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Abstract: This study aims to forecast extreme fluctuations of Bitcoin returns. Bitcoin is the first
decentralized and the largest, in terms of capitalization, cryptocurrency. A well-timed and precise
forecast of extreme changes in Bitcoin returns is key to market participants since they may trigger
large-scale selling or buying strategies that may crucially impact the cryptocurrency markets. We
term the instances of extreme Bitcoin movement as ‘spikes’. In this paper, spikes are defined as the
returns instances that outreach a two-standard deviations band around the mean value. Instead
of the unconditional historic standard deviation that is usually used, in this paper, we utilized a
GARCH(p,q) model to derive the conditional standard deviation. We claim that the conditional
standard deviation is a more suitable measure of on-the-spot risk than the overall standard deviation.
The forecasting operation was performed using the support vector machines (SVM) methodology
from machine learning. The most accurate forecasting model that we created reached 79.17% out-of-
sample forecasting accuracy regarding the spikes cases and 87.43% regarding the non-spikes ones.

Keywords: forecast; cryptocurrency; Bitcoin; machine learning; support vector machines; spikes;
GARCH

1. Introduction

A cryptocurrency is a digital asset designed to work as a medium of exchange. It
is self-regulated, decentralized and independent of any governmental or other national
or international regulator. Financial transactions with cryptocurrencies are verified and
secured using blockchain technology that is based on cryptography. Bitcoin was the first
such cryptocurrency and was introduced by [1]. It is designed as a decentralized digi-
tal currency: transactions are permanently recorded in an open distributed ledger, the
blockchain, and is verified by a peer-to-peer network instead of a central authority. The
process of creating new Bitcoins is referred to as “mining”. New Bitcoins are created and
awarded to the nodes (miners) that manage to verify and add new blocks of transactions
to Bitcoin’s blockchain. Bitcoin is the most important cryptocurrency in terms of market
capitalization. In September 2022, its market capitalization exceeded $377 billion (Ac-
cording to http://www.coinmarketcap.com, accessed on 8 June 2019). Bitcoin is driving
cryptocurrency markets and its evolution may have the potential to impact the global
economy. Bitcoin is often used as a digital asset for portfolio diversification; see among
others [2–5].

Cryptocurrency markets experience episodic high volatility, resulting in significant
fluctuations and extreme changes in the returns times series. Risk increases during these
moments of severe volatility, and investors typically reduce their market positions or resort
to the costly solution of hedging to mitigate risk exposure. These investing reactions may
contribute to inefficient and inconsistent short-term portfolio management. We term the
extreme fluctuations “spikes” and our study aims to forecast them in Bitcoin’s returns
time-series.

Traditional econometric models make the strict assumption of homoscedasticity, which
implies that the random variables at hand have a constant variance throughout time.
Nonetheless, several financial time-series display periods of relative imperturbability and
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periods of high volatility [6]. This is directly translated in serial dependence at the higher
conditional moments of the data. In these cases, the homoscedasticity assumption is not
true, and the data are called heteroskedastic. The empirical results of [7] showed that long-
tail events are observed in the returns of cryptocurrencies; the volatility of such returns
exhibits significant clustering. They provided empirical evidence that cryptocurrency
returns time series are heteroscedastic.

Many studies model and forecast the variance in financial time series using various
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models [8,9]. The
same is also true specifically for cryptocurrencies; see, among others [7,10–19].

One of the novel aspects of our analysis is that we do not utilize a fixed over time
threshold to identify the sharp swings in Bitcoin returns that we call spikes. The use of
a fixed over time threshold on heteroskedastic time-series may yield two cases of error:
it may over-identify spikes during high market disturbances (high variance) and it may
under-identify spikes occurring during relative tranquility (low variance). Instead, in this
study, we use the conditional second moment of the returns (standard deviation) that is
estimated using the best fit GARCH model. We define the “normal” (non-spike) fluctuation
band as a two conditional standard deviations band around the mean. When this setup is
used, the fluctuation band width varies over time in response to the actual volatility.

Once we define the concept of spikes using the conditional standard deviation and
identify them in the returns of the Bitcoin time series, we then proceed in forecasting these
extreme deviations. The arsenal of machine learning (ML) has been extensively used in the
wide field of financial forecasting and especially in the cryptocurrencies market. Ref. [20]
used a recurrent neural network (RNN) and a long short-term memory (LSTM) model to
directional forecast the Bitcoin price. They showed that the LSTM models outperformed the
RNN ones by a small margin and required significantly more computational time. Ref. [21]
used the LSTM models to forecast Bitcoin price levels. The AR(2)-LSTM model that they
proposed, outperformed the conventional LSTM models. Ref. [22] tested the LSTM and
the generalized regression neural networks (GRNN) models to the forecasting of three
cryptocurrencies (Bitcoin, Digital Cash and Ripple) levels. The LSTM models, in their
tests, outperformed the GRNN ones. Ref. [23], in a meta-research, reviewed 171 articles
regarding forecasting cryptocurrencies with ARIMA and various ML techniques. The
authors concluded that the ML models are more accurate at forecasting cryptocurrency evo-
lution than the econometrics models. Ref. [24] compared backpropagation neural network
(BPNN), genetic algorithm neural network (GANN), genetic algorithm backpropagation
neural network (GABPNN), and neuro-evolution of augmenting topologies (NEAT) in
forecasting the price of Bitcoin. The results showed that the BPNN model outperformed
the competition.

Ref. [25] introduced the support vector machines (SVM) as a supervised machine
learning algorithm for binary classification tasks. The methodology is computationally
attractive, it can treat linear and non-linear problems as well, and it can be extended to
multiclass classification problems and in general it can find the overall optimal solution
in every setup. These important advantages attracted many scientists, making the SVM
model quite popular in the forecasting community. Ref. [26] showed that the SVM models
outperform the ANN ones in forecasting financial markets with fewer computational
cost. Ref. [27] forecasted the electricity price spikes using the SVM model with great
success.

In the cryptocurrency market domain, Ref. [28] used various ML algorithms to forecast
the Bitcoin price direction and concluded that the SVM model outperformed the rest of
the methods. Ref. [29] used SVM and ANN models to forecast Bitcoin price levels. Their
empirical evidence suggests that traders can increase their profits using SVM forecasting
models. Ref. [30] used ANN, SVM, and random forest (RF) models, combined with sen-
timent analysis input data, in forecasting the price movement of four cryptocurrencies
(Bitcoin, Ethereum, Ripple, and Litecoin). Ref. [31] used SVM model for predicting intraday
(current day’s) trend of Bitcoin returns. In most cases, the SVM model provided high accu-
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racy for both upward and downward spikes. In this paper we use the SVM methodology
to forecast the spikes in the evolution of the Bitcoin market.

The remaining paper has the following structure: In Section 2, we present the proposed
methodology in detail. Section 3 is devoted to the dataset that we used and the empirical
results of our tests. The paper finalizes with the conclusions in Section 4.

2. Methodology

The support vector machine (SVM) is a set of machine learning (ML) algorithms
introduced by [25]. SVM acts as a binary classifier that can also treat regression after being
properly modified. It is a supervised learning algorithm, meaning that all the training data
are correctly labeled. In this paper, the SVM binary classification model is used to forecast
the presence or not of spikes in the next time instance of the Bitcoin evolution. SVMs’ main
concept is identifying a linear hyperplane in the data space that maintain the largest gap
between the two classes. To make sure that SVM always reaches an optimal solution, the
SVMs optimization task is formulated in a convex way.

The machine learning process is divided into two steps: training and testing. In
training, the biggest chunk of the data is used to identify the hyperplane that optimally
separates the classes. During the testing step, a smaller part of the dataset that kept
away from the training is used to evaluate the models’ generalization capability. The
mathematical derivation of the SVM models is presented shortly in the following section.

2.1. Linearly Separable Data

Each data point (vector) xi∈Rn (i = 1, 2, . . . , N) corresponds to one of the two classes
(output) yi ∈ {−1, +1}. In the case of linearly separable data, the boundary is defined as:

f (xi) = wTxi − b = 0 (1)

Subject to the contents:

wTxi − b > 0 for yi = +1
wTxi − b < 0 for yi = −1

while yi f (xi) > 0, ∀i, the vector of weights is w, and the bias is b.
The decision boundary that classifies each data (vector) into its associated class and

has the largest distance, referred to as the “margin”—from both classes is known as the
separator (the optimal separation hyperplane). The marginal data points that define
the position of the decision boundary are called support vectors (SVs). In Figure 1, the
prominent contour represents the SVs, the dashed lines indicate the margin lines (which
define the distance of the hyperplane from each class), and the continuous line represents
the hyperplane.

Using the Lagrange optimization process, the following equation can be used to
discover the solution to the problem of finding the hyperplane position:

min
w,b

max
a

(
1
2
‖w2‖ −

N

∑
i=1

ai

[
yi

(
wTxi − b

)
− 1
])

(2)

where a = [a1, . . . , an] are the non-negative Lagrange multipliers. Equation (4) is never
used to estimate the solution. Instead we always solve the dual problem, defined as:

max
a

{
N

∑
i=1

ai −
N

∑
j=1

N

∑
k=1

ajakyjykxT
j xk

}
(3)

while ∑N
i=1 aiyi = 0 and ai > 0, ∀i
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The solution of Equation (5) yields the location of the separating hyperplane, which is
defined as:

^
w =

N

∑
i=1

aiyixi (4)

b̂ =
^
w

T
xi − yi, i ∈ V (5)

where the collection of support vector indices is denoted by V = {i : 0 < ai }.

Figure 1. Support vectors and hyperplane selection. The support vectors demarcate the separat-
ing hyperplane, which is represented by the continuous line, and define the margins, which are
represented by dashed lines. The data in the two classes are separated by this hyperplane.

2.2. Error-Tolerant SVM

Only linearly separable data can be treated using the presented methodology. Actual
data, on the other hand, frequently contain noise and outliers. In such cases, the misclassi-
fied data can have a severe impact on the position of the separating hyperplane and create
large classification errors. Ref. [25] proposed the error-tolerant SVM model to address this
problem. In order to deal with erroneously categorized observations, their main idea was
to introduce in the minimization process, non-negative slack variables ξi ≥ 0, ∀i, which are
regulated by a penalty parameter C. Equation (5) now reads as follows:

min
w,b,ξ

max
a,µ

(
1
2
‖w2‖+ C

N

∑
i=1

ξi −
N

∑
i=1

ai

[
yi

(
wTxi − b

)
− 1 + ξi

])
−

N

∑
k=1

µkξk (6)

When vector xi is misclassified, ξi denotes the distance between it and the hyperplane.
The hyperplane of optimal separation is defined as follows:

^
w =

N

∑
i=1

aiyixi (7)
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b̂ =
^
w

T
xi − yi, i ∈ V (8)

where the collection of support vector indices is denoted by V = {i : 0 < ai < C }.

2.3. Kernel Methods

Numerous real-world processes generate data in a nonlinear fashion, and linear classi-
fiers are incapable of dealing with the generated data. The SVM setup can be extended to
non-linear problems via the projection of the data space to a space of higher dimensionality,
called feature space. In this step, we seek iteratively the projection that will create a feature
space where the two classes are linearly separable. This process of mapping the initial data
into spaces of higher dimensionality is made possible using the so-called “kernel functions”:
the projection functions of the data-points. When the kernel function is non-linear, the SVM
model generated is also non-linear (see Figure 2).

Figure 2. Input space example that is non-linearly separable (on the left). The projection of a two-
dimensional data space onto a three-dimensional feature space (on the right) using the appropriate
kernel renders possible data separation by a two-dimensional hyperplane.

The dual problem solution with projection of Equation (5) in this case becomes:

max
a

{
N

∑
i=1

ai −
1
2

N

∑
j=1

N

∑
k=1

ajakyjykK
(
xj, xk

)}
(9)

∑N
i=1 aiyi = 0 and 0 < ai < C, ∀i are the constrains, while K

(
xj, xk

)
is the kernel

function. Kernel method implementation via dot multiplication is a computationally
efficient technique that enables projection to a space of higher dimensionality.

In our tests we used the linear and non-linear Radial Basis Function (RBF) kernels:

Linear: K
(
xi, xj

)
= xT

i xj

RBF: K
(
xi, xj

)
= e(−γ||xi−xj ||2)

where γ is the RBF kernel’s internal hyper-parameter that needs to be tuned.

2.4. Overfitting

Overfitting is a problem that might arise when training SVM models. This is a
circumstance in which the trained model fits the in-sample data quite well but fails to reflect
the underlying data generation process. The problem of model overfitting is addressed via
k-fold cross validation (In this study, 5-fold cross validation was used).
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3. Data and Empirical Results

Our dataset consists of daily Bitcoin returns and 90 additional financial variables
(the full list of the variables can be found in Appendix A Table A1) for the period from
10 May 2013 to 29 April 2019, for a total of 2145 observations. The data were obtained from
CoinMarketCap (https://coinmarketcap.com, accessed on 8 June 2019), Yahoo Finance
(https://finance.yahoo.com, accessed on 8 June 2019) and FRED, the Federal Reserve Bank
of Saint Louis (https://fred.stlouisfed.org, accessed on 8 June 2019) database.

We used the natural logarithmic return transformation to determine the Bitcoin returns:

rt = ln
Pt

Pt−1
(10)

where rt stands for the returns and Pt stands for Bitcoin’s daily prices.
Our scheme starts by investigate the best autoregressive model AR(q). The first step

is to identify the number of autoregressive lags that can remove any serial correlation. To
test for serial correlation, we use the Ljung-Box Q(36) statistic at the 1% significance level.
For q = 1 we reject the null hypothesis of no autocorrelation and we steadily increase the
number of lags until the test cannot reject it. In our data this happened for AR(11). After
eliminating autocorrelation, we then try to identify the best fitted autoregressive forecasting
model with q ≥ 11, based on the minimum Bayesian information criterion (BIC) introduced
by [32]. We estimated 14 alternative AR(q) models with q = 11, . . . , 24. As reported to the
results in Table 1, the minimum BIC is achieved with the AR(11) model.

Table 1. Bayesian information criterion for different AR(q) models (The model with the lowest BIC is
preferred; the matching BIC statistic is marked with an asterisk). Bayesian information criterion for
different AR(q) models. The AR(11) model is the one that minimizes the BIC, while the matching BIC
statistic is marked with an asterisk.

AR(q) BIC

11 −3.436 *
12 −3.432
13 −3.428
14 −3.425
15 −3.421
16 −3.417
17 −3.420
18 −3.416
19 −3.413
20 −3.413
21 −3.410
22 −3.407
23 −3.405
24 −3.402

We test for any remaining non-linear dependencies that imply the existence of condi-
tional heteroscedasticity, after initially removing any linear dependencies in the error term
We utilized [8] ARCH test to detect any non-linear dependence (conditional heteroscedas-
ticity). At the 1% significance level (with p-value < 0.001 and F-statistic = 241.51), the null
hypothesis that there are no ARCH effects in the residuals was rejected, meaning that we
did find statistical evidence for the presence of non-linear dependence in the error term. In
order to model this non-linear dependence, we estimated multiple GARCH(p,q) formats,
as suggested by [8,9], for all combinations of p = 0, . . . , 4 and q = 0, . . . , 4 and calculated the
corresponding BIC. We tested three distributional assumptions: the normal, Student’s t
and the Generalized Error Distribution (GED). These corresponding results are presented
in Table 2. In Table 3, we repeated the process for the Exponential form of GARCH, also
known as the EGARCH(p,q) model, which was proposed by Nelson (1991).

https://coinmarketcap.com
https://finance.yahoo.com
https://fred.stlouisfed.org
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Table 2. Bayesian information criterion for different GARCH(p,q) using normal, Student’s t and
generalized error distribution (GED). The model that minimizes the BIC is the GARCH(1,1) using
GED and the matching BIC statistic is marked with an asterisk.

Normal

p\q 0 1 2 3 4

0 - −3.54332 −3.61752 −3.67553 −3.68355
1 −3.43111 −3.75869 −3.75849 −3.75505 −3.75245
2 −3.47863 −3.76101 −4.04315 −4.03966 −4.03619
3 −3.87238 −4.04310 −4.03982 −4.03602 −4.03281
4 −3.86766 −4.03998 −4.03649 −4.03864 −4.03584

Student’s t

p\q 0 1 2 3 4

0 - −3.89850 −3.93346 −3.96890 −3.98589
1 −3.83081 −4.04368 −4.04193 −4.03877 −4.03541
2 −3.83092 −4.04241 −4.03893 −4.03541 −4.03265
3 −3.82740 −4.03894 −4.03542 −4.03190 −4.03052
4 −3.82391 −4.03543 −4.03191 −4.03691 −4.03164

GED

p\q 0 1 2 3 4

0 - −3.92900 −3.95807 −4.02563 −4.03985
1 −3.87639 −4.04790 * −4.04631 −4.04319 −4.03956
2 −3.87271 −4.04639 −4.04315 −4.03965 −4.03622
3 −3.87238 −4.04309 −4.03980 −4.03600 −4.03283
4 −3.86766 −4.03996 −4.03644 −4.03396 −4.03558

Table 3. BIC for different EGARCH(p,q) using normal, Student’s t and generalized error distribution
(GED). The model that minimizes the BIC is the EGARCH(1,1) utilizing GED and the matching BIC
statistic is marked with an asterisk.

Normal

p\q 0 1 2 3 4

0 - −3.52401 −3.57652 −3.61647 −3.62013
1 −3.42822 −3.76014 −3.75825 −3.75525 −3.75198
2 −3.55144 −3.76113 −3.76409 −3.75491 −3.75290
3 −3.55523 −3.75836 −3.75484 −3.75860 −3.75878
4 −3.54442 −3.75487 −3.75275 −3.76039 −3.75688

Student’s t

p\q 0 1 2 3 4

0 - −3.87924 −3.90106 −3.92449 −3.93678
1 −3.82871 −4.04742 −4.04511 −4.04169 −4.03820
2 −3.82508 −4.04523 −4.04183 −4.04118 −4.09243
3 −3.82364 −4.04177 −4.04114 −4.03767 −4.03415
4 −3.82035 −4.03825 −4.03764 −4.03626 −4.03224

GED

p\q 0 1 2 3 4

0 - −3.91543 −3.93433 −3.95081 −3.95758
1 −3.87352 −4.05039 * −4.04825 −4.04491 −4.04101
2 −3.86926 −4.01963 −4.04508 −4.04156 −4.03852
3 −3.86801 −4.04504 −4.04170 −4.03844 −4.03403
4 −3.86287 −4.03991 −4.03855 −4.03456 −4.02981

The best GARCH model is the GARCH(1,1), and the best EGARCH model is the
EGARCH(1,1) using GED, according to the BIC. These findings suggest that the EGARCH(1,1)
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utilizing the GED is the overall optimal model that minimizes the BIC (BIC = −4.05039 for
the optimal AR(11)-EGARCH(1,1) utilizing GED distribution), as shown in Table 3.

As mentioned before, in this paper, we identify as spikes the Bitcoin returns that fall
outside a 2 conditional standard deviation band. This band is defined by the optimal
AR(11)-EGARCH(1,1) conditional variance model format as chosen above. According to
this, there is a total of 234 spikes, accounting for nearly 11% of all Bitcoin return observations.
The remaining 1911 observations were labeled as non-spikes.

In Figure 3, we graph the Bitcoin returns along with the +/−2 conditional (2-csd) and
unconditional standard deviations (2-usd) bands. The spikes we try to predict are those
that fall outside the 2-csd band. Both bands are depicted in the figure to emphasize the
difference between the conditional and unconditional standard deviations. The uncon-
ditional standard deviation band is defined by the straight dashed lines and is constant
over time; the conditional standard deviation band is defined by the continuous squiggly
line around the mean of the time series and has a variable width over time. We offer four
illustrative situations in the zoomed portion of Figure 3 that valid our analysis as these are
treated differently from the two bands. If we used the USD band, points A and B would be
classified as spikes. Nonetheless, the suggested csd band classifies them as non-spikes. The
latter approach is more important for an investor’s behavior and daily decision-making
process. Investors are not concerned with the index’s volatility over time; instead, they
are concerned with estimating the immediate risk associated with probable short-term
investment decisions. This is more significant in terms of the risk a market participant
takes throughout the course of his or her investment horizon. The unconditional standard
deviation treats points C and D as non-spikes, while the conditional standard deviation
treats them as spikes.

Figure 3. The two conditional standard deviation bands (2-csd) and the two unconditional standard
deviation bands (2-usd) are graphically represented above. The 2-csd band is depicted with the
squiggly line and the 2-ucd is depicted by the dashed parallel lines. The data points (returns) outside
the 2-csd band are noted as spikes. We present four separate situations in the zoomed-in portion that
differ between the conditional and unconditional standard deviation bands.
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The binary time series of the spikes and non-spikes instances can be seen in Figure 4.
The spikes are depicted with 1; the non-spike instances are denoted with 0.

Figure 4. The time series of the spikes/non-spikes instances. Every spike is coded with 1 and every
non-spike with 0.

3.1. Autoregressive SVM Models

Multiple predictive models were trained using the SVM method to predict the spikes
in Bitcoin daily returns coupled with the linear and the RBF kernel. We must note that
the binary time series is highly imbalanced: the spikes are 11% and the non-spikes (in-
band) cases are 89% of the dataset. This makes the goal of accurately forecasting the time
series unreachable. It is straightforward to verify, that every model “forecasting” only non-
spike instances will rich an accuracy of 89% (and it will miss all the spikes). To overcome
this drawback, we incorporated weights in the minimization procedure to deal with the
extremely imbalanced classes. The misclassification of a spike instance weights 8 times
more than the weight of the miss-classification of a non-spike instance. This simple and
classic trick nullifies the effect of the imbalanced dataset in the identification of the optimal
separation hyperplane.

We excluded 10% of our total data from the training procedure to use it as the out-of-
sample dataset. These observations are used to assess the generalizability of our optimum
models (i.e., the accuracy of our model to data that were not used during the training step).

We used a five-fold cross-validation approach to tackle the issue of overfitting. The
optimal parameters for each model were estimated via a coarse to fine grid search at each
fold (C for the linear and C, γ for the RBF kernel). We identified the optimal autoregressive
forecasting model AR(q *), with q * denotes the optimum lag length when up to 31 lags were
included. The results are shown in Table 4, while a detailed list is placed in Appendix B.

Table 4. AR models, per-class accuracy.

AR(q) Models Linear RBF

AR(q) lags 21 5
Spikes

In-sample 57.14% 90.48%
Out-of-sample 50.00% 91.67%

Non-Spikes

In-sample 64.65% 64.54%
Out-of-sample 60.73% 66.49%
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3.2. Augmented SVM Models

Next, the 90 extra explanatory variables were sequentially incorporated, one by one,
to the best AR(q *) models. The variable, if any, that improved forecasting accuracy was
included in the AR(q *) model, and the process was repeated for the remaining variables
until no more improvement was observed. Table 5 outlines the findings of this procedure
about the optimal models.

Table 5. Augmented models, per-class accuracy.

Augmented Models Linear RBF

Lags 21 5

Explanatory Variables Litecoin and Namecoin Litecoin, Namecoin, and
Momentum(4), or ROC(4)

Spikes

In-sample 64.29% 80.48%
Out-of-sample 58.33% 79.17%

Non-Spikes

In-sample 58.61% 87.97%
Out-of-sample 57.59% 87.43%

By integrating Litecoin and Namecoin returns as explanatory variables, the AR(21)
model paired with the linear kernel was improved. The AR(5) model with the RBF ker-
nel was improved by the addition of Litecoin returns, Namecoin returns and Momen-
tum(4) (Momentum(n) = C(t)−C(t−n)

C(t−n) , where C(t) is the close price at day t) or ROC(4)

(ROC(n) = C(t)
C(t−n) , where C(t) is the close price at day t) of Bitcoin’s returns as explanatory

variables. The AR(5)-RBF model achieved the highest overall forecasting accuracy. This
model reached an overall (both classes) 86.51% out-of-sample forecasting accuracy. The
discrete accuracies for the spikes and non-spikes were 79.17% and 87.43%, respectively.
The confusion matrices of all these models are summarized Table 6. In addition to the SVM
models, logit models were estimated for the given task but failed to give meaningful results
(Logit models were used to forecast spikes in Bitcoin’s returns. Attempts to fine tune logit
models were not successful. Logit models either over-estimated observations as spikes or
non-spikes (depending on the threshold given). Logit models were not able to capture the
nonlinear nature of the data generating phenomenon of spikes. In general, logit models are
more appropriate for binary classification in balanced data sets).

Table 6. Confusion matrix for spikes and non-spikes.

AR Linear Augmented Linear AR RBF Augmented RBF

Actual class Actual class Actual class Actual class

Spike Non-Spike Spike Non-Spike Spike Non-Spike Spike Non-Spike

In-sample Predicted
class

Spike 120 608 135 712 190 610 169 207
Non-Spike 90 1112 75 1008 20 1110 41 1513

Out-of-
sample

Predicted
class

Spike 12 75 14 81 22 64 19 24
Non-Spike 12 116 10 110 2 127 5 167

4. Conclusions

Our goal, in this study, is to accurately forecast steep fluctuations to Bitcoin returns
while sustaining high accuracy for normal instances. In this manuscript, the spikes are
defined as the returns that fall outside a +/−2 conditional standard deviation band. The
spikes identified in our sample represent approximately 11% of the total observations.

One of the novel aspects of our method is that, in identifying the spikes, we do not
simply apply the unconditional standard deviation as a measure of volatility. The time series
of the returns exhibit significant anomalies, with periods of extreme volatility followed by
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periods of relative calm. As a result, using the overall unconditional standard deviation
may not always be the suitable choice. In our dataset, we identified non-linear patterns, that
the investors may model and exploit. Thus, we model the conditional standard deviation
of Bitcoin returns to reflect these non-linear processes applying alternative GARCH models
and selecting the one that best fits these non-linearities in the data. Based on this optimal
GARCH model, we identify the spikes using a +/−2 conditional standard deviations band.
The conditional standard deviation is more critical to the investor since he/she is less
interested in the index’s overall historical swings and more concerned with what occurs
next, in the short term, in his/her holding period.

Following the extraction of spikes using the conditional standard deviation, we use an
SVM model paired with two kernel functions. When compared to traditional statistical and
economic models, these models typically better capture the non-linearities observed in the
data generation mechanism of the sample at hand. Additionally, they do not impose or
require any presumptions on the data.

First, we model the data using the best autoregressive model. Then, we iteratively
augment our models and test as potential forecasters, a total of 90 financial time series.
This procedure selects the Litecoin and the Namecoin returns for both the linear and RBF
kernels, and Momentum(4) or ROC(4) only for the RBF kernel.

The results indicate that the overall optimum forecasting SVM model is the one using
the non-linear RBF kernel. The best model can achieve high forecasting accuracy for both
spikes and non-spikes: 79.17% correct identification of the spikes and 87.43% accuracy
for the non-spikes in out-of-sample data. Thus, we find evidence that the returns of
alternative cryptocurrencies provide important information on Bitcoin return spikes that
ML algorithms can exploit. This is evidence that the cryptocurrencies markets are not
segmented between them and are becoming more integrated with information spillovers
from one cryptocurrency to the other. Moreover, what is also interesting, is that the
cryptocurrencies market, as a whole, seems to still behave as an independent habitat of
assets with no direct linkages to the main financial, stock energy, and commodities markets.
No such variable from a total of more than 40 variables tested in our analysis, seems to
play any role in forecasting the Bitcoin and its spikes. Thus, the users and investors in the
cryptocurrencies markets seem segmented and focused on a preferred habitat and not the
whole financial market.
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Appendix A

Table A1. The full list of the variables used.

List of Explanatory Variables 1

No Name Description

1 BTC price Bitcoin price (USD)
2 BTC txVolume Bitcoin volume of trade (USD)
3 BTC adjTxVolume Bitcoin adjusted volume of trade (USD)
4 txCount Number of Bitcoin transactions
5 marketcap(USD) Bitcoin market capitalization (USD)
6 exchangeVolume(USD) Bitcoin volume of exchange (USD)
7 realizedCap(USD) Bitcoin-realized capitalization (USD)
8 generatedCoins Newly generated Bitcoins
9 fees Bitcoin fees for transactions
10 activeAddresses Bitcoin active unique addresses
11 averageDifficulty Bitcoin average mining difficulty
12 paymentCount Bitcoin number of payments
13 medianTxValue(USD) Bitcoin average transaction value (USD)
14 medianFee Bitcoin average fee
15 blockSize Bitcoin block size
16 blockCount Bitcoin number of blocks
17 Mov Avg (2) 2 Bitcoin Moving Average 2 Days
18 Mov Avg (3) Bitcoin Moving Average 3 Days
19 Mov Avg (4) Bitcoin Moving Average 4 Days
20 Mov Avg (7) Bitcoin Moving Average 7 Days
21 Mov Avg (15) Bitcoin Moving Average 15 Days
22 Mov Avg (50) Bitcoin Moving Average 50 Days
23 Mov Avg (200) Bitcoin Moving Average 200 Days
24 Momentum (2) 3 Bitcoin Momentum 2 Days
25 Momentum (3) Bitcoin Momentum 3 Days
26 Momentum (4) Bitcoin Momentum 4 Days
27 Momentum (7) Bitcoin Momentum 7 Days
28 Momentum (15) Bitcoin Momentum 15 Days
29 ROC (2) 4 Bitcoin Rate of Change 2 Days
30 ROC (3) Bitcoin Rate of Change 3 Days
31 ROC (4) Bitcoin Rate of Change 4 Days
32 ROC (7) Bitcoin Rate of Change 7 Days
33 ˆGSPC price S&P 500 price
34 ˆGSPC returns S&P 500 returns
35 GLD price SPDR Gold shares price
36 GLD returns SPDR Gold shares returns
37 ˆIXIC price Nasdaq Composite close price
38 ˆIXIC returns Nasdaq Composite returns
39 ˆDJI price Dow Jones Industrial Average close price
40 ˆDJI returns Dow Jones Industrial Average returns
41 OIL price iPath S&P GSCI Crude Oil TR ETN price
42 OIL returns iPath S&P GSCI Crude Oil TR ETN returns
43 SLV price iShares Silver Trust close price
44 SLV returns iShares Silver Trust returns
45 CPER price United States Copper Index price
46 CPER returns United States Copper Index returns
47 ˆNYA price NYSE Composite Index close price
48 ˆNYA returns NYSE Composite Index returns
49 ˆXAX price NYSE American Composite Index close price
50 ˆXAX returns NYSE American Composite Index close returns
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Table A1. Cont.

List of Explanatory Variables 1

No Name Description

51 ˆRUT price Russell 2000 Index close price
52 ˆRUT returns Russell 2000 Index close returns
53 ˆVIX CBOE Volatility Index (VIX)
54 FTSE 100 price FTSE 100 close price
55 FTSE 100 returns FTSE 100 returns
56 ˆN225 price Nikkei Stock Average, Nikkei 225 price
57 ˆN225 returns Nikkei Stock Average, Nikkei 225 returns
58 DEXUSEU EUR/USD exchange rate
59 DEXCHUS (Chinese Yuan)/USD exchange rate
60 DEXJPUS (Japanese Yen)/USD exchange rate
61 DEXUSUK USD/(British Pound) exchange rate
62 GOLD price Gold Fixing Price in London Bullion Market
63 GOLD returns Gold returns in London Bullion Market
64 CrudeOil price West Texas Intermediate (WTI) Crude Oil price
65 CrudeOil returns West Texas Intermediate (WTI) Crude Oil returns
66 GasSpot price Henry Hub Natural Gas Spot price
67 GasSpot returns Henry Hub Natural Gas Spot returns
68 ˆIRX 13 Week Treasury Bill
69 ˆFVX Treasury Yield 5 years
70 ˆTNX Treasury Yield 10 years
71 ˆTYX Treasury Yield 30 years
72 DBAA Moody’s Seasoned Baa Corporate Bond Yield

73 DTWEXM Trade Weighted U.S. Dollar Index: Major
Currencies

74 WILL5000INDFC Wilshire 5000 Total Market Full Cap Index

75 USEPUINDXD Economic Policy Uncertainty Index for United
States

76 XRP price Ripple price
77 XRP returns Ripple returns
78 LTC price Litecoin price
79 LTC returns Litecoin returns
80 LTC MarketCap Litecoin market capitalization (USD)
81 Namecoin price Namecoin price
82 Namecoin returns Namecoin returns
83 Novacoin price Novacoin price
84 Novacoin returns Novacoin returns
85 Terracoin price Terracoin price
86 Terracoin returns Terracoin returns
87 Elspot price Nord Pool electricity spot price
88 Elspot returns Nord Pool electricity spot returns
89 PJM West Hub price PJM West Hub electricity price
90 PJM West Hub returns PJM West Hub electricity returns

1 Price returns was transformed using natural logarithmic transformation pt = ln Pt, where pt are the transformed
daily closing prices. Returns was calculated using natural logarithmic return transformation rt = ln Pt

Pt−1
where rt

are the returns and Pt are the daily closing prices. 2 MA(n) = C(t)+C(t−1)+...+C(t−(n−1))
n , where C(t) is the close

price at day t. 3 Momentum(n) = C(t)−C(t−n)
C(t−n) , where C(t) is the close price at day t. 4 ROC(n) = C(t)

C(t−n) , and
where C(t) is the close price at day t.
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Appendix B

AR(q) Models for Lags q = [1, . . . , 31], Per-Class Accuracy

Linear RBF

AR(q)
Lags

Spikes Non-Spikes Spikes Non-Spikes

In-
Sample

Out-of-
Sample

In-
Sample

Out-of-
Sample

In-
Sample

Out-of-
Sample

In-
Sample

Out-of-
Sample

1 42.38% 37.50% 83.55% 88.48% 70.95% 58.33% 70.47% 83.77%
2 45.24% 33.33% 80.52% 83.25% 73.81% 70.83% 67.85% 81.68%
3 45.71% 37.50% 79.13% 81.15% 75.71% 66.67% 72.67% 84.82%
4 47.14% 41.67% 75.99% 78.53% 88.57% 75.00% 61.40% 63.87%
5 51.43% 50.00% 69.83% 68.59% 90.48% 91.67% 64.53% 66.49%
6 53.81% 45.83% 68.55% 67.02% 94.29% 79.17% 63.08% 59.16%
7 55.71% 50.00% 64.36% 58.64% 95.71% 87.50% 49.36% 39.79%
8 56.67% 50.00% 65.00% 60.73% 96.67% 83.33% 72.50% 74.35%
9 56.19% 54.17% 64.83% 61.26% 97.14% 75.00% 70.58% 64.40%

10 55.24% 54.17% 65.41% 61.26% 100.00% 41.67% 93.08% 85.34%
11 55.24% 50.00% 65.47% 63.35% 100.00% 37.50% 94.77% 87.96%
12 57.14% 50.00% 63.55% 59.16% 99.52% 58.33% 85.17% 74.35%
13 57.62% 45.83% 63.14% 58.12% 100.00% 33.33% 94.07% 86.91%
14 58.57% 54.17% 62.44% 56.02% 100.00% 33.33% 95.41% 85.34%
15 60.00% 54.17% 59.59% 54.97% 100.00% 29.17% 96.51% 88.48%
16 59.52% 41.67% 61.69% 62.30% 100.00% 29.17% 98.84% 95.29%
17 55.24% 45.83% 65.12% 64.92% 100.00% 25.00% 98.26% 93.72%
18 58.10% 45.83% 63.72% 60.21% 100.00% 25.00% 98.78% 95.81%
19 58.10% 50.00% 62.33% 59.16% 100.00% 37.50% 93.14% 85.86%
20 59.52% 50.00% 61.34% 57.59% 100.00% 33.33% 92.15% 83.77%
21 57.14% 50.00% 64.65% 60.73% 100.00% 37.50% 93.31% 87.43%
22 57.14% 50.00% 64.59% 61.26% 100.00% 37.50% 93.26% 88.48%
23 57.62% 50.00% 64.01% 60.21% 100.00% 25.00% 99.07% 97.91%
24 57.62% 45.83% 62.33% 61.78% 100.00% 29.17% 92.79% 87.43%
25 58.10% 45.83% 62.85% 63.35% 100.00% 29.17% 94.30% 86.91%
26 59.05% 50.00% 60.17% 57.07% 100.00% 29.17% 94.24% 89.01%
27 55.71% 50.00% 65.23% 62.30% 100.00% 29.17% 95.47% 90.58%
28 54.76% 54.17% 64.53% 61.26% 100.00% 29.17% 96.45% 91.62%
29 58.10% 62.50% 60.47% 60.21% 100.00% 29.17% 96.16% 91.62%
30 52.86% 62.50% 64.65% 64.40% 100.00% 29.17% 96.10% 87.96%
31 53.81% 62.50% 65.23% 63.35% 100.00% 41.67% 89.71% 79.06%
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