CN1) = A · CN1 (with A = 0.27 and R2 = 0.97), thus confirming the accuracy of
the GR-fit.

(6) The NTA is also used to forecast the frequency of upcoming extreme ONI events, x2,
by relying on the estimated average occurrence rate of the lowest ONI values, x1.

To this end, we first plot CN1 versus the clock time t (during January 1950–April
2023) where a nearly perfect linear fit h(t) = b · t on the pairs (CN1, t) emerges (Figure 8b).
The constant b = 0.45 ± 0.04 is estimated based on the average of the ratio CN1

t and its
confidence interval is as follows:(

b − Za/2

√
b(1 − b)

n
, b + Za/2

√
b(1 − b)

n

)

where n is the count of the pairs (CN1, t) and Za/2 is the critical value of the standard
normal distribution at a significance level.
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Figure 8. (a) The relationship between the cumulative number CN2 of high ONI values with magni-
tude x ≥ x2 and the cumulative number CN1 of ONI values with x ≥ x1 (grey points). A linear fit
represented by the dashed black line is shown for the pairs with f (CN1) = ACN1, where A = 0.27
and R2 = 0.97. (b) The cumulative number CN1 of ONI values with x ≥ x1 is plotted against clock
time [in months], over the period January 1950–April 2023 (black dots). The red dashed line is the
linear fit for the pairs (CN1, t) with h(t) = bt, where b = 0.45 and R2 = 0.98.

The calculated R2 = 0.98 indicates high statistical significance at the 95% confidence
level. Subsequently, we aim to forecast the frequency of events CN

′

t and, as a result, the
mean time gap between two consecutive occurrences of ONI values with x ≥ x0 for selected
high magnitudes, i.e., 1.74 ≤ x0 ≤ 2.64, using the following formula, which is derived
from Equation (6), as follows:

CN
′

t
= 10a0·(x0−x1) · b (7)

where b is seen in Figure 8b (Table 1).

Table 1. The nowcasted mean inter-event time t [in years] for ONI values with magnitude
1.74 ≤ x0 ≤ 2.48 accompanied by the lower and upper limit of the 95%-confidence interval of t.
The numbers in black (grey) colour derive from the ONI time series with real (reversed) time evolution.

ONI
Value

x0

Nowcasted Mean
Inter-Event Time t

[in Years]

The Lower Limit of the
95% Confidence Interval

of t.

The Upper Limit of the
95% Confidence

Interval of t.

1.74 3.0 (2.6) 2.5 (2.2) 3.7 (3.2)
1.84 3.5 (3.1) 2.9 (2.6) 4.3 (3.8)
1.94 4.1 (3.6) 3.4 (3.1) 5.1 (4.4)
2.04 4.8 (4.3) 4.0 (3.6) 6.0 (5.2)
2.14 9.2 (8.2) 7.6 (6.9) 11.4 (10.0)
2.24 12.1 (10.8) 10.1 (9.2) 15.1 (13.2)
2.57 51.4 (45.9) 42.8 (38.9) 64.3 (56.0)
2.64 102.1 (91.2) 85.1 (77.3) 127.6 (111.1)

It is worth noting that, in the case of extremely high ONI values (with x ≥ 1.93), we
use the truncated GR scaling given in Equation (5) (i.e., CN

′

t = 10a0 ·x0−10a0 ·xmax

10a0 ·x1−10a0 ·xmax · b).
The last step of our survey is to repeat the NTA, this time applied to a new time series,

which is generated by the initial ONI time series having reversed its time evolution. The
analysis gives similar results (i.e., f (CN1) = 0.27CN1 with R2 = 0.99 and b = 0.50 ± 0.04
with R2 = 0.995), and the estimated nowcasted mean inter-event time for the selected ONI
values is presented in Table 1 (with grey colour).
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According to Thompson [13], the phenomenon “El Niño” has arrived, causing major
changes to the weather all over the world. It is predicted that either this year or the upcom-
ing year will be the warmest year ever recorded, like what occurred in 2016. Additionally,
it is indicated that the strength of the 2016 El Niño event was comparable to the one experi-
enced in 1998 (refer to [16]). The ONI values from October 1997 to January 1998 (i.e., 2.33,
2.4, 2.39, 2.24, respectively), as well as the ONI value from October 2015 to January 2016
(i.e., 2.42, 2.57, 2.64, 2.48, respectively), are seen to be the maxima of the total time series
(see Figure 9).
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Figure 9. Monthly mean ONI (◦C) values over the period January 1950–April 2023 (obtained
from NOAA).

Using the M-NTA, the estimation of the mean inter-event time for the ONI value
occurred in November 1997 (i.e., x0 = 2.4), which is between 17.4 and 26.1 years, a forecast
that sufficiently describes the empirical inter-event time from 1997 to 2016 (see Table 1).
Furthermore, in December 1982 (i.e., 15 years before December 1997), the ONI value is
x0 = 2.23, which corresponds to the estimated inter-event time (9.8, 14.7) years, revealing
a good agreement between the nowcasted and the empirical time. Finally, using Table 1,
we can predict that the meantime for the re-appearance of the ONI values observed in
November 2015 and December 2015, i.e., 2.57 and 2.64, is expected to be (42.8, 64.3) years
and (85.1, 127.6) years, respectively.

Regarding the prediction of the new El Niño event, this is linked to the extreme
values of many previous years. For example, in November 1997, we had an extreme
ONI-value = 2.40, which, according to the model, is expected to reappear in (17.4, 26.1)
years, possibly reaching 2023. On the other hand, from October 2015 to December 2015,
extreme ONI values, i.e., 2.42, 2.57, 2.64 arose, which according to the model, may be
repeated in [18.9, 28.3] years, (42.8, 64.3) years, and (85.1, 127.6) years, respectively. There-
fore, extreme value is difficult to reappear in 2023 (originating from 2015–2016 with an
ONI-value ≥ 2.42) but can appear originating from 1997 (with an ONI-value ≈ 2.40).

However, it is very likely that for the winter of 2023–2024, a large ONI-value associated
with 2015–2016 will appear since in September 2015 and February 2016, we had a large
ONI-value = 2.16 and ONI-value = 2.14, respectively, which according to the model, they
will repeat in (8.0, 12.0) years and (7.6, 11.4) years, possibly reaching 2023–2024.

3.4. Forecasting El Niño Events Using the “Modified Natural Time Analysis” Applied to SOI

To confirm the above-mentioned results, we apply the same M-NTA method to the
SOI dataset during the period January 1950–April 2023, focusing on the low SOI values
that appear to dominate during the three strong ENSO events (1982–1983, 1997–1998,
2015–2016).
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Thus, we plot the logarithm of the cumulative number (cN) of the SOI observations
equal to or below a certain x-value against x. For low SOI values, the regression analysis
gives a statistically significant linear fit between logcN and x (i.e., logcN = a3 + a2x) with
optimal features in the range of values (−∞, −3.1], where the calculated values of R2 = 0.99
(a2 = 0.07 and a3 = 2.86) are statistically significant (at 95% confidence level).

Then, we detect the low SOI values (with x ≤ x2) in the studied time series, and every
time a low SOI value occurs, we calculate the cumulative numbers cN1, cN2 of the SOI
values with magnitude x ≤ x1, x ≤ x2, respectively (where x1 < x2), that occur after this low
SOI value until the end of the time series. The x1 value is chosen as the threshold of the
above-mentioned value range (−∞, −3.1], while the value x2 = −8.2 is the 20% percentile
of the entire dataset.

Plotting the pairs (cN1, cN2), a perfect linear fit f (cN1) = A · cN1 (with A = 0.44 and
R2 = 0.99) confirms the accuracy of the GR- fit. We then plot cN1 against clock time t (during
January 1950–April 2023) and a statistically significant (at 95% confidence level) linear fit
h(t) = b · t (with b = 0.36 ± 0.04 and R2 = 0.98) is revealed.

Finally, using the above results, we forecast the occurrence rate CN
′

t = 10a0·(x0−x1) · b
and consequently the average time interval between two successive SOI values with x ≤ x0.
In this regard, we select the low SOI values with −35.7 ≤ x0 ≤ −19.0, i.e., values like those
observed during the three strong ENSO events (Table 2).

Table 2. The nowcasted mean inter-event time t [in years] for SOI values with a magnitude x0 from
−35.7 to −19.0 accompanied by the lower and upper limit of the 95% confidence interval of t.

SOI
Value

x0

Nowcasted Mean
Inter-Event Time t

[in Years]

The Lower Limit of the
95% Confidence

Interval
of t

The Upper Limit of the
95% Confidence

Interval
of t

−19.0 3.6 3.0 4.5
−21.3 5.4 4.5 6.8
−21.7 5.8 4.9 7.2
−26.1 12.5 10.4 15.6
−30.0 24.6 20.6 30.6
−31.4 31.4 26.2 39.1
−35.7 66.3 55.4 82.5

Using Table 2, we see that the average time for the SOI values observed in October
2015 and January 2016 (i.e., −21.30 and −21.7) to reappear is (4.5, 6.8) years and (4.9, 7.2)
years, respectively, while the SOI magnitudes in November 1982 and March 1998 (i.e., −30
and −26.1) correspond to (20.6, 30.6) years and (10.4, 15.6) years, respectively.

However, all these extremely low values seem to not affect the current ENSO event
(2023–2024). On the other hand, the January 1983 SOI value (i.e., −31.4) corresponds to
(26.2, 39.1) years and could be related to the 2015–2016 ENSO, while the February 1983 SOI
value (i.e., −35.7) corresponds to (55.4, 82.5) years and is expected to affect the years after
2038. As for the SOI value of May 2023 (i.e., −15.26), it may be related to the minimum SOI
of 2019 (i.e., −14.6).

The aforementioned findings become more crucial considering that the increase in
carbon dioxide and other greenhouse gases in the atmosphere has already caused and
will continue to cause an increase in the amount of longwave radiation that is trapped
in the Earth’s climate system [39]. This has undoubtedly resulted in and will continue to
result in an enhancement of the atmospheric greenhouse effect that contributes to global
warming [40]. But the warming of the deep ocean waters could hinder the climate recovery
expected by current models in some regions, even if we successfully achieve carbon neu-
trality or net negative emissions [41,42]. Therefore, it is important to scrutinize the findings
of this study to promptly mitigate the social and environmental consequences caused by El
Niño events by achieving the necessary resilience [43]. This is an immediate priority for the
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additional reason that the current view is that the frequency and intensity of El Niño events
due to climate change will have consequences capable of affecting biodiversity, ecosystem
health, local communities, the economy, and the quality of air [44–46].

4. Conclusions

Applying NTA and M-NTA to SOI and ONI data, we explored the forecasting ability
and accuracy of the three strong ENSO events (1982–1983, 1997–1998, 2015–2016) to derive
the characteristics of the ongoing 2023–2024 El Niño event. The main findings that emerged
are the following:

(1) Forecasting analysis performed by both NTA and M-NTA verified that the 2015–2016
El Niño was characterized as a “moderate to strong” event and not “one of the
strongest on record”, as various forecasting reports of that period claimed.

(2) The SOI time series during the period January 2021–July 2023 shows a variance
that doesn’t foreshadow a strong 2023–2024 El Niño. Furthermore, the variation of
entropy change in natural time during the 2023–2024 El Niño is less pronounced
compared to the corresponding ones during past El Niño events. Finally, according to
the probability density function of the ∆S_20 dataset, all the values during January
2021–July 2023 remain below the threshold m + s, where m (s) is the mean (standard
deviation) of the dataset.

(3) The M-NTA model appears to adequately estimate the interevent time from 1982 to
1997, two years that correspond to exceptional ONI values of the overall time series.
The estimated time of the intermediate event between 1997 and 2016 is estimated to
be (17.4, 26.1) years. The average recurrence time of the ONI extremes observed in
2015 was found to be between (18.9, 127.6) years.

(4) Regarding the intensity of the ongoing 2023–2024 El Niño event, an ONI value of
2.64 occurred only in 2015 (moderate to strong El Niño), and the model predicts a
recurrence period of over 85 years. So, it is unlikely to reappear in 2023. Instead,
values from 2.14 to 2.40 coming from 1997 or 2016 may appear.

(5) The extremely low SOI values observed in the last three strong ENSO events do
not appear to be related to the ongoing ENSO event (2023–2024). On the other
hand, the January 1983 SOI value could be related to the 2015–2016 ENSO, while the
February 1983 SOI value is expected to affect years after 2038. The above-mentioned
analytical tools may be applied to paleoclimatic data to predict extreme environmental
phenomena that may lead to severe ecological impacts [31].

Author Contributions: Conceptualization, C.V. and Y.M.; methodology, N.V.S., M.E. and C.V.;
software, N.V.S. and M.E.; validation, C.V., N.V.S. and M.E.; formal analysis, M.E. and N.V.S.;
investigation, C.V., N.V.S. and M.E.; resources, Y.M. and D.S.; data curation, M.E.; supervision, C.V.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data will be available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Walker, G.T.; Bliss, E.W. World Weather V. Mem. R. Meteorol. Soc. 1932, 4, 53–84.
2. Power, S.B.; Kociuba, G. The impact of global warming on the Southern Oscillation Index. Clim. Dyn. 2011, 37, 1745–1754.

Available online: https://link.springer.com/article/10.1007/s00382-010-0951-7 (accessed on 10 January 2024). [CrossRef]
3. Rasmusson, E.M.; Carpenter, T.H. Variations in tropical sea surface temperature and surface wind fields associated with the

Southern Oscillation/El Niño. Mon. Weather Rev. 1982, 110, 354–384. [CrossRef]
4. Troup, A.J. The Southern Oscillation. Q. J. R. Meteorol. Soc. 1965, 91, 490–506. Available online: https://rmets.onlinelibrary.wiley.

com/doi/abs/10.1002/qj.49709139009 (accessed on 10 January 2024). [CrossRef]
5. Yun, K.S.; Lee, J.Y.; Timmermann, A.; Stein, K.; Stuecker, M.F.; Fyfe, J.C.; Chung, E.S. Increasing ENSO–rainfall variability due to

changes in future tropical temperature–rainfall relationship. Commun. Earth Environ. 2021, 2, 43. [CrossRef]
6. Neelin, J.D.; Latif, M. El Nino dynamics. Phys. Today 1998, 51, 32. [CrossRef]

https://link.springer.com/article/10.1007/s00382-010-0951-7
https://doi.org/10.1007/s00382-010-0951-7
https://doi.org/10.1175/1520-0493(1982)110%3C0354:VITSST%3E2.0.CO;2
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49709139009
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49709139009
https://doi.org/10.1002/qj.49709139009
https://doi.org/10.1038/s43247-021-00108-8
https://doi.org/10.1063/1.882496


Forecasting 2024, 6 202

7. Cai, W.; Ng, B.; Geng, T.; Jia, F.; Wu, L.; Wang, G.; Liu, Y.; Gan, B.; Yang, K.; Santoso, A.; et al. Anthropogenic impacts on
twentieth-century ENSO variability changes. Nat. Rev. Earth Environ. 2023, 4, 407–418. [CrossRef]

8. Singh, M.; Sah, S.; Singh, R. The 2023-24 El Niño event and its possible global consequences on food security with emphasis on
India. Food Sec. 2023, 15, 1431–1436. [CrossRef]

9. Ubilava, D.; Abdolrahimi, M. The El Niño Impact on Maize Yields Is Amplified in Lower Income Teleconnected Countries.
Environ. Res. Lett. 2019, 14, 054008. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/ab0cd0/meta
(accessed on 10 January 2024). [CrossRef]

10. Glantz, M.H.; Ramirez, I.J. Reviewing the Oceanic Niño Index (ONI) to Enhance Societal Readiness for El Niño’s Impacts. Int. J.
Disaster Risk. Sci. 2020, 11, 394–403. [CrossRef]

11. Gurdek-Bas, R.; Benthuysen, J.A.; Harrison, H.B.; Zenger, K.R.; van Herwerden, L. The El Niño Southern Oscillation drives
multidirectional inter-reef larval connectivity in the Great Barrier Reef. Sci. Rep. 2022, 12, 21290. [CrossRef]

12. Khanke, H.R.; Azizi, M.; Asadipour, E.; Barati, M. Climate Changes and Vector-borne Diseases with an Emphasis on Parasitic
Diseases: A Narrative Review. Health Emerg. Disasters Quart. 2023, 8, 293–300.

13. Thompson, A. El Niño May Break a Record and Reshape Weather around the Globe. Scientific American. 21 June 2023. Available
online: https://www.scientificamerican.com/article/el-nino-may-break-a-record-and-reshape-weather-around-the-globe/
(accessed on 10 January 2024).

14. Yin, J.; Xu, J.; Xue, Y.; Xu, B.; Zhang, C.; Li, Y.; Ren, Y. Evaluating the impacts of El Niño events on a marine bay ecosystem based
on selected ecological network indicators. Sci. Total Environ. 2021, 763, 144205. [CrossRef]

15. Barber, R.T.; Chavez, F.P. Biological Consequences of El Nino. Science 1983, 222, 1203–1210. Available online: https://www.scienc
e.org/doi/abs/10.1126/science.222.4629.1203 (accessed on 10 January 2024). [CrossRef]

16. WMO. El Niño/La Niña Updates. 2022. Available online: https://public.wmo.int/en/our-mandate/climate/el-ni%C3%B1ola-n
i%C3%B1a-update (accessed on 10 January 2024).

17. Hamlington, B.D.; Willis, J.K.; Vinogradova, N. The emerging golden age of satellite altimetry to prepare humanity for rising seas.
Earth’s Future 2023, 11, e2023EF003673. [CrossRef]

18. Omid, A. Advances and challenges in climate modeling. Clim. Chang. 2022, 170, 18. [CrossRef]
19. Varotsos, C.A.; Tzanis, C.G.; Sarlis, N.V. On the progress of the 2015–2016 El Niño event. Atmos. Chem. Phys. 2016, 16, 2007–2011.

[CrossRef]
20. Varotsos, C.A.; Tzanis, C.; Cracknell, A.P. Precursory Signals of the Major El Niño Southern Oscillation Events. Theor. Appl.

Climatol. 2016, 124, 903–912. Available online: https://link.springer.com/article/10.1007/s00704-015-1464-4 (accessed on 10
January 2024). [CrossRef]

21. National Oceanic and Atmospheric Administration (NOAA). El Niño/Southern Oscillation (ENSO) Diagnostic Discussion, Issued
by Climate Prediction Center. 2023. Available online: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_ad
visory/ensodisc.shtml (accessed on 10 January 2024).

22. Varotsos, P.A. Is time continuous? arXiv 2006, arXiv:cond-mat/0605456. [CrossRef]
23. Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. Similarity of fluctuations in systems exhibiting Self-Organized Criticality. EPL 2011,

96, 28006. [CrossRef]
24. Rundle, J.B.; Turcotte, D.L.; Donnellan, A.; Grant Ludwig, L.; Luginbuhl, M.; Gong, G. Nowcasting earthquakes. Earth Space Sci.

2016, 3, 480–486. [CrossRef]
25. Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Natural Time Analysis: The New View of Time, Part II. Advances in Disaster Prediction Using

Complex Systems; Springer Nature Switzerland AG: Cham, Switzerland, 2023. [CrossRef]
26. Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [CrossRef]
27. Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316.

[CrossRef]
28. Lalkhen, A.G.; McCluskey, A. Clinical tests: Sensitivity and specificity. CEACCP 2008, 8, 221–223. [CrossRef]
29. Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons, Ltd.: New York, NY, USA, 2000. [CrossRef]
30. Sarlis, N.V.; Christopoulos, S.-R.G. Visualization of the significance of Receiver Operating Characteristics based on confidence

ellipses. Comput. Phys. Commun. 2014, 185, 1172–1176. [CrossRef]
31. Guignard, F.; Mauree, D.; Lovallo, M.; Kanevski, M.; Telesca, L. Fisher–Shannon Complexity Analysis of High-Frequency Urban

Wind Speed Time Series. Entropy 2019, 21, 47. [CrossRef]
32. Mercik, S.; Weron, K.; Siwy, Z. Statistical analysis of ionic current fluctuations in membrane channels. Phys. Rev. E 1999,

60, 7343–7348. [CrossRef]
33. Varotsos, C.A.; Efstathiou, M.N.; Christodoulakis, J. The lesson learned from the unprecedented ozone hole in the Arctic in 2020

A novel nowcasting tool for such extreme event. J. Atmos. Sol.-Terr. Phys. 2020, 207, 105330. [CrossRef]
34. Varotsos, C.A.; Mazei, Y.; Novenko, E.; Tsyganov, A.N.; Olchev, A.; Pampura, T.; Mazei, N.; Fatynina, Y.; Saldaev, D.; Efstathiou,

M.A. New Climate Nowcasting Tool Based on Paleoclimatic Data. Sustainability 2020, 12, 5546. [CrossRef]
35. Zhang, S.; Zhang, Y. The “Natural Time” Method Used for the Potential Assessment for Strong Earthquakes in China Seismic

Experimental Site. In Natural Hazards-New Insights; IntechOpen: London, UK, 2023. [CrossRef]
36. Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [CrossRef]
37. Turcotte, D.L. Fractals and Chaos in Geology and Geophysics; Cambridge University Press: Cambridge, UK, 1992. [CrossRef]

https://doi.org/10.1038/s43017-023-00427-8
https://doi.org/10.1007/s12571-023-01419-8
https://iopscience.iop.org/article/10.1088/1748-9326/ab0cd0/meta
https://doi.org/10.1088/1748-9326/ab0cd0
https://doi.org/10.1007/s13753-020-00275-w
https://doi.org/10.1038/s41598-022-25629-w
https://www.scientificamerican.com/article/el-nino-may-break-a-record-and-reshape-weather-around-the-globe/
https://doi.org/10.1016/j.scitotenv.2020.144205
https://www.science.org/doi/abs/10.1126/science.222.4629.1203
https://www.science.org/doi/abs/10.1126/science.222.4629.1203
https://doi.org/10.1126/science.222.4629.1203
https://public.wmo.int/en/our-mandate/climate/el-ni%C3%B1ola-ni%C3%B1a-update
https://public.wmo.int/en/our-mandate/climate/el-ni%C3%B1ola-ni%C3%B1a-update
https://doi.org/10.1029/2023EF003673
https://doi.org/10.1007/s10584-021-03298-4
https://doi.org/10.5194/acp-16-2007-2016
https://link.springer.com/article/10.1007/s00704-015-1464-4
https://doi.org/10.1007/s00704-015-1464-4
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml
https://doi.org/10.48550/arXiv.cond-mat/0605456
https://doi.org/10.1209/0295-5075/96/28006
https://doi.org/10.1002/2016EA000185
https://doi.org/10.1007/978-3-031-26006-3
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1097/JTO.0b013e3181ec173d
https://doi.org/10.1093/bjaceaccp/mkn041
https://doi.org/10.1002/0471722146
https://doi.org/10.1016/j.cpc.2013.12.009
https://doi.org/10.3390/e21010047
https://doi.org/10.1103/PhysRevE.60.7343
https://doi.org/10.1016/j.jastp.2020.105330
https://doi.org/10.3390/su12145546
https://doi.org/10.5772/intechopen.110023
https://doi.org/10.1785/BSSA0340040185
https://doi.org/10.1017/CBO9781139174695


Forecasting 2024, 6 203

38. Burroughs, S.M.; Tebbens, S.F. The Upper-Truncated Power Law Applied to Earthquake Cumulative Frequency-Magnitude
Distributions: Evidence for a Time-Independent Scaling Parameter. Bull. Seismol. Soc. Am. 2002, 92, 2983–2993. [CrossRef]

39. Begun, R.A.; Lempert, R.J. Climate Reference Periods, Global Warming Levels and Common Climate Dimensions. In Point of
Departure and Key Concepts; Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II
to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.,
Poloczanska, E.S., Mintenbeck, K., Alegria, A., Craig, M., Langsdorf, S., Loschke, S., Okem, B., Eds.; Cambridge University Press:
Cambridge, UK; New York, NY, USA, 2022; pp. 121–196. [CrossRef]

40. Pirani, A.; Fuglestvedt, J.S.; Byers, E.; O’Neill, B.; Riahi, K.; Lee, J.Y.; Marotzke, J.; Rose, S.K.; Schaeffer, R.; Tebaldi, C. Scenarios in
IPCC assessments: Lessons from AR6 and opportunities for AR7. Npj Clim. Action 2024, 3, 1. [CrossRef]

41. Oh, J.H.; Kug, J.S.; An, S.I.; Jin, F.F.; McPhaden, M.J.; Shin, J. Emergent climate change patterns originating from deep ocean
warming in climate mitigation scenarios. Nat. Clim. Chang. 2024, 1–7. [CrossRef]

42. Cheng, L.; Abraham, J.; Trenberth, K.E.; Boyer, T.; Mann, M.E.; Zhu, J.; Wang, F.; Yu, F.; Locarnini, R.; Fasullo, J.; et al. New Record
Ocean Temperatures and Related Climate Indicators in 2023. Adv. Atmos. Sci. 2024, 1–15. [CrossRef]

43. Benschop, N.D.; Chironda-Chikanya, G.; Naidoo, S.; Jafta, N.; Ramsay, L.F.; Naidoo, R.N. El Niño, Rainfall and Temperature
Patterns Influence Perinatal Mortality in South Africa: Health Services Preparedness and Resilience in a Changing Climate. In
Climate Change and Human Health Scenarios: International Case Studies; Springer Nature: Cham, Switzerland, 2024; pp. 333–355.
[CrossRef]

44. Cordero, R.R.; Feron, S.; Damiani, A.; Carrasco, J.; Karas, C.; Wang, C.; Kramwinkel, C.T.; Beaulieu, A. Extreme fire weather in
Chile driven by climate change and El Niño–Southern Oscillation (ENSO). Sci. Rep. 2024, 14, 1974. [CrossRef]

45. De Oliveira-Júnior, J.F.; Mendes, D.; Szabo, S.; Singh, S.K.; Jamjareegulgarn, P.; Cardoso, K.R.A.; Bertalan, L.; da Silva, M.V.; da
Rosa Ferraz Jardim, A.M.; da Silva, J.L.B.; et al. Impact of the El Niño on Fire Dynamics on the African Continent. Earth Syst.
Environ. 2024, 8, 45–61. [CrossRef]

46. Rawat, A.; Kumar, D.; Khati, B.S. A review on climate change impacts, models, and its consequences on different sectors: A
systematic approach. J. Water Clim. Chang. 2024, 15, 104–126. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1785/0120010191
https://doi.org/10.1017/9781009325844.003
https://doi.org/10.1038/s44168-023-00082-1
https://doi.org/10.1038/s41558-024-01928-0
https://doi.org/10.1007/s00376-024-3378-5
https://doi.org/10.1007/978-3-031-38878-1_21
https://doi.org/10.1038/s41598-024-52481-x
https://doi.org/10.1007/s41748-023-00363-z
https://doi.org/10.2166/wcc.2023.536

	Introduction 
	Materials and Methods 
	Natural Time Analysis of SOI Values 
	Estimation of the Probability Density Function of S20  
	The Modified Natural Time Analysis Method for Nowcasting ONI Anomalies 

	Results and Discussion 
	Experience Gained from Forecasting Previous Major El Niño Events as a Guide for Forecasting the 2023–2024 El Niño Using the ‘Natural Time Analysis” 
	On the Progress of the 2023–2024 El Niño Event Using the ‘Natural Time Analysis” 
	Forecasting El Niño Events Using the “Modified Natural Time Analysis” Applied to ONI 
	Forecasting El Niño Events Using the “Modified Natural Time Analysis” Applied to SOI 

	Conclusions 
	References

