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Abstract: Emerging electric vehicle (EV) technology requires high-voltage energy storage systems,
efficient electric motors, electrified power trains, and power converters. If we consider forecasts for EV
demand and driving applications, this article comprehensively reviewed power converter topologies,
control schemes, output power, reliability, losses, switching frequency, operations, charging systems,
advantages, and disadvantages. This article is intended to help engineers and researchers forecast
typical recharging/discharging durations, the lifetime of energy storage with the help of control
systems and machine learning, and the performance probability of using AlGaN/GaN heterojunction-
based high-electron-mobility transistors (HEMTs) in EV systems. The analysis of this extensive review
paper suggests that the Vienna rectifier provides significant performance among all AC–DC rectifier
converters. Moreover, the multi-device interleaved DC–DC boost converter is best suited for the
DC–DC conversion stage. Among DC–AC converters, the third harmonic injected seven-level inverter
is found to be one of the best in EV driving. Furthermore, the utilization of multi-level inverters
can terminate the requirement of the intermediate DC–DC converter. In addition, the current status,
opportunities, challenges, and applications of wireless power transfer in hybrid and all-electric
vehicles were also discussed in this paper. Moreover, the adoption of wide bandgap semiconductors
was considered. Because of their higher power density, breakdown voltage, and switching frequency
characteristics, a light yet efficient power converter design can be achieved for EVs. Finally, the
article’s intent was to provide a reference for engineers and researchers in the automobile industry
for forecasting calculations.

Keywords: transportation electrification; electric vehicles; power converters; third harmonic injection;
multi-level inverter

1. Introduction

A rapidly growing market of electric vehicles (EVs) has been witnessed in the last
decade since the vehicles are environmentally friendly, have enough resources, and are
a counterpart of gasoline-powered internal combustion engine (ICE) automobiles. In
2020, the transportation sector caused 27% of total GHG emissions in the US [1,2]. Hence,
one of the best reasons behind considering electrified automobiles over conventional
automobiles is that they eliminate many issues, such as greenhouse gases (GHG) caused by
traditional automobiles [1]. Moreover, electrified cars can increase efficiency, acceleration,
and overall performance and eliminate harmful GHG emissions and maintenance costs [1,3].
A comparison between EVs and ICE vehicles has been made in [4]. The comparison was in
terms of the time required for 845 km inter-city journey. It was disclosed that based on the
present battery capabilities, power charges of more than 400 kW are required to achieve a
comparable travel time between EVs and ICEVs. Moreover, the possible solution to this
matter is utilizing high-speed chargers (XFCs) with the capability of providing at least
800 V direct current (DC) at the output [5].
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The whole power supply system of an EV can be divided into three parts, namely:
(i) battery charging system, (ii) powertrain, and (iii) regenerative braking. The block dia-
gram of a typical EV with its power supply system is depicted in Figure 1. This figureshows
that a particular DC–DC converter may be required for an individual energy source to be
integrated into the high voltage (HV)-DC bus of the EVs and PHEVs powertrain [6].
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In a battery charging system, all the input sources, such as batteries and supercapaci-
tors, are charged via an AC–DC rectifier from the charging three-phase AC grid. Hence,
the battery charging system of electric vehicles plays a critical role in developing EVs. The
charging system of an EV is typically known as conductive charging, which is generally
categorized as an onboard and offboard charging system. Onboard chargers are installed
inside the EV; contrary offboard chargers are established outside the EVs [7]. A more
extensive discussion on EV charging systems will be presented in Section 2.

In the EV powertrain, all the electric input sources are connected to a HV–DC bus
by an individual DC–DC converter, and the output three-phase electric motor (EM), i.e.,
the main load of the EV, is powered from this HV–DC bus through a three-phase inverter
which drives the EM [8–11]. Here, the voltage level of this HV–DC bus of the EV is around
400–750 V. Moreover, moving the EV via an EM from electric batteries, a DC–DC voltage
is required because the batteries’ output voltage is much lower than the required voltage
of EM. A traction inverter is needed to drive the EM by converting the DC batteries into
variable-frequency AC [12]. However, a disagreement could be made for stepping up the
output AC voltage level of the inverter by utilizing a high-voltage transformer instead
of a DC–DC converter. This is due to its having several essential advantages, such as
reliability, cost-effectiveness, compact size, and lightweight DC–DC converters appear to
be excellent candidates for EVs and HEVs powertrains [13]. An extensive discussion on the
EV powertrain converter topologies is presented in Sections 3 and 5. Finally, regenerative
braking, capable of charging EV batteries between driving-braking times by capturing
electricity, was discussed.

The comparative performance analysis of different electric motors, such as perma-
nent magnet (PM), induction motor (IM), switched reluctance machines (SRMs), and
synchronous reluctance machines (SyncRels) were presented in this review paper. The
SRM is considered a strong candidate for EVs due to its robust structure and low cost [14].
Moreover, the structural integration of the electric motor drive was briefly discussed in this
paper to increase the overall system’s efficiency, with installation and manufacturing cost
reductions of between 30 to 40 percent [15].

Although there are many benefits of using electrified vehicles (EVs) instead of conven-
tional automobiles, the long charging times, queuing times at charging stations, and range
anxiety are of concern. The latter is due to the available battery technology and related
issues such as energy density, cost, and capacity, which are the main challenges blocking
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the further development of EVs [16–18]. Therefore, the main limiting factor of the fast
reception of EVs is the unavailability of efficient charging infrastructure compared to ICE
vehicle refueling stations [19].

The limitation of the charging infrastructure of EVs can easily be overcome by utilizing
extremely fast chargers and wireless power transfer (WPT) technology since the vehicle
will be charging while in motion or at rest [7]. The fast charger is able to recharge an EV
battery from empty to 80% within 20–25 min. As a result, it will reduce the queuing time at
the charging stations. Also, the limitation of the charging infrastructure of EVs can easily
be overcome with wireless charging technology since the vehicle will be charging while at
rest or in motion. This article intends to help engineers, designers, and researchers in the
EV field to forecast and choose the best chargers for fast charging and gather informative
knowledge on wireless charging. The design parameters of the EV power electric charger
were discussed, and the parameters were verified with MATLAB/Simulink simulations.
The main objective of this article was to forecast the future of wireless charging in EV field
to mitigate the currently available limiting factors.

This automatic WPT charging can be achieved with two basic resonant power transfers:
the resonant inductive power transfer (IPT) and the resonant capacitive power transfer
(CPT). Both IPT and CPT operate with three different charging modes: (i) static wireless
charging (SWC); (ii) quasi-dynamic wireless charging (QWC); and (iii) dynamic wireless
charging (DWC) [20]. One of the best advantages of using SWC is that it can be installed in
convenient locations, such as home garages or parking lots, and can eliminate the shock
risk [21]. On the other hand, EVs can be charged with QWC systems while they are stopped
for a short time, such as at traffic lights. Finally, the DWC system is more famous due to
its continuous charging capability since it can charge vehicles en route [22]. As a result,
it increases the driving range of electric vehicle powertrains while decreasing the battery
size. However, EVs’ dynamic wireless charging technology is still in its embryonic stage.
To implement the vision of wirelessly powered electric vehicles, numerous challenges
related to safety, efficiency, effective power transfer, the distance between coils and plates,
misalignment, cost, and performance must be overcome. A more extensive discussion of
the WPT system is presented in Section 2.

Furthermore, the demerits of the charging power converters, wireless power transfer,
energy storages, and electric motor can be overcome by utilizing wide bandgap semiconduc-
tors (WBGSs), such as gallium nitride (GaN) and silicon carbide (SiC) based devices [23,24].
Numerous advantages, including higher switching frequencies, higher temperature op-
eration, lower losses, etc., can be achieved by WBGS-based power converters, such as
rectifiers, and DC–DC converters and inverters, over silicon semiconductor device-based
power converters [12]. In [25–31], several wireless charging systems with 50 kW, 60 kW,
100 kW, 200 kW, 250 kW, and 500 kW power levels were published for electric vehicles,
buses, fleets, and trucks with and without wide bandgap (WBG) semiconductor devices.
They have also depicted that the efficiency of these wireless charging systems remains
around 91–97%. In motor drives, several advantages, such as low switching and conduction
losses, high power density, lower ON-state resistance, and high-temperature operation,
can be achieved by utilizing wide bandgap semiconductor devices [32,33]. Moreover, this
review paper discusses the comparison among GaN, SiC, and Si with the current status,
challenges, and different WBG semiconductors trends. The comparison showed that the
WBGSs provide tremendous advantages, such as faster switching frequency, lower loss,
and higher efficiency over silicon semiconductors [15]. Due to these characteristics and the
commercialization progress of silicon carbide (SiC) and gallium nitride, they are considered
the most promising WBGS nowadays [34].

Some of the most recent overview literature papers on power electronic converters
(i.e., AC–DC, DC–DC, DC–AC), suitable electric motors, energy storage, wireless charging,
and utilization of wide bandgap semiconductor devices for EV applications are enlisted
in the following Table 1. These literature summaries will help the readers to gain more
knowledge in every section of this paper.
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Table 1. Recent overviewed literature on power electronic converters, electric motors, and energy
storage for electric vehicle applications.

EVs Power Electronic Converters
Overview Contributions

Recently
Overviewed Articles Citation Addressed in this Overview

Overview of charging rectifiers [5,6] 104;198
√

Overview of powertrain DC–DC
converters [6,35] 198;1339

√

Overview of powertrain multilevel
inverters [1,12,36,37] 73;164;269;39

√

Overview of electric motors for EV [15,38,39] 92;66;11
√

Overview of energy storage for EV [40] 677
√

Overview of wireless power charging [7,16,41,42] 518;97;551;30
√

Overview of the utilization of GaN and SiC [32–34,43] 14;25;1874;72
√

As mentioned, in recent years, significant progress has been made in the research and
commercial development of electric vehicle applications because of their rapid growth.
Because electric vehicles (EVs) are a unique mobile source of demand, EV power and control
are different from typical residential, commercial, and industrial loads. Furthermore, this
emerging electric vehicle (EV) technology requires high-voltage energy storage systems,
efficient electric motors, electrified powertrain, and power converters. Evidently, EV
technology demands the use of forecasting in many aspects of EV fields because of its
dynamic nature.

In a typical scenario, among any other household appliances, EV charging requires
more power and needs a relatively long charging time. As a result, EVs place significant
coincident demand patterns and volume on the power system, specifically in the distribu-
tion system. Moreover, EVs may introduce the system’s peak demand, exceeding voltage
limits, and overloading lines, and transformers [44]. For the system to prevent faults in
the system and other stability issues, knowledge of day-ahead demand is crucial. Thus, to
ensure uninterrupted power supply, forecasting and analyzing the impact of the uncertain
demands caused by electric vehicles on the power system. Having a stochastic nature,
the EV load demand is heavily influenced by the driving and traveling patterns of each
EV owner.

Similar to the uncertain charging demand increase, driving an EV itself demand
forecasts. The movement of objects’ current and future locations in the driving scene is
uncertain. Furthermore, control design for autonomous cruise control, emergency braking,
and lane-keeping assistance systems is a real challenge in cases such as high-speed driving
on a highway, deadlock situations, and/or rough driving by other drivers [45]. Forecasting
and predicting EV charging demand and driving conditions are calculated using conven-
tional statistical methods and artificial intelligence [46]. Classical or contemporary control
schemes could not work properly for autonomous driving in case of uncertain weather
conditions, the presence of the state, input constraints, and modeling errors considering
the nonlinear dynamics of the vehicle [47].

Conventional statistical methods and artificial intelligence are used for calculating
forecasts considering all these parameters mentioned above. However, the impact of
power electronic converters, control devices, methods, and energy storage are somewhat
neglected. In EV applications, numerous types of converter topologies and their dynamic
control schemes are used from the charging point to the transmission, which can be seen in
Figure 1.

Moreover, onboard and/or offboard chargers that are utilized are high-power con-
verters, where AC to DC and DC to DC power conversion occurs. These converters are
the interface that channels required power to be stored in batteries to run an EV. Thus,
information regarding charging characteristics of the converter topology, control method,
thermal attributes, switching losses, and efficiency is vital for the EV to work properly,
which is, in fact, directly related to the power system demand scenario discussed in the pre-
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vious paragraph. Significantly, characteristics of the battery management converters could
also help the prediction calculation of the charging and discharging time. Furthermore,
to perfectly predict the demand for near or far forecasts, the type of charging converter,
control method, and speed could be utilized.

While driving an EV, whether it is self-driven or autonomous, reacting quickly during
uncertain conditions could avoid a fatal accident. This is where forecasting, i.e., predic-
tive control, plays a crucial role in cruise control, emergency braking, and lane-keeping
assistance systems. Importantly, forecast calculations of such events could utilize current
information of various components which give power and run the EV, such as battery
management converters, motor drive, and their controls. All these power components
work 100 percent during run conditions. Thus, the present data of these components are
vital for future actions. While predicting the forecast, information on these converters’ char-
acteristics, control method, thermal attributes, switching losses, and efficiency is needed
could potentially be vital in every aspect.

Therefore, this paper aims to value the importance of power electronic converters
and their control in the forecast of electric vehicle applications. It also aims to investigate
the power electronic converters and their control schemes in EV applications, particularly
forecast calculation. Moreover, to compare them with the available ICE-based vehicles in
terms of safety, environmental friendliness, efficiency, gain, and cruising range. After this
brief introduction, a detailed review of the EV charging system is presented in Section 2.
Comparative performance analysis of different types of DC–DC converters for EV appli-
cations has been conducted in Section 3. A detailed discussion of the opportunities and
challenges of higher voltage energy storage for EVs is presented in Section 4. Section 5
compares two-level inverters (TLI) and multi-level inverters (MLI) in terms of efficiency,
power density, performance, cost, etc., for driving an electric vehicle via EM. Section 6
presents an elaborate discussion of several electric motors with their torque, dynamic
response, speeds, cost, fault tolerance, etc., is presented. Section 7 analyzes all types of
power electronic converters’ simulation results and discusses the best-suited converter
topologies for EVs and HEVs. Section 8 presents a comparative functionality analysis and
summaries of all power electric converter topologies. In Section 9, future trends of EV
research with WBGSs and system integration are reviewed extensively. Finally, Section 10
concludes by commenting on the best-suited power electronic rectifiers, DC–DC converters,
inverter topologies, wireless power transfer technologies, energy storages, and electric
motors for EVs and HEVs.

2. Charging Section

The charging system of electric vehicles plays a critical role in the development of
EVs [7], which is done by utilizing a 3ϕ AC–DC active rectifier. In the modern EV industry,
3ϕ active rectifiers are becoming more popular than passive bridge rectifiers due to their
ability to increase the electromagnetic properties and recover electric motor energy to the
supply network [48–52].

The battery charging mode is categorized into slow and fast charging modes based
on the charging power level of the chargers. The slow-charging mode uses an alternating
current and has a charging power of about 1.5 kW. As a result, charging EVs directly
from domestic power systems via slow chargers is certainly advantageous. The issue is
that charging a 24 kWh EV battery from empty to full will take approximately 16–17 h
at a charging power of 1.5 kWh, which requires the EV owners set aside enough time for
charging. On the other hand, the fast-charging mode employs DC rather than AC. To
obtain a comparatively short charging time, fast chargers deliver power at up to 50 kW
or more. Tesla constructed 120 kW supercharger stations for fast charging and with this
supercharger a 90 kWh battery of the Model S can be charged from empty to 80% in about
40 min. Because of extremely high currents and voltages, these fast-charging opportunities
are more high-tech than a simple residential outlet [53].
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Moreover, to refill/recharge the energy storage devices, chargers are required, and
in terms of mobile platforms, they can be classified into two categories: (a) conductive
charging, and (b) wireless charging [7,54].

2.1. Conductive Charging for Electric Vehicles

A physical connection between the power supply and the electric vehicle is involved
in a conductive charging system, which consists of two main parts: (i) AC–DC (rectifier)
converter, and (ii) a DC–DC converter. There are two types of conductive chargers available
in the EV market: (1) onboard chargers, and (2) offboard chargers. Onboard chargers are
installed inside of the electric vehicle. On the contrary, offboard chargers, like refueling
stations, are established outside the EVs [7].

2.1.1. Onboard Charging

Onboard charging is the best-suited solution for the regular charging of EV users [49].
A conductive charging system involves a physical connection between the power supply
and the electric vehicle [7]. An onboard charger reduces most of the time by providing inde-
pendent charging features because it can be directly connected to the AC grid, providing a
universal charging station solution. This is since EVs can be charged in any residential area
with 240 V voltage and a 30 A current rating [54]. In the following sections two popular
topologies such as (a) phase shift modulation topology and (b) Full-bridge LLC resonant
converters, are discussed, which are usually utilized as onboard chargers. To provide
isolation between the vehicle and the grid, a high-frequency transformer is utilized with
a series LC/LLC resonant topology and a phase-shift modulation topology in onboard
chargers [54].

Phase Shift Modulation Topology

The most popular charging converter in high-power appliances is the isolated phase-
shifting-based full-bridge converter (PSFBC), illustrated in Figure 2. A phase-shifted
full-bridge converter provides various desirable advantages over other charging converters,
such as simple control techniques, low current stress on devices, etc. [6]. Moreover, the
phase-shift modulation topology provides an alternative solution for a wide-range charging
operation [55–57]. The isolated PSFBC has two operation stages: the DC–AC converter
(inverter) stage with a high-frequency transformer, and the AC–DC rectification stage.
As shown in Figure 2, both stages consist of four power-switching elements to make a
full-bridge like a conventional full-bridge converter. The isolated phase-shifted full-bridge
converter has ten working modes which are discussed in [58].
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Despite many desirable features, the converter has some drawbacks, such as the
rectifier bridge facing high voltage stress and high-circulating current in the freewheeling
interval [6]. Moreover, to improve the efficiency, volume, cost-effectiveness, and reliability
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of this onboard charging topology, researchers have been investigating several possibilities,
such as phase-shifted dual-active-bridge (PSDAB) [59,60] and phase-shifted triple-active-
bridge (PSTAB) [61].

To charge electric vehicles, a particular voltage level is required; otherwise, the battery
can be damaged, or its lifespan can be reduced. A control system, namely a servo system,
is capable of regulating controlled variables to their reference inputs without steady-state
errors against unknown disturbances or voltage levels [58]. In the design process of a
control system, there are two critical issues: compensation of certain types of deterministic
disturbance, and particular reference signals [62].

A closed-loop control scheme is depicted in Figure 3, which consists of a controller
C(s), disturbance D(s) with input U(s), plant Go(s), reference R(s), Error E(s), and Output
Y(s) [63].
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The error signal E(s), which is the difference between the output and reference signal,
can be expressed as [63],

E(s) =
1

1 + C(s)Go(s)
(R(s)−D(s))

There are several control schemes presents for controlling AC–DC rectifiers, such as
proportional (P) controller scheme, integral (I) controller scheme, proportional-integral
(PI) controller scheme, proportional-integral-derivative (PID) controller scheme, pulse
width modulation (PWM) scheme, Sinusoidal PWM, third harmonic injection (THD) PWM
scheme, space vector pulse width modulation (SVPWM) scheme to name a few.

Moreover, conventional PI controllers are generally utilized to control the output
voltage of the phase-shifted full-bridge converter due to several drawbacks, such as unde-
sirable dynamic characteristics and the frailty to disturbances of the converter’s several
control schemes, e.g., the PI gain-scheduling controller [64], hybrid fuzzy logic sliding
mode controller (HSMC) [65], an optimal dead-time control scheme with burst-mode opera-
tion [66], Laguerre function-based model predictive control (MPC) [67] have been proposed,
designed, and presented in [64–67]. Due to the conventional PWM counterpart of the PI
gain-scheduling controller, the continuous and adjustable voltage range of 0–50 V can easily
be achieved, which is experimentally justified in [64]. Implementing the A/D (analog to
digital) converter with a field-programmable gate array (FPGA)-IC makes the controller
compact in size and achieves flexibility. The hybrid fuzzy logic sliding mode controller
can improve the dynamic characteristics, stability, and robustness from disturbance; and
can easily mitigate the chattering demerits, output current, and voltage ripples of the
PSFBC by varying the SMC gain [65]. An optimized dead-time for the PSFB converter has
been proposed and experimentally verified in [66], which provides the natural burst-mode
operation. As a result, excellent thermal performance and low power consumption can
be achieved at both heavy and light loads. The Laguerre function-based model predictive
control (MPC) scheme is an excellent candidate for PSFBC due to its several compelling
advantages, such as non-linear peak input current constraint and multiple physical con-
straints compared to the conventional PI-based controllers [68]. Furthermore, the proposed
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controller has been experimentally tested andvalidated that the Laguerre function-based
model predictive control (MPC) scheme is an effective control scheme for the isolated
phase-shifted full-bridge converter [67].

Isolated Full-Bridge LLC Resonant Converters

In the EV charging stage, another powerful converter, the full-bridge LLC resonant
converter, can be used, which can achieve maximum efficiency as an EV charger [54,69–72].
The converter is depicted in Figure 4, which can perform a full range of zero voltage
switching for the power switching devices and high efficiency at high voltage operation.
Moreover, there is no reverse recovery current, and the rectifier diodes do not face any
oscillation voltage due to the sinusoidal current waveform of the FB-LLC shape [6]. The
isolated FB-LLC converter has seven operational modes with five working stages, which
are discussed in [73].
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Despite many merits, this converter topology needs a high switching frequency range
to control the battery’s output voltage, which is this converter’s major demerit. Due to this
reason, the efficiency of this converter becomes less when the battery voltage becomes low,
and the design of the filter and transformer becomes much more complicated. Nevertheless,
to improve the efficiency, volume, cost, and reliability of this onboard charging topology,
researchers have been investigating several possibilities: resonant LC half-bridge with
the front-end PFC [56]; bidirectional LC resonant converter with a full-bridge front-end
interface [57]; LLC with a SEPIC front-end PFC [74]; and LC-LLC bidirectional converter
with an interleaved output stage [75].

For the isolated full-bridge LLC converter topology, enormous new control schemes,
such as the frequency adaptive phase-shift modulation control scheme [76]; secondary
phase-shift control scheme [77]; fixed-frequency PWM control scheme [78,79]; hybrid
control strategy of phase-shift and variable-frequency control scheme [80]; simplified
optimal trajectory control (SOTC) scheme [81,82]; digital direct phase-shift control (DDPSC)
scheme [73]; and resonant frequency tracking method [83] etc. have been proposed and
designed. The designs achieve wide-range input voltage, accurate shutdown time settings,
dynamic response, and load mutations rapid adjustment [76–83]. Among them, the digital
direct phase-shift control (DDPSC) scheme shows excellent performance in controlling
FB-LLC converters due to its simple design and flexible structure, improved dynamic
response, soft switching over a wide load range, and constant voltage output when the
gain is less than 1, which were verified via experimental results in [73].

2.1.2. Offboard Charging

Offboard charging can reduce the impact of EVs on the grid with proper planning and
managing peak demand [54]. A fast charger is required to mitigate the refueling problem,
which requires more time for refueling/recharging, fewer charging stations, and a lower
driving range [7]. The fast-charging architectures are usually classified into two categories:
(i) common AC-bus architecture; and (ii) common DC-bus architecture [84,85]. In the
typical AC-bus architecture, each fast charger consists of individual AC–DC conversion
stages with a high-frequency transformer, as depicted in Figure 5. On the other hand,
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the typical DC-bus architecture consists of one central AC–DC conversion stage with a
low-frequency transformer, which is shown in Figure 6 [6].
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Furthermore, in [6], several types of AC–DC converter topologies for fast charging
have been investigated. Among them, (a) three-phase bridgeless boost rectifiers and (b)
three-phase Vienna rectifiers are commonly utilized in offboard charging stations..

Three-Phase Bridgeless Boost Rectifier

In EV applications, three-phase bridgeless boost rectifiers are conventionally utilized
as the interface between the charging section of EV and the three-phase power supply
of the grid due to their capability of converting three-phase AC into DC [86,87]. Among
several types of PWM rectifier topologies, three-phase voltage source PWM rectifiers (i.e.,
three-phase bridgeless boost rectifiers) are widely utilized in electric vehicle applications
and power generation due to their good voltage regulation, high efficiency, small input
current, and output voltage filters size, and fast switching [88–93]. Hence, low-frequency
harmonics can be quickly suppressed due to the high switching frequency. The unity power
factor can be obtained with the most popular pulse-width modulation (PWM) rectifier
topology [88,92]. Figure 7 shows the three-phase bridgeless boost rectifier, which takes
advantage of the power factor correction (PFC) boost converter [6]. As the name suggests,
this rectifier can boost or step up the output DC voltage and is capable of bidirectional
power flow with the regenerative braking of the electric vehicle, which increases the battery
efficiency [92].
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Each phase of the three-phase bridgeless rectifier consists of one coupled inductor,
which serves as the ac-side filter, and two switches. The parallel capacitor Cf at the output
side acts as the DC-side filter, which filters out the output voltage ripples [87]. There are six
modes in the three-phase bridgeless boost converter operation, and during each mode, two
switching devices are conducted. The switching sequences of the switches determine the
charging and discharging of the inductors L1, L2, and L3 [6].

Furthermore, the three-phase boost rectifier provides controllable DC-bus voltage
and power factor, low harmonics, high performance, high efficiency, bidirectional power
flow, and fast dynamic response [94]. However, due to electromagnetic interference (EMI)
noise, a harmful shoot-through state is caused in the rectifier, which makes the three-phase
bridgeless boost rectifier vulnerable [95].

The three-phase bridgeless boost rectifier has enormous control processes such as
space vector modulation (SVM), sliding mode control (SMC), hysteresis current control
(HCC), and sinusoidal pulse-width modulation (SPWM), which are discussed in [96–99].
Some of these papers are focused on minimizing the stresses on active devices. Still, most
of these papers favor reducing the filter size (i.e., inductor and capacitor), and high-power
stress is reported for all these control processes due to the nature of the boost converter [6].
In [63], a new PWM control technique, namely a digital repetitive control scheme, was
proposed to achieve zero tracking error for a three-phase PWM AC–DC converter. It is
a conventional feedback controller developed systematically with complete robustness
and stability.

Furthermore, to handle the measurement errors in the three-phase PWM rectifier, a
compensation approach was introduced in [100], where they suggested a compensation
method to mitigate the input three-phase imbalanced currents and output DC voltage rip-
ples, which were created due to the resizing measurement errors and the DC compensation.
In [51,101], for controlling power converters, finite-control set-dependent model predictive
control (FCS-MPC), and space vector modulation-based deadbeat control (DBC) schemes
were investigated. It was discussed that the tracking error might be reduced by combining
both predictive techniques into a standard structure.

Although the SMC has a variable switching frequency issue, the fast-dynamic response,
robustness, and insensitivity to system parameter variation suitable ways to control the
rectifier [102–106]. The control scheme is one of the must-have components for controlling
electric vehicle power converters and for constant output voltage levels to mitigate system
failure or/and damage.
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Vienna Rectifier

Three-phase bridgeless rectifiers utilize pre-regulators to control the power factor
(PF) and harmonics of the input current drawn from the utility power supply. These
pre-regulators serve as a resistive load on the power supply, and they are essentially non-
linear converters with switching controlled in such a way that they function like a linear
load with unity PF. The addition of a pre-regulator maximizes circuit complexity, system
cost and contributes to additional power loss. This can be mitigated by using a simple,
low-cost, high-efficiency pre-regulator circuit topology with a high input PF and low
current harmonics. Having taken the aforementioned aspects into account, the VIENNA
rectifier has emerged as the obvious choice as a pre-regulator for three-phase high power
applications due to its simple architecture, low active switches, and high efficiency [107].
Figure 8 depicts the circuit diagram of a Vienna rectifier. Moreover, the Vienna rectifier
has fewer active switching devices than the three-phase bridgeless converter [108], which
reduces the reverse recovery current losses and makes the converter compatible with fast
charging. Hence, due to several advantages such as simple construction, high power,
very few active switches, high efficiency, low cost, pre-regulator for three-phase, and low
current harmonics, this rectifier is widely utilized in the field of electric vehicle power
converters [107].
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The Vienna works mainly in two operational cycles, the positive and the negative
cycles. Both cycles have two working modes. Therefore, a three-phase Vienna rectifier has
four operating modes, briefly discussed in [107].

Due to the fast-charging control algorithm, several signal processors and microcon-
trollers are needed, which increases the chargers’ overall cost and the battery’s degrada-
tion [7]. Nevertheless, a high voltage is required on the output side of the three-phase
Vienna rectifier [6].

The interest in Vienna rectifiers has been continuously increasing in academic and
industry fields. As a result, researchers are increasingly interested in the control scheme
and topology of the Vienna rectifier [109–115]. To control the rectifier, the sign of the input
voltage and the rectifier has two dc-link capacitors. These two main characteristics must
be considered [116–118]. Moreover, the model predictive control (MPC) methods have
been proposed recently to control the rectifier better and more efficiently [112,113,119].
In [120], a discrete space-vector modulation (DSVM) with a finite control set-MPC (FCS-
MPC) for the Vienna rectifier was proposed and analyzed that the converter can achieve
high performance and efficiency for both the low current ripples and the fast-dynamic



Forecasting 2023, 5 33

response. In [116,117], a carrier-based SVM was proposed for Vienna rectifiers, in which PI
controls schemes can also be utilized.

2.2. Wireless Charging

As discussed earlier, long charging times and lower operating times are significant
challenges in EVs. To overcome these challenges, EVs require high-speed charging (XFC)
and more battery capacities [54]. Hence, adding more battery cells and modules to im-
prove the cruising range of EVs also increases the cost and weight of the vehicle [121].
Therefore, a flexible, extensive, and efficient charging solution is required to solve the
range anxiety without increasing the battery cells and modules. Wireless power transfer
(WPT) technology, first proposed by scientist Nikola Tesla, can be an excellent solution to
mitigate this problem [16]. WPT technology transfers energy via magnetic field couplers,
hence it eliminates the excessive connectors and charging cords and offers high operational
flexibility, is vandalism proof, and weather resistant. As a result, electric vehicles with
wireless charging can be charged while driving anywhere, and at any time [122].

2.2.1. Classification of Wireless Power Transfer (WPT)

The WPT can be divided into three main categories according to the power accu-
mulation and transfer medium: (a) microwave radiation type (far-field) WPT; (b) elec-
tric field (capacitive) coupled type WPT; and (c) magnetic field (inductive) coupled-type
WPT [41,123,124]. The classification of the wireless power transfer system of the electric
vehicle is illustrated in Figure 9.
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Microwave Radiation WPT System

The microwave radiation wireless power transfer system is mainly used in long-
distance power transfer, which is depicted in Figure 10, where the energy transfers to the
output through DC/RF conversion, transmitting antenna, receiving antenna, low-pass
filter, matching network, and rectifier [16].
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Several topologies of CPT have been discussed in [16], where it was shown that 
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Capacitive WPT System

The near-field electric field-coupled WPT system, also known as the capacitive power
transfer (CPT) system, is depicted in Figure 11, where two pairs of plates are utilized to
transfer power [16]. The transmitting section of capacitive power transfer (CPT) consists
of the power grid, rectifier, high-frequency inverter, and primary capacitive plate. On
the other hand, the receiving section of CPT, which is incorporated in the EV, consists
of a secondary capacitive plate, rectifier, and battery [42]. The primary capacitive plate,
including the transmitting section, is buried underground in traffic lights or parking slots,
and the EV keeps the secondary or receiving capacitive plate [16,42].
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Several topologies of CPT have been discussed in [16], where it was shown that
several kilowatts (i.e., around 2.4 kW) of power could be achieved at an air gap of 150 mm.
Although the CPT system provides lightweight, cost-effective couplers and less sensitive
power transfer due to misalignment compared to magnetic field-coupled wireless power
transfer systems, the power transfer capability of CPT is minimal due to the minimal
capacitance between the road and conductive vehicle plates. The latter requires a very high
frequency for effective power transfer [54,125]. This issue can be solved by reducing the
impedance of the power flow channel with a high operating frequency [16].

Inductive WPT System

Inductive wireless charging utilizes Lenz’s and Faraday’s laws of magnetic induction
to transmit power from one medium to another. Inductive charging can work efficiently
for low low-power running applications [126]. Therefore, near-field magnetic field-coupled
WPT (IPT) technology is the most widely employed and studied wireless power transfer
system. The block diagram of IPT is depicted in the following Figure 12. This WPT is
considered to be a loosely coupled transformer because its transmitting and receiving coils
remain separated by a significant distance [127]. In magnetic coupled WPT, the primary
transmitting coils generate the magnetic field. The receiving coils receive the generated
field, then the power is transferred to the load through AC–DC rectification [16].
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In [16], these three WPTs were compared by considering controllability, efficiency,
cost, and safety, which depicted the magnetic field coupled as the most prevailing system
for wireless power charging. However, the inductive WPT systems require ferrite cores
for magnetic flux guidance and shielding, which makes this WPT system bulkier and
more expensive [54]. Figure 13 depicts both the inductive and capacitive wireless charging
technologies.
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Figure 13. The physical implementation of two approaches to deliver energy wirelessly to electric
vehicles from an electrified roadway: (a) inductive wireless power transfer (WPT) using coils (em-
bedded in the roadway and the vehicle) that are coupled through magnetic fields; and (b) capacitive
WPT using plates coupled through electric fields [54].

The near field, such as capacitive and inductive WPT, can be further divided into
three sub-categories, (i) static wireless charging (SWC) [122]; (ii) quasi-dynamic wireless
charging (QWC) [128,129]; and (iii) dynamic wireless charging (DWC) [130–132], which is
depicted in Figure 9.

Static Wireless Charging

Static wireless charging charges the vehicle when the vehicle is stationary such as in-
home garages, parking lots, etc. [122]. Static wireless charging applications were reviewed
in [122], where the beginning of maturity for SWC was also concluded. One of the best
advantages of using static wireless charging (SWC) is that it can be installed in convenient
locations such as home garages or parking lots, eliminating the shock risk [20]. Since the
alignment of SWC is enhanced, power transfer efficiency becomes more effective [7].
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Quasi-Dynamic Wireless Charging

QWC operates between static wireless charging and dynamic wireless charging. When
the vehicles stop for a traffic light, bus stop, or taxi stand, a quasi-dynamic wireless charging
system starts charging the car wirelessly via underground fitted technology [129]. EVs can
be charged with quasi-dynamic wireless charging (QWC) systems while they are stopped
for a short time, such as at traffic lights. This can potentially decrease the requirements of
enormous energy storage and increase EVs’ overall driving range [133].

Dynamic Wireless Charging

Dynamic wireless charging charges the vehicle in motion [131]. DWC can mitigate
most of the demerits of the electric car, such as small driving range, battery size, and battery
cost, because there is no need to stop or wait for charging [7,132]. The dynamic wireless
charging (DWC) system is famous due to its continuous charging capability. Electric
vehicles are given a specified charging lane with a dynamic wireless charging system that
charges the vehicles while en-routing through the lane. As a result, it increases the driving
range of electric vehicle powertrains while decreasing the battery size [22]. Moreover, a
conceptual demonstration of the installation of SWC, DWC, and QWC is illustrated in
Figure 14 [7].
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2.2.2. Compensation Networks

As discussed, IPT and CPT can be considered loosely coupled transformers and capac-
itors due to the distance between transmitting and receiving coils and plates. Hence, due
to this air gap, only a portion of the magnetic/electric flux from transmitting coils/plates is
coupled to the receiving coils/plates, which causes a loss in power transfer [16,42]. As a
result, passive components and switching devices face higher electric stress due to the high
leakage and high circulating reactive power caused by a large air gap [130]. Consequently,
a compensation network consisting of one or more passive elements is required to prevent
this circulation of reactive power through a power source by providing a local path [134].

Capacitive Power Transfer Compensations

Figure 15 depicts the several types of capacitor power transfer (CPT) compensations,
such as LC, LCL, LCLC, and LCL, with vertically stacked coupling plates.
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Figure 15. CPT compensation structures: (a) LC compensation; (b) LCL compensation; (c) LCLC
compensation; and (d) LCL compensation with vertically stacked coupling plates [16].

The system efficiency for high-power operations cannot improve by LC and LCL
compensations because the coupling between plates is inversely proportional to the system
power. Hence, double-sided LCLC compensation is considered a suitable candidate to
resolve this issue [135]. Moreover, a comparison among LCL, LCLC, and CLLC compen-
sation capacitive wireless power transfer systems were analyzed and discussed in [136].
The LCLC compensation CPT is the best-suited topology for electric vehicles wireless
charging due to its several excellent advantages, such as unity power factor, high power,
high efficiency, etc. A typical structure of a capacitive wireless power transfer system with
LCLC compensation is depicted in Figure 16.
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In [16], CPT compensations were discussed with some detailed examples, which
showed that this compensation method mainly focuses on reducing hardware complexity
and enhancing power transfer capability. However, there is no unified conclusion about
which CPT compensation is best suited for high-power systems due to the deficiency of
large-scale practices in the CPT Field.

The design of the WPT control scheme is more complex than conventional conductive
charging systems due to the trade-off between transmission efficiency and the coil/plate
size of the wireless power transfer system [137]. Therefore, to achieve bidirectional power
flow, degrees of freedom in terms of design, and a good performance against misalignment
for an LCLC compensation capacitive wireless power transfer topology, a closed-loop
control based on a phase shift control scheme was presented in [135]. The authors validated
the presented control scheme via simulation results and analysis.
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Some effective control schemes are also available for controlling the capacitive WPT
system, including an adaptive multi-loop control scheme [138]; and a decoupled-dual-loop
strategy-based control scheme [139]. The authors validated the effectiveness and efficiency
of the adaptive multi-loop control scheme for capacitive wireless power charging systems
via simulation and experimental results [138]. The decoupled dual-loop strategy-based
control scheme can enable output power recovery under misalignment conditions and
dynamic reactive compensation. Moreover, high-frequency sensing is not required to
compensate for the coupling variation via a dual-loop control scheme [139].

Inductive Power Transfer Compensations

Inductive power transfer (IPT) compensation technologies are comprised of two types:
(i) single-element compensations; and (ii) multi-element compensations [16].

Conventional single-element compensation technology can be categorized into four
schemes, such as Series–Series (SS), Series–Parallel (SP), Parallel–Series (PS), and Parallel–
Parallel (PP) [16]. Single-element compensation schemes are depicted in Figure 17.
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Furthermore, different compensation techniques can be utilized for both primary
and secondary sides [140]. In [16], only series compensation was used on the primary
side or transmitting side, because a parallel capacitor cannot be used as compensation
on the transmitting side due to the utilization of voltage sources for driving high-power
converters. A typical structure of an inductive wireless power transfer system with SS
compensation is depicted in Figure 18, which is similar to a full-bridge inverter-rectifier
circuit, where L11 and L12 are the leakage-inductances and M is the mutual inductance
between the transmitting and receiving coils of the loosely coupled transformer [141].
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Moreover, conventional SS compensation is the most adopted high-power wireless
charging system due to its simplicity, efficiency, and stability [16]. However, suppose the
voltage or current source on the primary side is kept constant. In that case, the SS compen-
sation shows a current or voltage-source behavior, depending upon the source [142,143].
Hence, to prevent the caused over-currents due to low values operation of the secondary
current, an additional control scheme should be utilized to regulate the current through the
primary winding [144].

In order to predict the dynamic behavior and improve tolerance to parameter vari-
ations and misalignments of the IPT system, a well-designed closed-loop controller is
consistently required [145]. There are several excellent performance control schemes, such
as asymmetrical clamped mode (ACM) control [145]; asymmetrical voltage cancellation
(AVC) control [146]; and asymmetrical duty cycle (ADC) control [147]. Phase-locked
loop (PLL) control [148] has been proposed and designed by the researchers to control
series–series compensation inductive power transfer topologies. In [145], a comparative
analysis among ACM, AVC, and ADC control schemes was made, where they analyzed and
showed that the ACM control scheme has the least switching loss and switching frequency
compared to AVC and ADC control schemes.

Several multiple-element compensations, such as T-type LCL and LCC can be utilized
to mitigate the design issues faced by the single-element compensations, illustrated in
Figure 19 [149–151].

Between them, the LCL compensation scheme is used more often in some appli-
cations due to its completely decoupled capability of output voltage from the load. A
typical structure of an inductive wireless power transfer system with LCL multiple-element
compensation is depicted in Figure 20.

Multiple-element compensations have great merits, such as minimal reactive power de-
coupled from load and coupling conditions and load-independent constant current/voltage
output characteristics. However, due to its having more electronic components, the
multiple-element compensation’s complexity, cost, and size increases, and the output
remains sensitive to the coupling factor [16,137]. Therefore, series–series single-element
compensation is the best inductive power transfer topology between single and multi-
element compensation IPT topologies [137].

The design of control schemes for multiple-element compensation IPT topologies
is more complex than for single-element IPT compensation topologies due to the circuit
complexity of the IPT system. Therefore, special care must be taken to design a control
scheme for multi-element topologies. Following the discussed problem, a new design
strategy with symmetric voltage cancellation (SVC) control scheme has been proposed
and investigated in [152], to control LCL multiple-element compensation IPT topology.
The authors have shown that the proposed scheme can reduce harmonics and overall
cost along with an efficient switching scheme. Hence, the LCL compensation topology
can achieve greater harmonics filtering capability, higher efficiency, and more constant
current source properties by utilizing the proposed control scheme. In [153], to control
LCC multiple-element IPT topology, a PWM feedback loop-based new control scheme was
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proposed, analyzed, and showed that the control scheme can withstand high power levels
and can achieve zero voltage switching for the converter.
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2.2.3. Wireless Charging Challenges

The dynamic wireless charging technology of EVs is still in its embryonic stage. To
implement the vision of wirelessly powered electric vehicles, numerous challenges related
to safety, cost and performance must be overcome. Dynamic wireless charging of EVs
has two serious challenges: (i) at high efficiencies achieving high-power transfer density
while meeting electromagnetic safety requirements; and (ii) maintaining effective power
transfer even as the couplers’ relative position changes [54]. The power transfer density
can be increased, and the size of the WPT system couplers can be reduced by designing the
systems to operate at higher frequencies. On the other hand, effective power transfer can
be achieved if the wireless power transfer systems are used close to the resonant frequency
of the resonant tank formed by the coupler and the compensating network reactance [54].

Although wireless charging for EVs has many benefits, there are many safety issues,
such as overtemperature issues due to overheating, electrical shock due to high electrical
power, the intrusion of metal objects, high magnetic field exposure, and potential fire
hazards [154]. In [155], symmetrical coil sets based on a foreign object detection (FOD)
method were proposed to protect wireless power transfer (WPT) systems from overheating,
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which could lead to an accidental fire. This type of FOD method can minimize design
complexity and make the detection strategy simple to implement. In [155], a metal object
intrusion detection method in the WPT system was also presented. In order to detect
the presence and location of metal objects, two-layer symmetrical detection coil sets were
proposed and experimentally verified, and the original magnetic field generation by the
transmitter coil was taken into account when designing the symmetrical structure. The
detection coils were kept in a rectangular geometry to make them easier to implement in
practice. Metal object intrusion can easily be detected by comparing the induced voltage
differences or mutual inductance differences between two symmetrical coils [155].

Due to the fear of electromagnetic fields, one question always arises during the WPT’s
deployment: “is it safe for human and animal health” [7]. In [156], it was shown that
wire-less power transfer is much safer than mobile phone radiation. Furthermore, to reduce
the extra exposure to electromagnetic radiation, researchers are conducting work to develop
a shield for electromagnetic field shielding [7].

In [157] a secondary control method for a double-sided LCC-tuned wireless power
transfer system (WPT) with an active rectifier was proposed, which improved the system
performance, converter gain, and efficiency.

3. DC–DC Converter

For driving electric vehicles (EVs), a particular voltage level is required; otherwise, the
device can be destroyed if the power is more significant than its required operating power
or the device won’t be able to run if the power level is deficient. A DC–DC converter is
utilized to mitigate the limitation [6].

Generally, the voltage level of the battery storage and supercapacitor (SC) in electric
vehicle (EV) topologies are around 250–360 V and 150–400 V, respectively, and the required
operating voltage of an electric motor is about 400–750 V, which is much higher than the
voltage levels of batteries and SCs. Hence, a high step-up voltage DC–DC converter is
required for EV powertrains to increase the voltage level of the battery and SC. Classification
of DC–DC converter topologies is depicted in Figure 21, where light-bluer highlighted
topologies are well-suited for EV powertrains due to their performance characteristics [6].
In [35], comparisons between different DC–DC converter topologies have been investigated
and reviewed regarding voltage-boosting techniques, applications, and efficiency.
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3.1. Conventional Boost DC–DC Converter (BC)

A conventional step-up or pulse-width modulation (PWM) boost converter is depicted
in Figure 22, which consists of a DC input voltage source Vs., energy storage element (i.e.,
inductor and capacitor), controlled switch (MOSFET, IGBT, etc.) Q, diode D, filter capacitor
C, and load (electric motor). In a boost DC–DC converter, the output voltage is always
more significant than the input voltage, hence the name “Boost” [158–160].
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The conventional boost converter has several merits, including simpler circuitry, lower
cost due to fewer component counts, filtering and reducing electromagnetic interference
efficiently, and high efficiency [35,161,162]. Despite many merits, this converter cannot
achieve high voltage gain; extra protection requires to protect the circuit from short-circuit,
and the power-switching devices require a parallel arrangement for handling high power,
and the system is quite large in volume and heavily weighted because the large capacitor
that is used to filter out the output voltage ripples [160].

To maintain a constant output voltage despite changes in input supply, designing
a high-performance control system for DC–DC converters is very difficult due to the
nonlinearity such as bifurcation, multiple equilibrium points, periodic behavior, and chaos
of the converter [163–167]. Controllers can be of two types: voltage mode controllers,
and current mode controllers. Current mode controllers are widely utilized for DC–DC
converters due to their several benefits [168–171].

In [159], several state-of-the-art control system design methods, such as sliding
mode control (SMC) [172,173], model predictive control (MPC) [174–176], intelligent fuzzy
logic/control system [177–179], fractional-order proportional-integral-derivative (FOPID)
control systems [180–182] were proposed for conventional DC–DC boost converter topolo-
gies to mitigate these problems. The SMC method has invariance to internal parameter
variations, insensitiveness to external disturbances, fast transient response, and can im-
prove the robustness quickly against nonlinear uncertainties; the MPC can easily consider
the state variables/input constraints in the design procedure and control the conventional
DC–DC converter. The fuzzy logic-type PID control methods are generally utilized due
to their effective, simple, practical, and easily tuned capabilities [163,179]. In [163], a
fractional-order PID (FOPID) control method was proposed and verified via experimental
studies, which showed that the control system can provide a faster recovery time and less
overshoot for a DC–DC boost converter.

3.2. Interleaved Four-Phase Boost DC–DC Converter (IBC)

The interleaved boost converter comprises a parallel connection of boost or step-up
converters, as depicted in Figure 23. The current is divided due to a parallel connection.
So, current stresses are decreased as the power losses are minimized [183]. The interleaved
four-phase boost DC–DC converter (IBC) comprises four similar inductors (L1, L2, L3,
L4) in four step-up levels to reduce the conductor weight and input current ripples, four
parallel power-switching devices for successive phase shifting, diodes, and a filtering
capacitor to eliminate the output voltage ripples. All these inductors contain individual
magnetic cores for better energy storing and release. As a result, the IBC topology can
increase the voltage level by more than four times [161].
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Moreover, the four-phase interleaved boost DC–DC converter has been chosen for EVs
for its several compatible reasons, such as a reduction in inductor size and output capacitor
size, a more significant reduction in input current and output voltage ripples, and higher
overall system efficiency [6,13,183]. Nevertheless, the IBC is sensitive to any changes in the
duty cycle, high cost, and impact on the magnetic core due to any changes in load [184].

The interleaved multi-phase boost converter has an enormous controlling process,
but to make the system stable for significant disturbances [177,185–193], some advanced
control methods such as model predictive control [186,187], fuzzy controller [177], sliding
mode control (SMC) and PI hybrid controller [188–190], high order sliding mode control
(HOSMC) [185], active disturbance rejection control (ADRC) [185,191–193] were proposed,
designed, analyzed and applied to the multi-phase IBC. Moreover, an advanced hybrid
Super-Twisting (ST) ADRC dual-loop controller was proposed and developed in [185],
where they discussed that the ST-ADRC controller provides stronger robustness against
the input voltage and load disturbances, better voltage tracking performance, and a more
significant reduction in both the recovery time and voltage fluctuations compared to the
conventional control systems and can improve the control performance of the converter
tremendously.

3.3. Boost DC–DC Converter with Resonant Circuit (BCRC)

Conventional boost DC–DC converters are typically operated with hard switching,
which increases the switching loss of converters in BEV and PHEV powertrains. The boost
DC–DC converter topologies uses a soft-switching configuration to suppress this loss. In
the soft switching technique, during the switching transition (i.e., turn ON or turn OFF),
voltage or current across the switch becomes zero. As a result, the product of the voltage
and current is zero; hence power losses are zero. Thus, the converter can achieve high
switching frequency by reducing switching losses. Due to the switching loss reduction,
the heatsink size becomes lessened, which decreases the converter volume [184]. The
soft-switching configuration for the boost DC–DC converter with the resonant circuit is
shown in Figure 24, which consists of two switching devices, the main switch Q1 and the
auxiliary switch Q2 [6].

Moreover, any abnormality in load power will not affect the converter as the con-
verter has high safety regulations. However, BCRC is incompatible with high-power EV
powertrains and does not support bidirectionality [160,194].

Soft-switching techniques are considered the best-suited way to enhance the effi-
ciency and reliability by reducing switching losses of electric vehicles’ DC–DC convert-
ers [195]. Nevertheless, due to the necessity to exact control of numerous switches and
load-dependent timing, the design of a control system for soft-switching DC–DC convert-
ers is considered complex. To meet transient requirements of voltage matching, power
transfer, and response time, against system uncertainties, a robust control method is re-
quired for the electric vehicle’s soft-switching DC–DC converter because the converter
must work under nonlinear transient load variations in the electric vehicle [196]. In [197], a
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proportional-integral (PI) controller for a soft-switching boost DC–DC converter with an
auxiliary resonant circuit was analyzed and utilized, where they verified through simu-
lation and experiment that the controller could improve the efficiency of the system. For
electric vehicle soft-switching bidirectional DC–DC converter, a comparison with different
time domains between PI and fuzzy logic controllers has been analyzed in [198], where they
presented during settling and peak overshoot rise, fuzzy controller has better performance
than PI controller.
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Although there are several established analog controllers available in the market to
control soft-switching resonant circuit DC–DC boost converters, due to the low price-to-
performance ratio, high-frequency conversion system, and latest developments of micro-
controllers/digital signal processors (DSP), digital controllers have been growing interest in
the field of low-medium power DC–DC converter topologies [199]. However, the design of
digital controllers for auxiliary resonant circuit boost converters was discussed in very few
papers. In [199], some investigations were made for the digital controller design of these
kinds of DC–DC converter topologies to bridge this gap. In [200], a digital control with a
pole-zero placement technique was proposed, designed, and verified for a soft-switching
high gain DC–DC boost converter through simulation and experimental studies. They
showed that against various disturbances, the designed controller could regulate the load
voltage. In [201], a robust digital PID controller for a soft-switching H-bridge boost con-
verter is proposed and designed where they ensure step loads and source rejection with
robust performance against converter parameter uncertainties, system stability, and load
voltage regulation. In [199], several single-loop control methods were discussed; among
them, the single-loop voltage-mode control technique is widely utilized due to its good
dynamic response and simple controlling strategy. They designed the proposed digital
voltage-mode controller and experimentally verified the reliability of the designed control
scheme. In [196], a fixed boundary layer sliding mode control (FBLSMC) method for an
electric vehicle soft-switching DC–DC converter was presented and discussed so that the
FBLSMC can fix the boundary width and the instability of traditional sliding mode control
can be avoided.

3.4. Full Bridge Boost DC–DC Converter (FBC)

The circuit diagram of an isolated full-bridge bidirectional DC–DC converter is de-
picted in Figure 25. This converter works in buck-and-boost mode, thus it is a bidirectional
converter. In the forward direction, it works as a buck converter; in the backward direction,
it operates as a boost converter [202]. Due to this bidirectionality, an isolated full-bridge
bidirectional DC–DC converter can charge the batteries and provide the voltage to the load.
The bidirectional full-bridge DC–DC converter has three working stages: DC–AC conver-
sion as an inverter; step-up/step-down AC voltage with a high-frequency transformer
(HFT); and AC–DC conversion as a rectifier [6].
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Furthermore, the interior high-frequency transformer (HFT) provides galvanic isola-
tion between the input and the output side and offers high step-up voltage. The converter
can provide around 92% of efficiency at a 30 kW load [161]. However, the leakage induc-
tance of the HFT has a crucial effect on the switching circuit due to high electrical stresses
across the switching devices. Thus, the switching course required a clamping circuit to
resolve the peak voltage issue [184,203,204].

As discussed earlier, digital controllers are outrunning analog controllers in the appli-
cation of DC–DC converters due to several advantages, such as simplifying complicated
functions and accomplishing wide-load range soft-switching. Therefore, in [205], a simple
digital controller for an isolated full-bridge DC–DC converter of electric vehicle applica-
tions was presented where the driving signals for all power switching devices and the
feedback control of the output power system were controlled via a single peripheral in-
terface controller (PIC) microcomputer. For maintaining the output voltage, a digital PI
control technique with a field-programmable gate array (FPGA) was presented and de-
signed in [206]. In [186], two predictive model control (MPC), such as linear MPC (LMPC),
and non-linear MPC (NMPC) techniques for an isolated DC–DC FBC, were presented and
designed through both simulation and experimental results, where it was revealed that
the peak current protection and the voltage regulation could be successfully achieved with
both of these MPC algorithms. However, they do not assure better performance in a longer
prediction horizon, and the linear MPC has a longer computational time than the non-linear
MPC. In [207], a comparative performance analysis among linear peak current mode con-
trol (LPCM), non-linear carrier control (NLC), and predictive switching modulator (PSM)
control schemes for isolated DC–DC FBC were presented. They proposed the PSM control
scheme for IFBC due to its several advantages, such as steady-state stability performance
and good transient over both LPCM and NLC schemes. Moreover, the predictive switching
modulator control scheme can also reduce the rise and settling time and the peak overshoot
during load changes. In addition, the PSM control scheme can reduce the size of electro-
magnetic interference (EMI) by extending the range of continuous conduction mode, and
to generate the carrier waveform proposed controller requires only two reset integrators,
whereas the NLC requires three rest integrators.

However, digital control techniques are needed to fulfill a certain condition for the
resolution of the analog-to-digital converter (ADC) and resolution of PWM, otherwise, the
output voltage oscillates, which is not the desired phenomenon of a controller. Furthermore,
digital controllers are inherently slower than conventional analog PI controllers due to the
requirements of heavy calculations. Hence, to control the isolated full-bridge DC–DC boost
converter, traditional analog PI control techniques are still preferred [206].

3.5. Isolated ZVS DC–DC Converter (ZVSC)

For isolation, cold starting, and soft switching, an isolated ZVS DC–DC converter is
needed [208,209]. Figure 26 depicts an isolated zero-voltage switching DC–DC converter
(ZVSC), where a dual half-bridge topology is placed on both sides of the transformer, and for
soft-switching, each power switching device has a parallel capacitor [208]. ZVSC has a sim-
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ple control technique, higher efficiency, soft-switching without extra circuity, high-power
density, less component count, compact packaging, and lightweight, and no real device
rating consequences compared to the traditional full-bridge DC–DC converter [161,208].
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Nevertheless, ZVS converters are unsuitable for high-power (>10 kW) EV applications
due to the absence of tolerance operation and high voltage stress remaining across the
power-switching devices. The full load current must be managed across the switches
(Q1–Q4) by dividing DC capacitors (C1–C4). Furthermore, for filtering the output voltage
ripples, a larger capacitor is needed [208,210–213].

There are two conventional control schemes for controlling the isolated half-bridge
ZVS DC–DC boost converter: symmetric and asymmetric. To control the isolated ZVSC,
the conventional symmetric PWM control scheme is not a suitable candidate due to the soft-
switching counterpart. For controlling the isolated ZVS boost converter, the asymmetric
control scheme was proposed in [214–216]. In [214], a conventional asymmetric phase-shift
control method was utilized to control the isolated half-bridge ZVSC by charging the
upper and lower secondary capacitors differently. They adjusted the switching time of
the secondary switches with this different charging mechanism. As a result, the voltage
imbalance occurred.

Although an isolated half-bridge ZVS DC–DC converter can be controlled via a con-
ventional asymmetric control scheme, due to the variable voltage and current equipment
stresses, the asymmetric control scheme is unsuitable for wide-range input voltage [217].
As a solution in [217,218], a new asymmetric duty-cycle shifted PWM (DCS PWM) con-
trol method was proposed for an isolated half-bridge ZVS DC–DC boost converter to
achieve zero voltage-switching and soft-switching behavior for all switching devices at
a wide-range input voltage without adding additional components and without causing
the asymmetric penalties. They experimentally verified that the proposed controller could
eliminate the ringing and switching losses and operate at a higher efficiency and frequency
than the conventional symmetric and asymmetric control schemes. In the DCS PWM
control scheme, the lagging switch was achieved by shortening the interval between two
symmetric PWM driving signals. Hence, one of the two symmetric PWM driving signals
was shifted close to the other [217]. Moreover, in [219], a dual closed-loop controller of the
inner balanced current loop and the outer voltage loop was designed to control and achieve
the stability and robustness of a current-fed half-bridge isolated ZVS DC–DC converter of a
hybrid electric vehicle. They verified the effectiveness of the designed controller with PSIM
and MATLAB/Simulink simulations at various input voltages.

3.6. Isolated Multiport DC–DC Converter (MPC)

The isolated multiport DC–DC converter is used when more than one input source is
needed with galvanic isolation between the source and load. The multiport converter is
classified into three main categories: single-input multi-output (SIMO) converter, multi-
input-single-output (MISO) converter, and the multi-input-multi-output (MIMO) converter.
Among them, the MIMO multiport DC–DC converter is used in battery and plug-in hybrid
vehicles. It has coupled multiple input sources (generally supercapacitor and battery) and
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uses them as a single source with the advantages of various sources. The circuit diagram
of the MIMO-MPC boost DC–DC converter is shown in Figure 27, which consists of a
parallel connection of two boost DC–DC converters with bidirectional power flow, and it is
advantageous for BEVs powertrains because it allows the converter to recharge the input
sources during regenerative braking. Because of this, the effectiveness and functionality
of the MPC increase, which makes it a high-power density converter. Moreover, all the
input ports, as well as the output port, remain isolated from each other due to the interior
multi-winding transformer [6,13,35].
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Nevertheless, MPC has a great component count, which makes synchronization diffi-
cult. Also, the weight of the converter increases due to the presence of the multi-winding
transformer; it is sensitive to any changes in the duty cycle and analyzing the converter’s
steady-state and transient conditions is complex [220–223].

A control scheme is needed to combine multiple input sources, such as batteries and
supercapacitors, via MPC, and is supplied to a single output. Several control schemes, such
as a novel PWM plus-phase angle shift (PPAS) control scheme [224], PIC control-based
scheme [225], PID control scheme [225], hybrid phase-shift and duty cycle-based control
scheme [226] have been proposed and designed by many researchers to control multi-port
DC–DC converters. The PAPS control scheme can achieve decoupled control and improve
the device-sharing ratio among different ports [224]. Moreover, the hybrid phase-shift and
duty cycle-based control scheme ensure the balance of each port power by the phase-shift
control based on a reference value and the desired load voltage level kept by the duty cycle
control. Therefore, this new control scheme can easily achieve the wide range of power
flow control and voltage regulation [226].

3.7. Multidevice Interleaved DC–DC Bidirectional Converter (MDIBC)

A transformer is a heavy component that increases the weight of an isolated boost
DC–DC converter. For this reason, a non-isolated multidevice interleaved bidirectional DC–
DC converter is used in high-power vehicular applications. A non-isolated multi-device
interleaved bidirectional DC–DC converter (MDIBC) is shown in Figure 28, which uses
a battery as the primary power source and a supercapacitor as a secondary or auxiliary
power source. MDIBC is a multiphase multiport bidirectional converter consisting of a
phase interleaving technique with four high-frequency switching devices per phase. The
number of parallel devices per phase decreases with the increasing number of phases [220].
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Multidevice interleaved boost DC–DC converters merge the power from two or more input
sources and are supplied at a constant single output voltage level.
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Furthermore, MDIBC can sustain the required input current and output voltage ripples
level without increasing the value of passive components (inductors and capacitors). The
electrical breakdown chances are most negligible in MDIBC because a common control
technique, a common heat-sink, and a standard capacitor are mutually shared by both ports,
which enhances the reliability of the multidevice interleaved boost converter compared
to conventional converter topologies. The overall system efficiency and effectiveness of
MDIBC increases due to the regenerative braking power using the bidirectional power
flow capability. Moreover, dividing the current between multiple phases is the central
prominence of the multidevice interleaved boost converter. The input current ripples
reduce due to the operation of the gate signals with the interleaving technique [6].

On the contrary, MDIBC has a high component count, stability, and sensitivity problem
because of changes in the current load profile. Analyzing the characteristics at the transient
and steady-state conditions is difficult [227–232]. Although current ripples, volume, cost-
effectiveness, and the weight of vehicular power electronics interfaces are the main design
challenges, bulky weight elements (filtering capacitor, inductor, and heat-sink) of MDIBC
are reduced by the interleaving technique as well as by achieving high switching frequency,
which fulfills the design goals [6].

For a common high-voltage DC-bus to control power regulation, the design of the
controller plays an important role [228]. For controlling the multidevice interleaved DC–DC
boost converter for electric vehicle applications, there are several control schemes, such
as direct digital control (DDC) based digital dual-loop control [228], dynamic evolution
control [233], digital phase shift control [234], advanced sliding mode control (ASMC) [235],
voltage and current controllers [236], and fuzzy logic controllers (FLCs) [237,238].

To eliminate the chattering effects, which is one of the main drawbacks of the con-
ventional sliding mode control, the ASMC controller was designed and analyzed. The
elimination of chattering effects and the reduction of the voltage and current ripples with a
faster transient response, stable steady-state response, and slight overshoot during startup
can easily be achieved with this advanced SMC scheme [235]. Furthermore, the digital
dual-loop control based on direct digital control was designed and validated via simulation
and experimental results to achieve the proper regulator for the converter with a fast
transient response, high performance, and high efficiency [228].
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Although conventional controllers are easy and straightforward to design, due to
several disadvantages, such as working point dependent performance, the stabilization
problem, and control parameters need to be changed whenever the input supply and/or
output parameters change, etc. Among the conventional controllers, FLCs are widely
utilized in the field of power electronics MDIBC converters applications [239]. Moreover,
the FLCs are simple to design and implement and are practical and powerful under
parameter variations for both linear and non-linear systems [240–242]. Hence, FLCs provide
better performance for traction applications than conventional controllers [238].

4. Energy Storage

The battery is modeled as a fixed voltage source with an internal resistance [243,244].
High performance is required for batteries since they are the core component of an EV [245].
Several types of rechargeable batteries, such as Ni–Cd, Ni–MH, Lead–acid, and Lithium–ion
(Li–ion), are now available in the world markets for powering electric vehicles [40,246,247].
Among all battery types, Li–ion batteries are considered the best and are widely used
in EVs due to their superior characteristics and performance, such as high energy and
power density, long service life, negligible memory effect, low self-discharge rate, and
environmental friendliness [247–249]. Due to these advantages mentioned above, EVs
commonly utilize Li–ion batteries as the primary energy source [250–252]. Nevertheless,
the biggest problems of these electrified transportations, i.e., BEVs, trucks, and buses, are
the longer charging times and low driving range, averting their fast growth [17]. Hence, a
higher voltage (800 V) Li–ion battery (i.e., lithium titanate, lithium nickel manganese cobalt
oxide, and lithium iron phosphate oxide) is needed together with fast chargers (FCs) or
extreme fast chargers (XFCs) [5,6].

In order to describe the electrical behavior of a battery, several test models exist [244].
In terms of the time required for 845 km inter-city travel, a comparison between EVs and
internal combustion engine vehicles (ICEVs) was made in [4], where it was disclosed that,
based on the present battery capabilities, charges with a power greater than 400 kW are
required to have comparable travel time between EVs and ICEVs.

Furthermore, the advantage of XFC in EVs is that it enables a higher-voltage DC
link. Higher DC-link voltage provides several benefits, such as lower manufacturing
cost, higher power density, faster charging, lighter cables, lower weight, and loss for EV
applications [1]. Hence, the motor current can be reduced due to the high-voltage operation
which achieves high efficiency and low conduction losses [253,254]. Because of these
advantages, manufacturing companies are moving toward a higher-voltage DC link. Some
of the commercial electric vehicles with their battery voltages are listed in Table 2.

Table 2. Battery Voltage of Some EVs on the Market [1].

Vehicle First Production Year Battery Voltage (V)

Nissan Leaf 2010 350
Tesla Model S 2012 350

Chevrolet Spark EV 2013 400
Audi e-tron 2018 400

Porsche Taycan 2019 800
Lucid Air 2020 900

Aston Martin Rapide E 2020 800

However, despite all the merits of the high-voltage DC-link, some demerits, such
as higher switching losses due to higher voltage, cannot be neglected. As a result, the
overall efficiency can be decreased if the inverter topology for converting DC–AC remains
the same [250]. Hence, the conventional two-level inverter is not recommended for a
high-voltage DC link. Therefore, in electric vehicles, a multi-level inverter (MLI) can be a
well-suited solution for high-voltage batteries [1], which will be discussed in Section 5.
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5. Inverter

The inverter is the key component for an electric vehicle because it drives the pow-
ertrain of EVs by running the electric motor with three-phase AC from the DC-link. An
inverter can be classified according to input source wise, output phase wise, output voltage
wise, number of voltage levels wise, PWM wise, etc. This paper will discuss the voltage
level-wise classification of the inverter. According to the number of voltages level-wise,
an inverter can be classified into two main categories: (a) the two-level inverter and (b)
multi-level inverter.

5.1. Two-Level Inverter (TLI)

The two-level inverter is depicted in Figure 29, which consists of six power-switching
devices. These six power switches are connected into three legs, and each leg contains two
switches, which are connected in series. An antiparallel diode is connected to each switch
to allow the current to flow in the opposite direction. By controlling these six switches in
different manners, the inverter can generate eight other states [243,244].
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The requirement of large filters to mitigate the output harmonics and the limited
capabilities for high-power applications are the major demerits of conventional two-level
inverters (TLI) [255]. Hence, to reduce the harmonics and filtering efforts, multilevel
inverter (MLI) topologies were introduced [36,256].

In recent decades, power converters have become very popular for a wide range of ap-
plications, such as traction, energy conversion, and motor driver applications [257]. A new
topology of a two-level voltage source inverter (VSI) was introduced in [258] that utilized a
reduced number of expensive yet high-performance transistor counts, with three transistors
only, having a similar performance as compared to the conventional six-transistor VSIs.
Although the three-transistor VSI is designed for motor control applications, it has never
been adopted for electric vehicle applications. Thus, this topology could be investigated
for electric vehicle applications. Due to the high-power variable voltage and frequency
supply requirement, the AC drivers are more ascendant than DC drivers [259]. Therefore,
the requirement of control schemes for these power converters is also ascendant; hence,
researchers present, propose, and design new schemes every year [260,261]. There are sev-
eral control schemes, such as triangle comparison-based PWM (TCPWM) [258], sine-wave
pulse width modulation (SPWM) [259,262], space vector-based PWM (SVPWM) [259,263],
novel predictive variable structure-switching-based current controller [257], and modulated
model predictive control (MMPC) [264] are available in the market of electric vehicles to
control three-phase motor drive two-level power inverters. Among them, SPWM was
widely utilized for its merits, such as its simple circuit, rugged and easy controllability,
low power dissipation, compatibility of a digital microprocessor, and lower switching
losses [262]. In [259,263], a comparison between SPWM and SVPWM control schemes for
two-level inverters was conducted, showing that the SVPWM has the highest possible
peak phase fundamental, less output waveform distortion, more efficient dc-bus voltage
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compared to the SPWM control scheme. Therefore, space vector PWM is the best-suited
control scheme to drive AC induction, brushless DC, switched reluctance, and permanent
magnet synchronous motors via three-phase two-level inverters [259].

5.2. Multi-Level Inverter (MLI)

To gain less current and voltage total harmonic distortion (THD), less voltage stress
on semiconductor devices, high efficiency, low EMI, and common-mode voltage, many
conventional two-level inverters have been replaced in the past decades by their multilevel
counterparts. In addition, due to the modularity and fault tolerance capability, some MLI
topologies becomes more beneficial for specific applications [265,266]. The basic concept of
an MLI is depicted in Figure 30, where switching devices carry much lower voltages than
TLI, and the output filter size is decreased due to the ability to produce various voltage
levels with better voltage/current quality at the lower switching frequency. As a result,
higher power levels can be achieved with MLIs without switches derating [37].
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Although multiple-DC-source multilevel inverters (MDCS-MLIs) require multiple
isolated DC supplies [267,268], in high-power motor driving applications like electric
vehicles, cascaded H-bridge inverter (CHB) MDCS-MLIs are most commonly utilized due
to their high modularity and identical voltage rating of the employed switches [37]. For
military combat vehicles and heavy-duty trucks, cascaded H-bridge (CHB) MLI was first
recommended in 1998 as a suitable choice due to it can drive high-voltage motors easily
with low-voltage switching devices [269]. Furthermore, there are many different topologies,
such as Neutral Point Clamped (NPC) topology [270], Packed U-Cells (PUC) topology [271],
and Flying Capacitor Inverter (FCI) topology [272], by which a multi-level inverter can
be built but the topology discussed in this paper is the cascaded multilevel inverter [244].
Moreover, a novel H-bridge two-transistor cascaded multi-level voltage source converter
is introduced in [273], and this promising multi-level converter could be explored for
electrified transportation applications.

Figure 31 depicts a multi-level inverter, which consists of series-connected H-bridges.
These H-bridges can be controlled independently, and each H-bridges consists of an in-
dividual energy storage VDCML and four power-switching devices. The MLI can create
different outputs like VDCML, −VDCML, 0, and open circuits by controlling these power
switches in different manners [243].
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Therefore, because of their remarkable characteristics, such as high-power and low
electromagnetic interference (EMI), MLIs are utilized in many medium and high-power
applications. However, the challenges like the suppression of circulating currents, reduction
of reliability due to the higher component count (i.e., semiconductor devices and capacitors),
and capacitor voltage balancing are needed to be addressed to utilize the MLI [274–276].

To control cascaded H-bridge multi-level inverter, several types of feed-forward and
feed-back PWM control schemes such as sinusoidal PWM (SPWM) [277], space vector
PWM (SVPWM) [277], third harmonic injection PWM (THI-PWM) [278], etc. have been
presented and designed. A novel multicarrier SPWM control scheme for cascaded H-bridge
seven-level inverter was proposed in [277], where the main objectives are to enhance the
fundamental component of the output voltage and increase the per-phase carrier utilization
by more than one. In [277], a simple SVPWM control scheme has been proposed for MLI
topology where the controller utilizes a simple mapping and can be easily implemented
using a microcontroller. On the other hand, the THI-PWM control scheme modifies the
modulation signal and the carrier signal by adding third harmonic and phase-shifting
processes to control the power converter topologies [279]. Furthermore, a performance
analysis among SPWM, SVPWM, and THI-PWM in [280] where it was found that per-
formance wise SVPWM and THI-PWM very similar, but when converter topology was
considered, multi-level converters performed more efficiently with THI-PWM as compared
with SPWM or SVPWM. Moreover, the DC link voltage utilization was also more than that
of SVPWM.

Although the SVPWM for an MLI is complicated to implement, it is the most widely
utilized control scheme for a multilevel inverter due to its several tremendous advantages
such as the highest possible peak phase fundamental, more efficient dc-bus voltage, less
output waveform distortion compared to SPWM, and THI-PWM [278].

6. Motor and Drive
6.1. Traction Motor

For traction applications (i.e., electric vehicles, trains, ships, aircraft), designing electric
motors have hard and fast operational requirements because of high efficiency, high power
density, high specific torque, low noise, fast dynamic response, high torque at low speeds,
low torque at high speeds, low cost, overload capability, fault tolerance, high mechanical
robustness, and ruggedness is required for traction motors [38,281]. The design should be
such that the machine can produce high starting torque and low torque with high power
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at high speed. Therefore, to design an electric traction motor, modeling and analysis are
required from multiple engineering domains to satisfy all these requirements [253,282].

In terms of suitability for EV applications, various types of electric motors (EMs)
have been presented and analyzed in [253,283–291]. Among them, permanent magnet syn-
chronous motors are widely used due to their high efficiency and power density [292–294],
depicted in Figure 32. There are several types of permanent magnet (PM) machines that can
be utilized as traction motors they are surface-mounted permanent magnet synchronous
machines (SM-PMSM) [295], brushless direct current machines (BLDCM) [296,297], interior
permanent magnet synchronous machines (IPMSM) [298–300] for both axial and radial flux
magnetic configurations [297]. However, PMSM traction motors are highly temperature
sensitive. So, thermal management is a crucial aspect to design for these motors since they
are expected to be performed under extreme temperature conditions as traction motors. To
design and develop an accurate traction model, many parameters play an important role,
such as heat transfer coefficients, boundary conditions, material properties, and geometry
restrictions [301].
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Although several advantages make the PM motors a suitable nominee for EVs, the
resources of the permanent magnet are limited, and the increasing demand for electric
vehicles are increasing the price of the PM continuously. Moreover, the cost of the rare
earth metal neodymium magnet (NdFeB) was 250 US$/Kg in 2005. On the other hand,
in 2012 it was increased to 437 USD/Kg, which eventually affected the price-sensitive
markets such as EVs, electric bikes, etc. [302]. Demagnetization analysis is an integral
part of the design process to define the performance of a permanent magnet traction
motor at a particular operating temperature [303]. Hence, the design parameters and
motor geometry must be synthesized to prevent the reduction in output torque due to
the irreversible demagnetization of permanent magnets [299]. From a mechanical point of
view, the components of an electric motor drive system, such as bearings, couplings, and
shafts, need to be analyzed to ensure reliable operation [301].

As a result, PM-free machines such as switched reluctance machines (SRMs), induction
machines (IMs), and synchronous reluctance machines (SyncRels) have come into interest.
Switched reluctance machine (SRM) is considered a strong candidate for electric bikes and
scooters due to their robust structure and low cost [14], depicted in Figure 33.

Moreover, they can be utilized as secondary electrical power generation in electric air-
craft engines due to their harsh environment operating ability [304]. In [298], several types
of switched reluctance machines (SRMs) topologies such as segmental rotor SRM (SR-SRM),
double stator SRM (DSSRM), and mutually coupled SRM (MCSRMs) are presented and
analyzed with their performance comparison in terms of their torque density, torque ripple,
power factor, and voltage utilization. In addition, the opportunities, challenges, advantages,
and disadvantages of SRM drives are also discussed. In the growing electric propulsion
market, because of the unpredictable cost of rare earth metals and supply chain issues of
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conventional interior permanent magnet synchronous machines, the switched reluctance
motor (SRM) drives have started to take their rightful place as a reliable alternative [298].
Furthermore, a new PM-less brushless synchronous machine that uses sub-harmonic mag-
netomotive force (MMF) to excite the rotor winding was introduced in [305,306], where the
stators use novel two layers of winding in [305] and three layers in [306] for the brushless
operation of the synchronous machine.
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However, although SRMs have been proposed in many research articles instead of
conventional IPMSMSs due to their comparable power density/torque, there is no SRM-
based powertrain for electric vehicles in the market so far [294,298,307]. Nevertheless, the
overall system installation and manufacturing cost can be reduced by 30–40%, and the
power density can be improved with 10–20% lesser volume by utilizing the integrated
motor drive (IMD) [308,309].

6.2. Integrated Motor Drive

The structural integration of an electric motor drive, such as the elimination of shielded
connection cables, centralized controller cabinet, and high current/voltage bus bars, is
referred to as the integrated motor drive (IMD). Due to the rapidly growing interest in
electric vehicles, the role of the electrified actuation system is becoming more critical. An
electric vehicle requires highly efficient and reliable steering, suspension, braking, and
heavy-duty actuators [310–313]. The integrated motor drive offers viable solutions for
the increased demands of high-power density and highly efficient electro-hydrostatic
actuator (EHA) systems [314]. In [314], four different IMD configurations were reported:
(i) radially housing-mounted (RHM); (ii) axially housing-mounted (AHM); (iii) radially
stator iron-mounted (RSM)l and (iv) axially stator iron-mounted (ASM), which are depicted
in Figure 34a–d, respectively [314,315].

Moreover, the performance of the IMDs in high-temperature operation, fault tolerance,
power density, low switching and conduction losses, lower ON-state resistance, and high
efficiency can significantly be achieved by utilizing wide-bandgap semiconductor (WBGS)
devices, such as gallium nitride (GaN) and silicon carbide (SiC), in motor drive technol-
ogy [32,33,308,316–318]. Although the cost of WBGS-based devices is much higher than
silicon-based devices due to the reduction in cooling, control cabinet, passive components,
packaging, and connecting wires, the overall IMD system cost can be significantly reduced
by using WBGS devices [314].
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7. Simulation Result and Analysis

The simulation of all power converters, such as AC–DC, DC–DC, and DC–AC, have
been conducted by utilizing MATLAB software, and the description simulation parameter
values of the discussed power converters are depicted in the following tables, which are
taken from both the hardware and simulation models. These design values are the most
sophisticated keys for the calibration, validation and parameterization of power converters.
The efficiency maps of the AC–DC, DC–DC, and DC–AC converters are observed, and
the prototype test is designed based on the design values and specified parameters. The
linear compensator specifications, such as cut-off frequency, bandwidth, gain, and natural
frequencies, are mapped by using these design values [6].

7.1. Charging Section

Table 3 depicts the parameter values of input/output voltage, output power, switching
frequency, inductor, capacitor, etc., for AC–DC rectifiers.

Table 3. Description parameter values of AC–DC rectifiers for MATLAB Simulation.

Parameters Bridgeless Boost Rectifier Vienna Rectifier

RMS Input voltage, Vin (V) 230 230
Output voltage, Vout 467 507

Output power, Po (kW) 22.41 32.10
Frequency, f (Hz) 50 50

Phases, N 3 3
Inductor, L (µH) - 1000
Capacitor, C (µF) 461 1000 (×2)

Although the bridgeless boost rectifier requires the least amount of components, the
Vienna rectifier has a simple architecture and high efficiency. Moreover, Table 3 illustrates
that, for identical supplied voltage, the Vienna rectifier provides more output voltage and
power, which makes the Vienna rectifier a good candidate for fast charging in medium
and high-powered EV applications. The simulation of both rectifiers was conducted with
the help of a PI controller and SPWM modulation technique. The following Figure 35a,b
depicts the outputcurrent–voltage waveforms of the three-phase bridgeless boost rectifier
and three-phase Vienna rectifier, respectively, which also verifies the stability of the Vienna
rectifier compared to the conventional bridgeless rectifier.
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7.2. DC–DC Converter

Table 4 depicts the description parameter values, such as input/output voltage, output
power, switching frequency, inductor, capacitor, etc., for DC–DC converters.

Table 4. Description Parameter Values of DC–DC Converters for MATLAB Simulation [6].

Parameters BC IBC BCRC FBC ZVSC MPC MDIBC

Input Voltage, Vin (V) 200 200 150 200 100 288, 48 250, 200
Output Voltage, Vout (V) 300 400 380 400 300 400 400

Switching Frequency, fsw (kHz) 20 20 30 40 20 20 20
Inductor Current, Imax (A) 250 250 7.5 75 - - 100

Inductor current ripple, ∆Imax (A) 12.5 12.5 0.75 3.75 - - 10
Output Voltage Ripple, ∆Vout (V) 4 4 4 4 3 - 4

Number of Phase, N 1 4 1 1 1 - 4
Turns ratio, n - - - 1:2 1:3 1:2 -

Output Power, Po (kW) 30 30 5 30 1.6 30 30
Maximum Duty Cycle, D 0.50 0.25 0.50 0.50 0.35 - 0.25

Inductor, L (µH) 400 100 6670 1200 0.56 175 187, 160
Capacitor, C (µF) 780 195 25 14.64 10 150 160

Input Voltage, Vin (V) 200 200 150 200 100 288, 48 250, 200
Output Voltage, Vout (V) 300 400 380 400 300 400 400

A qualitative analysis of all seven types of DC–DC converters for EVs and HEVs
has been conducted in this literature, where the boost converter requires a simple con-
trol system, fewer switching devices, and EMI suppression. However, the BC is more
significant in volume because of the use of larger capacitors; hence, it is unsuitable for
high-power conversion. The output current-voltage waveforms of seven types of DC–DC
boost converters have been illustrated in Figure 36, and the simulation of all these DC–DC
converters has been conducted with PI controller and PWM modulation techniques.

Although IBC has a high efficiency in supplying probability at full load conditions, it
has more switching losses than conventional BC. On the contrary, BCRC can reduce the
switching losses due to its soft switching merits. Hence the size and weight of the BCRC can
be decreased because it does not require a larger heat sink. However, like conventional BC,
it cannot handle high power. Like IBC, FBC also has high efficiency (i.e., ~95%) capability
at full load conditions, but the inductor volume increases due to the utilization of the
high-frequency transformer. For ZVSC, switching losses are negligible because of the high
frequency and power processing, and reduction in EMI suppression increases the power
density. Although MPC has very high efficiency (i.e., ~98%) at full load conditions with
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nominal current and voltage ripples, reliability is very low, and a robust synchronization
process and EMI suppression are required.
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On the other hand, the MDIBC can maintain a high output voltage level without in-
creasing the passive component’s volume, which differs from the other DC–DC converters.
Moreover, in MDIBC, the switches have less stress due to the interleaving technique. There-
fore, the switching current rating is low, increasing the system’s reliability. However, this
converter’s component count is high and sensitive to duty cycle changes at the load step.

7.3. Inverter

A 5.4 HP, 50 Hz electric motor (EM) is used as a load for the TLI, SLI, and THI-SLI
topologies. It is known that the speed of EM needs to be varied in order to drive the EV
properly. The variation of EM’s speed is done with the help of the frequency variation,
which can easily be done with the inverter. Hence, the frequency range of the TLI is from
25 Hz to 50 Hz [319]. On the other hand, the SLI and THI-SLI have the capability to vary the
frequency in the range of 13–50 Hz [320]. Table 5 depicts the description parameter values
such as input/output voltage, output power, switching frequency, inductor, capacitor, etc.
for DC–AC inverters.

Table 5. Description Parameter Values of DC–AC Inverters for MATLAB Simulation.

Parameters TLI SLI THI-SLI

Input voltage, Vin (V) 450 200 200
Output voltage (VP-P), Vout (V) 450 400 400

Output real power, Po (kW) 4.6 4.8 5
Frequency, f (Hz) 25–50 13–50 13–50

Phases, N 3 3 3
Output levels 2 7 7

Load, L EM (5.4 HP) EM (5.4 HP) EM (5.4 HP)
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The following Figure 37a–c, depict the simulation output current-voltage waveforms
of a conventional two-level inverter (TLI), seven-level inverter (SLI), and third harmonic
injected seven-level-inverter (THI-SLI), respectively. The simulations of TLI, SLI, and
THI-SLI have been conducted with the help of PI controller and SVPWM, SPWM, and
THI-SPWM modulation techniques, respectively.
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Moreover, MLIs are becoming more accessible and safer for electric vehicles than
two-level inverters due to the benefits of higher efficiency and no electromagnetic interfer-
ence [243]. It is visible from Table 5 and Figure 37 that the MLIs provide more stable and
higher output power than TLI. One of the most critical advantages of MLI is that it gives
much lower switching losses than the TLI because the switches of MLI change between
zero or four times in the fundamental frequency period. Although a greater number of
switches area greater number of switches are used in MLI, each switch is subjected to a
lower voltage; hence, the losses are smaller than TLI [244].

As discussed in the charging section, the onboard chargers can be utilized in two
types: FB-LLC resonant converter and PSFBC for EV charging applications. Although
the full-bridge LLC resonant converter has zero reverse recovery current and ZVS, due
to the requirement of a high switching frequency range to control output voltage, the
efficiency of the converter becomes lower. Contrarily, the PSFBC has enormous preferable
merits, such as low current stress on devices, simple control, soft-switching, and wide-
range charging operations, which neglect the minor drawbacks of the PSFBC converter
and makes it a suitable candidate for onboard chargers of EVs. Furthermore, between the
offboard charging topologies, the Vienna rectifier seems to be a well-suited candidate for
the EV charging section due to its tremendous advantages, such as fewer active switching
devices, low harmonics with reliability, etc., over conventional six-switch bridgeless boost
rectifiers. On the other hand, among several wireless power transfer systems, as discussed,
the inductive power transfer single-element SS compensation networks provide significant
advantages in high power converters over others because of the utilization of voltage
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sources. Furthermore, among several DC–DC converters, the MDIBC converter appears
to be the best-suited option for the DC–DC conversion process due to its higher power
conversion efficiency, high reliability, high bi-directionality, and high controllability at full
load conditions.

For the DC–AC inverter, the seven-level MLI appears to be best-suited because, with
perfect utilization of multi-levels, the MLI can directly supply the higher voltage to the
load, which can terminate the requirement of the intermediate DC–DC converter. Hence,
the cost of the EV power train could be cheaper. In addition, the third harmonic injected
seven-level MLI seems to be a suitable candidate for EV driving because the THI-SLI can
achieve stability faster than SLI, which is also verified in Figure 37c; hence it increases the
efficiency, performance, power, and voltage level of the inverter.

8. Comparative Analysis and Summary

A qualitative functionality comparison of two onboard charging rectifier topologies is
shown in Table 6, in which five features are inspected.

Table 6. Functionalities comparison of onboard charging rectifiers.

Topologies Controllability Bidirectionality Reliability Power Range Efficiency

PSFBC High Not Present High High Moderate
FB-LLC Moderate Not Present Low Moderate Low

A qualitative summary of the merits and demerits of onboard charging rectifiers is
illustrated in Table 7.

Table 7. Summary of onboard rectifiers.

Topologies Merits Demerits

PSFBC
• Simple control techniques
• Low current stress on devices
• Soft switching or zero voltage

switching
• Low switching noise
• Wide-range charging

operation
• Low EMI

• Rectifier bridge face high
voltage stress

• High-circulating current in the
freewheeling interval

FB-LLC
• Zero reverse recovery current
• Zero voltage switching
• High efficiency at high voltage

operation

• Low Efficiency
• Complicated control

techniques
• Complicated filter and

transformer design
• High components count
• High switching frequency

range to control the battery’s
output voltage

After the inspection of both of these Tables it is visible that the PSFBC rectifier is
suitable for EV onboard charger due to its high controllability, high reliability, high power
range and high efficiency.

A qualitative functionality comparison and summary of merits and demerits of two
most widely utilized offboard charging rectifier topologies is shown in Tables 8 and 9,
respectively.
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Table 8. Functionalities comparison of offboard rectifiers.

Topologies Controllability Bidirectionality Reliability Power Range Efficiency

Bridgeless
Boost Rectifier Moderate Present Moderate Moderate High

Vienna
Rectifier High Not Present High High High

Table 9. Summary of offboard rectifiers.

Topologies Merits Demerits

Bridgeless Boost
Rectifier • Good voltage regulation

• High efficiency
• Small input current filter, and

output voltage filter size
• Fast switching

• Low voltage gain
• Not suitable for the

high-power application
• High EMI
• High switching noise
• Pre-regulators required to

control the PF

Vienna
Rectifier • Fewer active switching

devices
• Capable of fast charging
• Low reverse recovery current

losses
• High power rating
• High efficiency
• Does not required extra

pre-regulator
• Low current harmonics

• High cost
• High components count
• Unidirectional

After the inspection of the above Tables 8 and 9, it is visible that the Vienna rectifier is
suitable for the EV to offboard charger due to its high controllability, high reliability, high
power range and high efficiency.

A qualitative functionality comparison and summary of seven popular DC–DC con-
verter topologies are shown in Tables 10 and 11 below.

Table 10. Functionalities comparison of DC–DC converters [6].

Topologies Controllability Bidirectionality Reliability Power Range Efficiency

BC High Not Present Moderate High Low
IBC High Not Present Moderate High Moderate

BCRC High Not Present High Low Low
FBC High Not Present High High Moderate

ZVSC Moderate Not Present High Low High
MPC Moderate Present Low High High

MDIBC High Present High High High
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Table 11. Summary of DC–DC converters [6].

Topologies Merits Demerits

BC
• Simple circuit
• Low cost
• Simple control techniques

• Large filter size
• High ripple rate
• Low voltage gain

IBC
• Low input current ripples
• High voltage gain
• Low filter size
• Simple control techniques

• High switching losses
• High components count

BCRC
• Low heat sink size required
• Soft switching
• Low EMI

• Low voltage gain
• Not suitable for the

high-power application

FBC
• High voltage gain
• High Efficiency
• Low voltage stress on the

switches
• High isolation

• Switching circuit faces high
current stresses

• Large filter size

ZVSC
• Low switching losses
• Low EMI
• High power rating

• Gates has a high current rating
• Cannot tolerate fault
• Large filter size

MPC
• Low output voltage ripples
• High voltage gain
• High isolation from all input

sources
• Bidirectional power flow

• High component count
• Difficult to Synchronize
• Responsive to duty cycle

changes at the load step
• Difficult to analysis

throughout transient and
steady-state conditions

MDIBC
• High Efficiency
• Switches have low current

stress
• The ability to deliver high

power while ensuring the
required output voltage level

• Small filter size
• Small heat sink size
• Simple control techniques
• Bidirectional power flow
• Appropriate for single-port

converters

• Responsive to duty cycle
changes at the load step

• High component count
• Difficult to analysis

throughout transient and
steady-state conditions
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After the inspection of above Tables 10 and 11 it is visible that the MDIBC converter
is suitable for the EV powertrain converter due to its high controllability, bidirectionality,
high reliability, high power range and high efficiency.

A qualitative functionality comparison and summary of the merits and demerits of
three popular inverter topologies is presented below Tables 12 and 13, respectively.

Table 12. Functionalities comparison of inverters.

Topologies Controllability Bidirectionality Reliability Power
Range Efficiency

TLI Moderate Present Moderate Low Low
SLI High Present Moderate High High

THI-SLI High Present High High High

Table 13. Summary of inverters.

Topologies Merits Demerits

TLI
• Good voltage regulation
• High efficiency
• Small input current filter, and

output voltage filter size
• Fast switching

• Low efficiency
• Low power rating
• Cannot produce various

voltage levels

SLI
• Less voltage stress on

semiconductor devices
• High efficiency
• Low EMI,
• Common mode voltage
• Modularity and fault tolerance

capability
• Can produce various voltage

levels
• High power rating

• High cost
• High components count
• Complex circuit

THI-SLI
• Third harmonic injection

capability
• Can stable faster than SLI
• Less voltage stress on

semiconductor devices
• High efficiency
• Low EMI,
• Common mode voltage
• Modularity and fault tolerance

capability
• Can produce various voltage

levels
• High power rating

• High cost
• High components count
• Complex circuit

After the inspection of above Tables 12 and 13 it is visible that the THI-SLI is best-suited
for EV powertrain inverter due to its high controllability, bidirectionality, high reliability,
high power range and high efficiency.
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9. Future Trends

To reach the goal set by the US Department of Energy (DOE) and to increase the
utilization of EVs, the challenges, such as limited charging infrastructure, range anxiety,
battery pack size, and costs faced by the EVs need to be mitigated. Multiple power electronic
converters (i.e., DC–DC converters, inverters, and rectifiers) are required to charge the EVs,
HEVs, and PHEVs batteries from the power grid and drive the motor from the battery pack,
which is depicted in Figure 1 [321–324]. Hence, these converters need higher efficiency and
ruggedness with compact sizes and low costs. [9]. Moreover, to achieve the target for 2025
of 100 kW/L power converters for EVs, the Department of Energy (DOE) has identified
various effective strategies. To overcome the challenges associated with designing the
converters, further integration of the power converters’ subcomponents and replacing
silicon semiconductors with wide bandgap semiconductors (WBGSs) are considered to be
necessary [325].

9.1. WBG Devices

In power electronic applications, silicon (Si) based devices were widely used in past
years but due to their inherent properties, they have reached the limit of maximum switch-
ing frequency and device thermal dissipation [326]. Therefore, other semiconductors are
required to overcome the limitation of Si. Hence, wide bandgap semiconductors (GaN
and SiC) are now of interest due to their enabling ability of higher breakdown voltages
and higher switching speeds, which permit higher efficiency, higher temperature opera-
tion, lower losses, and higher power density with a smaller size and weight compared to
the silicon-based system [12,327–330]. Due to the characteristics and commercialization
progress of silicon carbide (SiC) and gallium nitride (GaN), they are considered the most
promising WBGSs nowadays [34]. In [331–334], several reviews on the applications of
wide bandgap semiconductors for electric vehicles were conducted and showed that GBGS
devices offer many advantages over existing silicon devices. In [32,33,335–342], several
comparisons were made between wide bandgap semiconductors and silicon semiconductor-
based MOSFET and IGBT, where WBGS showed tremendous advantages, such as a faster
switching frequency, lower loss, and higher efficiency over silicon semiconductors.

The comparison among GaN, SiC, and Si is depicted in Table 14, where it is demon-
strated that, in terms of electron mobility, breakdown of the electric field, and energy gap,
GaN is higher than SiC and Si. However, GaN has much lower thermal conductivity than
SiC and Si. So, heat propagates poorly from the junction to the heatsink for GaN, which
makes it temperature-sensitive [343].

Table 14. Parameter Comparison of Si, SiC, and GaN [43].

Parameters Si SiC GaN

Electron mobility (cm2/V×s) 1400 900 1800
Energy gap (eV) 1.12 3.26 3.5

Breakdown electric field
(MV/cm) 0.3 3 3.3

Thermal conductivity
(W/cm×K) 1.5 4.9 1.3

Saturation drift velocity (Mcm/s) 10 27 27

GaN has lower conduction loss and smaller chip size than Si, and SiC due to its lower
on-resistance, allowing GaN-based devices with simpler cooling systems and
heatsinks [344–346]. However, currently available GaN devices are much higher in cost
than Si. Good advancements in GaN technology and mass production can decrease the
cost count in the near future [347].
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9.1.1. Chargers

Usually, the onboard chargers consist of two converters. They are AC–DC rectifiers
and DC–DC converters. Among several possible AC–DC rectifier topologies, the phase-
shifted full-bridge converter (PSFBC) is commonly utilized due to its simple control, soft
switching, and wide-range charging operation capability. Hence, GaN devices with a 650 V
voltage rating can be used in the typical 390 V AC/DC rectifier, depending on the design
requirements. Furthermore, a DC- DC converter is required to match the voltage levels
of the AC–DC PFC inverter and the battery pack. The DC–DC converter topologies can
achieve a high switching frequency while decreasing the overall system losses by utilizing
wide bandgap semiconductor switching devices. As a result, the dynamic performance of
the power converters can be improved [43].

Moreover, for fast charging offboard chargers, among a few topologies such as bridge-
less boost rectifier, Vienna rectifier, and neutral point clamped (NPC) rectifier, the Vienna
rectifier is generally utilized for higher adequate current ratings. GaN could also be benefi-
cial in this fast charger [43].

Inductive chargers or wireless chargers are expected to be the future chargers for
electric vehicles, which can be achieved via electromagnetism of the coils of wires. With
wireless charging technology, electric cars can be charged while driving or while parked
in the parking lot [344]. WBG semiconductor devices have demonstrated tremendous
advantages in WPT technology over silicon-based devices [16]. A grid-to-battery efficiency
of 91–93% has been achieved by building a single-phase WPT charger with SiC MOSFET
and SiC diodes [28]. Moreover, several WPT chargers have been proposed and built with
SiC and GaN-based semiconductor devices in [30,348–351], where the WBG overpowers
Si-based devices every time in terms of high efficiency, high power, and high switching
frequency.

9.1.2. Electrified Powertrain

The DC–DC boost converters and the DC–AC inverter are the key components for
an EV powertrain, because in order to drive the electric motor with a battery, a DC–DC
converter is required for stepping up the DC battery voltage. The inverter is required for
inverting the DC voltage into AC [322,352].

In EV powertrains, silicon-based insulated-gate bipolar transistors (IGBTs) or metal
oxide semiconductor field-effect transistors (MOSFETs) of 650 V ratings are commonly
used in conventional DC–DC converters and inverters. Still, the switching frequency of
these Si-based transistors is limited to around 10–20 kHz, since these converters are mainly
utilizing electric motors as loads. Furthermore, the limitation of these Si-based switching
devices can be eliminated by using a hybrid mix of GaN and Si, which can be beneficial
with the advantages of both semiconductors [338,353,354]. Therefore, high breakdown
voltage, high current, high switching speed, and high power with lower losses and costs
can be achieved with hybrid GaN and Si-based transistors [43]. Moreover, the reverse
recovery current and losses are eliminated by the gallium nitride high-electron-mobility
transistors (HEMTs) due to the absence of a body diode. The electric vehicle’s powertrain
can be more compact at a lower cost because of the wide bandgap semiconductors’ higher
temperature handling capability [355].

9.1.3. Motor Drives

Both the inverter and motor are considered when looking at the motor drives because
the power electronic equipment’s efficiency determines the electric vehicle’s efficiency.
Utilizing WBG semiconductors in the motor drive application could bring high efficiency,
high-temperature operation, fault tolerance, power density, lower ON-state resistance, and
low switching and conduction losses with a reduction in overall cost, which will make EV
a high competitor with internal combustion engine vehicles [15,43].

Although the cost of WBGS-based devices is much higher than the silicon-based
devices, due to the reduction in cooling, control cabinet, passive components, packaging,
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and connecting wires, the overall IMD system cost can be significantly reduced by using
WBGS devices. However, manufacturing complexity, such as current collapse, reliability,
and packaging, are the main constraints that stop the vast market penetration of WBGS
devices [15].

9.2. System Integration

The structural integration of an electric vehicle’s internal components is called system
integration. In the production of electric vehicles, integrating power converters and electric
motors has been a straightforward solution to reduce the overall system cost and increase its
reliability and efficiency. In [315,356], a further increment of the traction inverter integration
was proposed, in which the inverter electronics are mounted with the electric machine
axially, which allows the inverter phase terminals to connect with the motor winding
directly, reducing the weight, volume, and cost of the traction inverter [12]. Therefore, the
integration of the EV’s internal components, such as its power converters, and the electric
motor, seems advantageous.

Although wide bandgap semiconductor technologies can enable may important fea-
tures, such as higher switching frequency, higher efficiency, and higher power, in different
applications, challenges such as complex control schemes, high cost, thermal management,
and limited voltage ratings need to be improved to ensure the long-term reliability of these
devices [16,43]. Moreover, dual bridge matrix converter topologies presented in [357] could
be utilized in system integration. In addition to that, the power electronic converter topolo-
gies shown in [358–361] for various applications can also be implemented. Furthermore,
to ensure secured power system integration, methods presented in [362–367] may also be
applied for a safer and secured power system and its communication networks.

10. Conclusions

This review paper discussed several conductive charging rectifiers, powertrain DC–
DC converters, motor-driving inverters, and control schemes designed for EV applications
based on several publications. To develop more efficient and environmentally friendly
EVs, power converters such as AC–DC, DC–DC, and DC–AC are the critical applications
of modern power electronics. After this extensive review, it can be seen that the charging
section onboard PSFBC and offboard Vienna rectifiers present great performance, and the
powertrain high-power DC–DC converter section and the multi-device interleaved DC–DC
boost converter seem to be excellent candidates for EV applications. On the other hand,
for the powertrain DC–AC inverter, the third harmonic injected seven-level MLI can be
considered a well-suited candidate for the powertrain of electric vehicles.

Moreover, the current status, opportunities, challenges, and applications of wireless
power transfer in electric vehicles, and hybrid electric vehicles, were discussed in this
review paper. Wireless charging is the key solution to the range anxiety and recharging
times of electric vehicles. A high-power fast wireless charging system can experience fueling
times similar to conventional fossil fuel refueling times. Furthermore, the wireless charging
system is more reliable, does not pollute the environment, and is safer than conductive
charging systems. The ever-growing application of high-power wireless chargers can
achieve the mass-market penetration of EVs.

The advantages, such as faster charging, lighter cables, more efficient motors, etc., and
disadvantages, such as high voltage stress on semiconductor devices and higher EMI of the
traction drive system with a high-voltage battery module, were also discussed in this paper.
The comparison between several conventional interior permanent magnet synchronous
machines and switched reluctance motors (SRMs) was investigated in this review. It has
been shown that the double stator SRM (DSSRM) drives have started to take their rightful
place as a reliable alternative due to their high torque/power density, lower vibration, and
acoustic emission advantages.

Finally, to increase the operating temperature profile and power density, the power
converters are adopting newly introduced wideband gap semiconductors (WBGSs), con-
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verter topologies, and control schemes. For automotive power electronic systems, wide
bandgap semiconductor devices have been of interest for some time. With the arrival of the
Tesla Model 3 with a silicon carbide (SiC) based traction inverter, WBGSs are now beginning
to see the adoption. A comparison among Si, SiC, and GaN was conducted in this paper
and showed that for lighter designs, without compromising the efficiency of the electrified
vehicles, GaN is a well-suited candidate due to its high-power density, high breakdown
voltage, and high switching frequency. GaN can make the overall system smaller and
lighter in terms of its higher switching transitions compared to SiC and Si. Nevertheless,
the major demerit of WBGSs is the high cost, which can be reduced by increasing the
production and adoption of WBGS devices.
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