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Abstract: Accurate forecasts of the number of newly infected people during an epidemic are critical
for making effective timely decisions. This paper addresses this challenge using the SIMLR model,
which incorporates machine learning (ML) into the epidemiological SIR model. For each region,
SIMLR tracks the changes in the policies implemented at the government level, which it uses to
estimate the time-varying parameters of an SIR model for forecasting the number of new infections
one to four weeks in advance. It also forecasts the probability of changes in those government policies
at each of these future times, which is essential for the longer-range forecasts. We applied SIMLR
to data from in Canada and the United States, and show that its mean average percentage error is
as good as state-of-the-art forecasting models, with the added advantage of being an interpretable
model. We expect that this approach will be useful not only for forecasting COVID-19 infections, but
also in predicting the evolution of other infectious diseases.
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1. Introduction

Since its identification in December 2019, COVID-19 has posed critical challenges
for the public health and economies of essentially every country in the world [1–3].
Government officials have taken a wide range of measures in an effort to contain this
pandemic, including closing schools and workplaces, setting restrictions on air travel, and
establishing stay at home requirements [4]. Accurately forecasting the number of new
infected people in the short and medium term is critical for the timely decisions about
policies and for the proper allocation of medical resources [5,6].

There are three basic approaches for predicting the dynamics of an epidemic: compartmental
models, statistical methods, and ML-based methods [5,7]. Compartmental models subdivide a
population into mutually exclusive categories, with a set of dynamical equations that explain
the transitions among categories [8]. The Susceptible-Infected-Removed (SIR) model [9] is a
common choice for the modelling of infectious diseases. Statistical methods extract general
statistics from the data to fit mathematical models that explain the evolution of the epidemic [6].
Finally, ML-based methods use machine learning algorithms to analyze historical data and find
patterns that lead to accurate predictions of the number of new infected people [7,10].

Arguably, when any approach is used to make high-stake decisions, it is important
that it be not just accurate, but also interpretable: It should give the decision-maker enough
information to justify the recommendation [11]. Here, we propose SIMLR, which is an
interpretable probabilistic graphical model (PGM) that combines compartmental models
and ML-based methods. As its name suggests, it incorporates machine learning (ML)
within an SIR model. This combines the strength of curve fitting models that allow accurate
predictions in the short-term, involving many features, with mechanistic models that allow
to extend the range to predictions in the medium and long terms [12].
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SIMLR uses a mixture of experts approach [13], where the contribution of each expert to
the final forecast depends on the changes in the government policies implemented at various
earlier time points. When there is no recent change in policies (two to four weeks before the
week to be predicted), SIMLR relies on an SIR model with time-varying parameters that are
fitted using machine learning methods. When a change in policy occurs, SIMLR instead relies
on a simpler model that predicts that the new number of infections will remain constant.
Note that forecasting the number of new infections one and two weeks in advance (∆I1 and
∆I2) is relatively easy as SIMLR knows, at the time of the prediction, whether the policy has
changed recently. However, for three- or four-week forecasts (∆I3 and ∆I4), our model needs
to estimate the likelihood of a future change of policy. SIMLR incorporates prior domain
knowledge to estimate such policy-change probabilities.

The use of such prior models—here epidemiological models—is particularly important
when the available data is scarce [14]. At the same time, machine learning models need
to acknowledge that the reported data on COVID-19 is imperfect [15,16]. The use of
probabilistic graphical models allows SIMLR to account for this uncertainty on the data. At
the same time, the probability tables associated with this graphical model can be manually
modified to adapt SIMLR to the specific characteristics of a region.

This work makes three important contributions. (1) It empirically shows that an SIR
model with time-varying parameters can describe the complex dynamics of COVID-19.
(2) It describes an interpretable model that predicts the new number of infections one
to four weeks in advance, achieving state-of-the-art results, in terms of mean absolute
percentage error (MAPE), on data from Canada and the United States. (3) It presents a
machine learning model that incorporates the uncertainty of the input data and can be
tailored to the specific situations of a particular region.

The rest of Section 1 describes the related work and the basics of the SIR compartmental
model. Section 2 then describes in detail our proposed SIMLR approach. Section 3 shows
the results of the predicting the number of new infections in the United States and provinces
of Canada. Finally, Section 4 presents our final remarks.

1.1. Basic SIR Model

The Susceptible-Infected-Removed (SIR) compartmental model [9] is a mathematical
model of infectious disease dynamics that divide the population into three disjoint groups [8].
Susceptible (S) refers to the set of people who have never been infected but can acquire
the disease. Infected (I) refers to the set of people who have and can transmit the infection.
Removed (R) refers to the people who have either recovered or died from the infection and
cannot transmit the disease anymore. This model is defined by the differential equations:

dS
dt

= − βS(t)I(t)
N

,
dI
dt

=
βS(t)I(t)

N
− γI(t),

dR
dt

= γI(t) (1)

SIR assumes an homogeneous and constant population, and it is fully defined by the
parameters β (transmission rate) and γ (recovery rate). The intuition behind this model
is that every infected patient gets in contact with β people. Since only the susceptible
people can become infected, the chance of interacting with a susceptible person is simply
the proportion of susceptible people in the entire population, N = S + I + R. Likewise, at
every time point, γ proportion of the infected people is removed from the system. Figure 1a
depicts the general behaviour of an SIR model.
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Figure 1. (a) General behaviour of the SIR model. (b) The number of infections predicted by the SIR
model with fixed parameters, fitted to the US data for 1 week prediction. (c) Similar to (b), but with
time-varying parameters.

1.2. Related Work

The main idea behind combining compartmental models with machine learning is to
replace the fixed parameters of the former with time-varying parameters that can be learned
from data [6,17–19]. However, most of the approaches focus on finding the parameters
that can explain the past data, and not on predicting the number of newly infected people.
Although those approaches are useful for obtaining insight into the dynamics of the disease,
it does not mean that those parameters will accurately predict the behaviour in the future.

Particularly relevant to our approach is the work by Arik et al. [5], who used latent
variables and autoencoders to model extra compartments in an extended Susceptible-
Exposed-Infected-Removed (SEIR) model. Those additional compartments bring further
insight into how the disease impacts the population [20,21]; however, our experiments
suggest that they are not needed for an accurate prediction of the number of new infections.
One limitation of their model is a decrease in performance when the trend in the number
of new infections changes. We hypothesize that those changes in trend are related to the
government policies that are in place at a specific point in time. SIMLR is able to capture
those changes by tracking the policies implemented at the government level.

A different line of work replaces epidemiological models with machine learning
methods to directly predict the number of new infections [22–25]. Importantly, Yeung
et al. [26] added non-pharmaceutical interventions (policies) as features in their models;
however, their approach is limited to make predictions up to two weeks in advance, since
information about the policies that will be implemented in the future is not available at
inference time. Our SIMLR approach differs by being interpretable and also by forecasting
policy changes, which allows it to extend the horizon of the ∆I predictions.

There are many models that attempt to predict the evolution of the COVID-19 epidemic.
The Center for Disease Control and Prevention (CDC) in the United States allows different
research teams across the globe to submit their forecasts of the number of cases and deaths
1 to 8 weeks in advance [27]. More than 100 teams have submitted at least one prediction
to this competition. We compare SIMLR with all of the models that made predictions 1 to
4 weeks in advance in the same time span as our study.

2. Materials and Methods

We view SIMLR as a probabilistic graphical model that uses a mixture of experts
approach to forecast the number of new COVID-19 infections, 1 to 4 weeks in advance.
Figure 2 shows the intuition behind SIMLR. Changes in the government policies are likely
to modify the trend of the number of new infections. We assume that stronger policies are
likely to decrease the number of new infections, while the opposite effect is likely to occur
when relaxing the policies. These changes are reflected as a change in the parameters of the
SIR model. Using those parameters, we can then predict the number of new infections, then
use that to compute the likelihood of observing other new policy changes in the short term.

While Figure 2 is an schematic diagram used for pedagogical purposes; Figure 3
depicts the formal probabilistic graphical model, as a plate model, that we use to estimate
the parameters of the SIR model, the number of new infections, and the likelihood of
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observing changes in policies 1 to 4 weeks in advance. The blue nodes are estimated at
every time point, while the values of the green nodes are either known as part of the
historical data, or inferred in a previous time point. The random variables are assumed to
have the following distributions:

CTt+1 | {CPt−τ}τ∈{1,2,3} ∼ CatK∈{−1,0,1}(θCT)

βt+1 | {βt−τ}τ∈{0,1,2}, CTt+1 ∼ N (µβ, Σβ)

γt+1 | {γt−τ}τ∈{0,1,2}, CTt+1 ∼ N (µγ, Σγ)

SIRt+1 | βt+1, γt+1 ∼ N (µSIR, ΣSIR)
Ut | {SIRt−τ}τ∈{0,1,2} ∼ CatK∈{−1,0,1}(θU)

Ot | Wt ∼ CatK∈{0,1}(θO)

CPt+1 | Ot, Ut ∼ CatK∈{−1,0,1}(θCP)

(2)

where t indexes the current week, SIRt = [St, It, Rt], µSIR ∈ R3 is given below by
Equation (3), µβ = (α0,CTt+1) + (α1,CTt+1)βt−1 + (α2,CTt+1)βt−2 + (α3,CTt+1)βt−3 and
µγ = (ω0,CTt+1) + (ω1,CTt+1)γt−1 + (ω2,CTt+1)γt−2 + (ω3,CTt+1)γt−3 are linear combinations
of the three previous values of β and γ, (respectively). The coefficients of those linear
combinations depend on the value of the random variable CTt+1. We did not specify a
distribution for the node New_infectionst+1 because its value is deterministically computed
as St − St+1.

Figure 2. Intuition behind SIMLR. The policies currently in place determine the value of the
parameters needed to infer the next values, using an SIR model. Those predictions are then used to
estimate how the policies might change in the future.

Informally, the assignment CTt = −1 means that we expect a change in trend from
an increasing number of infections to a decreasing one. The opposite happens when
CTt = 1, while CTt = 0 means that we expect the population to follow the current trend
(either increasing or decreasing). We assume these changes in trend depend on changes
in the government policies 2 to 4 weeks prior to the week of our forecast—e.g., we use
{CTt−3, CTt−2, CTt−1} when predicting the number of new infections at t + 1, ∆It+1, and
we need {CTt, CTt+1, CTt+2} when predicting ∆It+4. Note that, at time t, we will not
know CTt+1 nor CTt+2. We chose this interval based on the assumption that the incubation
period of the virus is 2 weeks.
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The status of CTt+1 defines the coefficients that relate βt+1 and γt+1 with their three
previous values βt, βt−1, βt−2 and γt, γt−1, γt−2, respectively. Since βt+1 and γt+1 fully
parameterize the SIR model in Equation (1), we can estimate the new number of infected
people, ∆It+1, from these parameters (as well as the SIR values at time t).

The random variables Ut ∈ {−1, 0, 1} and Ot ∈ {0, 1} are auxiliary variables designed
to predict the probability of observing a change in policy at time t + 1. Intuitively, Ut
represents the "urgency" of modifying a policy. As the number of cases per 100K inhabitants
and the rate of change between the number of cases in two consecutive time points increases,
the urgency to set stricter government policies increases. As the number (and rate of
change) of cases decreases, the urgency to relax the policies increases. Finally, Ot models
the “willingness” to execute a change in government policies. As the number of time points
without a change increases, so does this “willingness”.

Figure 3. Modeling SIMLR as a PGM for forecasting new cases of COVID-19. The blue nodes are
estimated at each time point, while the green ones are either based on past information, or where
estimated in a previous iteration.
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2.1. SIR with Time-Varying Parameters

We can approximate an SIR model by transforming the differential Equation (1) into
the equations of differences:

St = −β
St−1 It−1

N
+ St−1

It = β
St−1 It−1

N
− γIt−1 + It−1

Rt = γIt−1 + Rt−1

(3)

where St, It, Rt are the number of individuals in the groups Susceptible, Infected and
Removed, respectively, at time t. Similarly St−1, It−1, Rt−1 represent the number individuals
in each group at time t− 1. β is the transmission rate, and γ is the recovery rate.

While the SIR model is non-linear with respect to the states (S, I, R), it is linear with
respect to the parameters β and γ. Therefore, under the assumption of constant and known
population size (i.e., N = St + It + Rt) we can re-write the set of Equation (3) as:[

St
It

]
=

[
− St−1 It−1

N 0
St−1 It−1

N −It−1

][
β
γ

]
+

[
St−1
It−1

]
Rt = N − St − It

(4)

Given a sequence of states x1, . . . , xn, where xt = [St It]T , it is possible to estimate the
optimal parameters of the SIR model as:

(β∗, γ∗) = arg min
β,γ

n

∑
i=1
||xi − x̂i||2 + λ1(β− β0)

2 + λ2(γ− γ0)
2 (5)

where x̂i is computed using Equation (4), and λ1 and λ2 are optional regularization
parameters that allow the incorporation of the priors β0 and γ0. For the case of Gaussian
priors—i.e., β ∼ N (β0, σ2

β) and γ ∼ N (γ0, σ2
γ)—we use λ1 = 1

2σ2
β

and λ2 = 1
2σ2

γ
[28].

Intuitively, Equation (5) computes the transmission rate (β∗) and the recovery rate (γ∗)
that best explain the number of new infections, deaths, and recovered people in a fixed
time frame. If we know a standard recovery rate and transmission rate a priori (β0, γ0),
it is possible to incorporate them into the Equation (5) as regularization parameters. The
weights λ1 and λ2 control how much to weight those prior parameters. Small weights
means we basically use the parameters learned by the data, and large weights mean more
emphasis on the prior information.

In the traditional SIR model, we set λ1 = λ2 = 0 and fit a single β and γ to the
entire time series. However, as shown in Figure 1a, an SIR model with fixed parameters is
unable to accurately model several waves of infections. As illustration, Figure 1b shows the
predictions produced by fitting an SIR with fixed parameters (Equation (5)) to the US data
from 29 March 2020 to 3 May 2021, and then using those parameters to make predictions
one week in advance, over this same interval. That is, using this learned (β, γ), and the
number of people in the S, I, and R compartments on 28 March 2020, we predicted the
number of observed cases during the week of 29 March 2020 to 4 April 2020. We repeated
the same procedure for the entire time series. Note that even though the parameters β and
γ were found using the entire time series – i.e., using information that was not available at
the time of prediction—the resulting model still does a poor job fitting the reported data.

Figure 1c, on the other hand, was created by allowing β and γ to change every week.
Here, we first found the parameters that fit the data from 29 March 2020 to 4 April 2020—call
them β1 and γ1—then used those parameters along with the SIR state on 28 March 2020 to
predict the number of new infections one week ahead—i.e., the sampled week of 29 March
2020 to 4 April 2020. By repeating this procedure during the entire time series we obtained
an almost perfect fit to the data. Of course, these are also not “legal” predictions since they
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too use information that is not available at prediction time—i.e., they used the number of
reported infections during this first week to find the parameters, which were then used to
estimate the number of cases over this time. However, this “cheating” example shows that
an SIR model, with the optimal time-varying parameters, can model the complex dynamics
of COVID-19. Recall from Figure 1b that this is not the case in the SIR model with fixed
parameters, which cannot even properly fit the training data.

2.2. Estimating βt+1 and γt+1

Naturally, the challenge is “legally” computing the appropriate values of βt+1 and
γt+1, for each week, using only the data that is known at time t. Figure 3 shows that
computing βt+1 and γt+1 depends on the status of the random variable CTt+1. When
CTt+1 = 0—i.e., there is no change in the current trend—we assume that:

βt+1 ∼ N (α0 + α1βt + α2βt−1 + α3βt−2, σ2
β)

γt+1 ∼ N (ω0 + ω1γt + ω2γt−1 + ω3γt−2, σ2
γ)

(6)

At time t, we can use the historical daily data x1, x2, . . . , xt to find the weekly parameters
β1, β2, . . . , βt/7 and γ1, γ2, . . . , γt/7. Note that the is just one value for each week, so is there
are 140 days, there are 140/7 = 20 weeks. The first weekly pair (β1, γ1) is found by
fitting Equation (5) to x1, . . . , x7; (β2, γ2) to x8, . . . , x14; and so on. Finally, we find the
parameters α and ω in Equation (6) by maximizing the likelihood of the computed pairs.
After finding those parameters, it is straightforward to infer (βt+1, γt+1). Note that this
approach is the probabilistic version of linear regression. To estimate the parameters σ2

β and

σ2
γ we can simply estimate the variance of the residuals. An advantage of also computing

these variances is that it is possible to obtain confidence intervals by sampling from the
distribution in Equation (6) and then using those samples along with Equation (3) to
estimate the distribution of the new infected people.

We estimated βt+1 and γt+1 as a function of the 3 previous values of those parameters
since this allows them to incorporate the velocity and acceleration at which the parameters
change. We computed the velocity of β as vβ,t = βt − βt−1 and its acceleration as
aβ,t = vβ,t − vβ,t−1. Then, estimating βt = θ0 + θ1βt−1 + θ2vβ,t−1 + θ3aβ,t−1 is equivalent to
the model in Equation (6). The same reasoning applies to the computation of γt. We call
this approach the “trend-following varying-time parameters SIR”, tf-v-SIR.

For the case of CTt = −1 and CTt = 1 (which represents a change in trend from
increasing number of infections to decreasing number of infections or vice-versa), we set
βt+1 and γt+1 to values such that the predicted number of new cases at week t + 1 is
identical to the one at week t. We call this the “Same as the Last Observed Week” (SLOW)
model. As shown in Section 3, SLOW is a baseline with very good performance despite
its simplicity. Given that the pandemic is a physical phenomenon that changes relatively
slowly from one week to the next, making a prediction that assumes that the new number
of cases will remain constant is not a bad prediction.

2.3. Estimating CTt+1, CPt+1, Ot

The random variables CTt+1, CPt+1 and Ot in Figure 3 are all discrete nodes with
discrete parents, meaning their probability mass functions are fully defined by conditional
probability tables (CPTs). Learning the parameters of such CPTs from data is challenging
due to the scarcity of historical information. The random variable CTt+1 depends on the
random variable changes in policy (CP) at times t− 1, t− 2, t− 3; however, there are very
few changes in policy in a given region, meaning it is difficult to accurately estimate those
probabilities from data. For the random variable O, which represents the “willingness”
of the government to implement a change in policy, there is no observable data at all.
We therefore relied on prior expert knowledge to set the parameters of the conditional
probability tables for these random variables. Figure 4 shows the conditional probability
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tables (CPT) for the random variables CTt+1, CPt+1, Ot. The intuition used to generate the
CPT’s is as follows:

We considered that a change in trend in the current week depends on changes in
policies during the previous three weeks. We chose 3 weeks using the hypothesis that the
incubation period for the virus is 2 weeks. Then the effects of a policy will be reflected
approximately 2 weeks after a change. We decided to analyze also one week after, and one
week before this period, giving as a result the tracking of CPt−3 to CPt−1. Secondly, we
also assume that whenever we observe a change of policy that will move the trend from
going up to going down, then that event will most likely happen. This is why most of the
probability mass is located in a single column. For example, if we observe that the policies
are relaxed at any point during the weeks t − 3, t − 2, or t − 1, then we assume that we
will observe a change in trend with 99.9% probability.

The rationale for the CPT P(Ot |Wt) is that the government becomes more open to
implement changes after long periods of ‘inactivity’. For example, if they implement a
change in policy this week (Wt = 0), then the probability of considering a second change
of policy during the same week is very small (0.01%). We are assuming that, after a change
in policy, the government will wait to see the effect of that change before taking further
action. If 4 weeks have passed since the last change in policy, we estimated the probability
of considering a change in the policy as 50%, while if more than 7 weeks have passed, then
they are fully open to the possibility of implementing a new change.

P(Ot | Wt) estimates the probability of considering a change in the policy. The
probability of actually implementing a change, P(CPt+1 | Ot, Ut) depends not only on
how willing the government is, but also on how urgent it is to make a change. In general,
if the government is open to implement a change, and the urgency is “high”, then the
probability of changing a policy is high. We also considered that the government “prefers”
to either not make changes in policy or relax the policies, rather than to implement more
strict policies.

Figure 4. Conditional probability tables used by SIMLR. The names of the variables refer to the
nodes that appear on Figure 2 on the main text.

2.4. Estimating Ut

For modelling the random variable Ut, which represents the “Urgency to change the
trend”, we use an NN-CPD (neural-network conditional probability distribution), which is
a modified version of the multinomial logistic conditional probability distribution [29].
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Definition 1 (NN-CPD). Let Y ∈ {1, . . . , m} be an m-valued random variable with k parents
X1, . . . , Xk that each take on numerical values. The conditional probability distribution P(Y | X1, . . . , Xk)
is an NN-CPD if there is an function z = fθ(X1, . . . , Xk) ∈ Rm, represented as a neural network
with parameters θ, such that p(Y = i | x1, . . . , xk) = exp(zi)/ ∑j exp(zj), where zi represents the
i-th entry of z.

Note Ut is a latent variable, so there is no observable data at all. We again rely on
domain knowledge to estimate its probabilities. To compute P(Ut | SIRt−2, SIRt−1, SIRt),
we extract two features: ct = 10× 105(St−1 − St)/N, which represents the number of new
reported infections per 100K inhabitants; and vt = ct − ct−1, which estimates the rate of
change of ct. Then define P(Ut | SIRt−2, SIRt−1, SIRt) = P(Ut | ct, vt).

To learn the parameters θ we created the dataset shown in Figure 5. Note that the
targets in such dataset are probabilities. We relied on the probabilistic labels approach
proposed by Vega et al. [30] to use a dataset with few training instances along with their
probabilities to learn the parameters of a neural network more efficiently. We trained and a
simple neural network with a single hidden layers with 64 units, and 3 output units with
softmax activation.

The random variables Ut ∈ {−1, 0, 1} and Ot ∈ {0, 1} are auxiliary variables designed
to predict the probability of observing a change in policy at time t + 1. Intuitively, Ut
represents the “urgency” of modifying a policy. As the number of cases per 100 K
inhabitants and the rate of change between the number of cases in two consecutive time
points increases, the urgency to set stricter government policies increases. As the number
(and rate of change) of cases decreases, the urgency to relax the policies increases. Most of
the parameters in both NN-CPD tables are similar for the US and Canada, the difference
arises from a perceived preference for not setting very strict policies in the US during the
first year of the pandemic.

Figure 5. Dataset used to create the NN-CPD for the variable Ut and its visualization. Values closer
to 1 (yellow) increase p(Ut = 1 | Ct, Vt). Values closer to 0 (green) increase p(Ut = 0 | Ct, Vt). Values
closer to −1 (blue) increase p(Ut = −1 | Ct, Vt).
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2.5. Evaluation

We evaluated the performance of SIMLR, in terms of the mean absolute percentage
error (MAPE) and mean absolute error (MAE), for forecasting the number of new infections
one to four weeks in advance, in data from United States (as a country and individually for
every state) and the six biggest provinces of Canada: Alberta (AB), British Columbia (BC),
Manitoba (MN), Ontario (ON), Quebec (QB), and Saskatchewan (SK). For each of the
regions, the predictions are done on a weekly basis, over the 39 weeks from 26 July 2020 to
1 May 2021. This time span captures different waves of infections. Equation (7) show the
computation of the metrics used for evaluating our approach.

MAPE =
1
n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣
MAE =

1
n

n

∑
t=1
|yt − ŷt|

(7)

At the end of every week, we fitted the SIMLR parameters using the data that was
available until that week. For example, on 25 July 2020, we used all the data available
from 1 January 2020 to 25 July 2020 to fit the parameters of SIMLR. Then, we made the
predictions for the number of new infections during the weeks: 26 July 2020–1 August 2020
(one week in advance), 2 August 2020–8 August 2020 (two weeks in advance), 9 August
2020–15 August 2020 (three weeks in advance), and 16 August 2020–22 August 2020 (four
weeks in advance). After this, we then fitted the parameters with data up to 1 August 2020
and repeated the same process, for 38 more iterations, until we covered the entire range of
predictions.

We compared the performance of SIMLR with the SIR compartmental model with
time-varying parameters learned using Equation (6) but no other random variable (tf-v-SIR),
and with the simple model that forecasts that the number of cases one to four weeks in
advance is the “Same as the Last Observed Week” (SLOW). For the United States data, we
also compared the performance of SIMLR against the publicly available predictions at the
COVID-19 Forecast Hub, which are the predictions submitted to the Center for Disease
Control and Prevention (CDC) [31].

For training, we used the publicly available dataset OxCGRT [4], which contains
the policies implemented by different regions, as well as the time period over which
they were implemented. We limited our analysis to three policy decisions: Workplace
closing, Stay at home requirements, and Cancellation of public events in the case
of Canada. For the case of the United States we used Restrictions on gatherings,
Vaccination policy, and Cancellation of public events. For information about the
new number of reported cases and deaths, we used the publicly available COVID-19
Data Repository by the Center for Systems Science and Engineering at Johns Hopkins
University [1]. The code for reproducing the results presented here are discussed in
Appendix A.

3. Results
3.1. Data Preprocessing

Before inputting the time-series data to SIMLR, we performed some basic preprocessing
during the training phase, and exclusively on the training data. We evaluated of our models
by comparing its predictions with the results reported by the different health agencies –i.e.,
we did not fill in the data on the test sets:

1. The original data contains the cumulative number of reported infections/deaths on a
daily basis. We trivially transformed this time-series into the number of new daily
infections/deaths.
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2. We considered negative values from the new daily infections/deaths time-series as
missing, assuming these negative values arose due to inconsistencies during the data
reporting procedure.

3. We “filled-in” the missing values. When the number of new infections/deaths was
missing at day d, we assumed that the entry at d + 1 contained the cases for both d and
d + 1, and divided the number of new infections/deaths evenly between both days.

4. We eliminated outliers. For each day d, with number of reported new infections, ∆Id,
we computed the mean (µd) and standard deviation (σd of the set ∆Id−10, . . . , ∆Id−1;
we then set ∆Id := min{∆Id, µd + 4σd}.

5. We used the number of new infections and new deaths to produce the SIR vector
SIRt = [St, It, Rt].

In step 5, we assumed that everyone in a given region was susceptible at the start
time—i.e., S0 = N. At each new time point, we transfer the number of new infections
from S to I, and the number of new deaths and recovered from I to R. If the number of
new recovered people is not reported, we used the surveillance definition of recovered
used by Canadian health agencies. This definition is based on the assumption that a
recovered person is one who is not hospitalized and is 14 days past the day when they
tested positive [32,33]:

“Active and recovered status is a surveillance definition to try to understand the
number of active cases in the population. It is not related to clinical management
of cases. It is based on the assumption that a case is recovered 14 days after a
particular date...”

3.2. MAPE and MAE

Figure 6 shows the MAPE of the one- to four-week forecasts for the United States as
a country and the six biggest provinces of Canada. Note that SIMLR has a consistently
lower MAPE than tf-v-SIR and SLOW. Figure 7 shows a similar result in terms of MAE.
Tables 1 and 2 show the mean and standard deviations of the metrics corresponding to
the Figures 6 and 7. In addition Table 3 show the correlation coefficient between the time
series of the reported new infections every week and the predictions made by the different
models.

Figure 6. Comparison of SIMLR, SIR model with time-varying parameters, and SLOW. Table 1
contains the numerical information.
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Figure 7. Comparison of SIMLR, SIR model with time-varying parameters, and SLOW in terms of
MAE. To make the numbers comparable, the figures each show the US MAE values divided by 100.

Table 1. MAPE of the six biggest provinces in Canada and United States as a country, one- to
four-weeks in advance. The number in parenthesis is the standard deviation.

Week 1 Week 2

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 7 (8) 10 (10) 17 (9) 20 (14) 23 (16) 33 (17)

BC 11 (8) 12 (10) 11 (8) 18 (10) 22 (15) 20 (13)

MN 19 (14) 20 (13) 21 (15) 36 (24) 34 (22) 37 (24)

ON 14 (9) 14 (10) 16 (10) 28 (21) 29 (24) 29 (19)

QB 13 (11) 14 (11) 16 (11) 23 (20) 26 (30) 27 (19)

SK 14 (9) 15 (12) 18 (13) 28 (17) 31 (18) 33 (18)

US 9 (6) 11 (8) 13 (9) 16 (13) 19 (16) 24 (17)

Week 3 Week 4

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 34 (21) 33 (22) 48 (26) 46 (35) 47 (33) 63 (35)

BC 22 (14) 23 (16) 25 (18) 25 (20) 27 (21) 31 (20)

MN 49 (31) 48 (34) 50 (27) 60 (38) 63 (42) 62 (33)

ON 42 (37) 44 (40) 42 (30) 55 (51) 59 (58) 53 (40)

QB 32 (28) 34 (36) 37 (27) 38 (41) 51 (64) 45 (35)

SK 32 (23) 42 (32) 43 (22) 38 (24) 60 (50) 49 (26)

US 23 (23) 25 (26) 34 (28) 36 (38) 38 (41) 45 (40)
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Table 2. MAE of the six biggest provinces in Canada and United States as a country, one- to four-weeks
in advance. The number in parenthesis is the standard deviation. For the case of the US the number
of cases was divided by 100.

Week 1 Week 2

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 385 (559) 598 (905) 850 (724) 966 (971) 1245 (1430) 1651 (1258)

BC 339 (304) 397 (426) 361 (294) 594 (443) 661 (480) 648 (485)

MN 204 (227) 252 (271) 221 (224) 422 (371) 418 (379) 413 (346)

ON 1471 (1343) 1520 (1662) 1635 (1388) 3124 (2632) 3001 (2847) 3044 (2351)

QB 1229 (1443) 1265 (1354) 1410 (975) 2098 (2264) 2496 (3270) 2446 (1743)

SK 161 (161) 171 (203) 194 (174) 339 (294) 382 (324) 355 (264)

US* 841 (796) 1061 (1149) 1103 (913) 1361 (1398) 1729 (1979) 1933 (1580)

Week 3 Week 4

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 1719 (1381) 1601 (1558) 2378 (1649) 2261 (1863) 2385 (2087) 3074 (1858)

BC 731 (566) 777 (672) 853 (716) 835 (709) 883 (703) 1127 (892)

MN 609 (504) 591 (501) 602 (467) 749 (612) 775 (630) 753 (571)

ON 4357 (3672) 4511 (3983) 4266 (3053) 5702 (4427) 5910 (4988) 5447 (3417)

QB 2854 (2527) 3261 (4096) 3288 (2389) 3244 (3131) 4636 (6115) 3947 (2788)

SK 351 (320) 522 (500) 472 (306) 410 (287) 736 (733) 541 (348)

US* 1793 (2012) 2089 (2768) 2538 (2151) 2414 (2755) 2933 (4027) 3157 (2679)

Table 3. Pearson correlation coefficient between the ground truth and the predictions of the six
biggest provinces in Canada and United States as a country one- to four-weeks in advance.

Week 1 Week 2

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 0.99 0.98 0.96 0.94 0.95 0.84

BC 0.97 0.97 0.97 0.90 0.89 0.90

MN 0.96 0.96 0.95 0.85 0.87 0.86

ON 0.96 0.97 0.96 0.83 0.85 0.85

QB 0.97 0.97 0.96 0.93 0.89 0.86

SK 0.97 0.96 0.95 0.89 0.89 0.86

US 0.97 0.97 0.96 0.93 0.93 0.87

Week 3 Week 4

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 0.90 0.90 0.68 0.84 0.85 0.50

BC 0.84 0.83 0.83 0.80 0.81 0.75

MN 0.69 0.75 0.73 0.51 0.56 0.57

ON 0.67 0.68 0.71 0.51 0.53 0.58

QB 0.83 0.84 0.74 0.71 0.71 0.61

SK 0.82 0.81 0.78 0.73 0.69 0.71

US 0.88 0.90 0.77 0.80 0.84 0.65
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Figure 8c shows how our proposed SIMLR approach compares with the 18 models that
submitted predictions at the country level to the CDC during the same span of time (results
at the state level are included in the Appendix B). Note that SIMLR and the model LNQ-ens1
are the best performing models, with no statistically significant difference (p > 0.05 on a
paired t-test) with respect to MAPE.

Figure 8. (a) 1-week forecasts SIMLR, tf-v-SIR, and SLOW, for Alberta, Canada. (b) 2-week forecasts,
of the same models, for US data. (c) Comparison of SIMLR versus models submitted to the CDC (on
US data).

4. Discussion

Figure 8 illustrates the actual predictions of SIMLR one week in advance for the
province of Alberta, Canada; and two weeks in advance for the US as a country. These
two cases exemplify the behaviour of SIMLR. As noted above, there is a 2- to 4-week lag
after a policy changes, before we see the effects. This means the task of making 1-week
forecasts is relatively simple, as the relevant policy (at times t− 3 to t− 1) is fully observable.
This allows SIMLR to directly compute CTt+1, which can then choose whether to continue
using the SIR with time-varying parameters if no policy changed at time t− 1, t− 2, or
t− 3, or using the SLOW predictor if the policy changed.

Figure 8a shows a change in the trend of reported new cases at week 22. However, just
by looking at the evolution of number of new infections before week 22, there is no way to
predict this change, which is why tf-v-SIR predicts that the number of new infections will
continue growing. However, since SIMLR observed a change in the government policies at
week 20, it realized it could no longer rely on its estimation of parameters and so switched
to the SLOW model, which is why it was more accurate here. A similar behaviour occurs in
week 34, when the third wave of cases in Alberta started. Due to a relaxation in the policies
on week 31, SIMLR (at week 31) correctly predicted a change of trend around weeks 33–35.



Forecasting 2022, 4 86

This behavior is not exclusive for the data of Alberta and it explains why the performance
of SIMLR is consistently higher than the baselines used for comparison in Figure 6 and
Figure 8c. A striking result is how hard it is to beat the simple SLOW model (COVIDhub-
baseline). Out of the 19 models considered here, only five (including SIMLR) do better than
this simple baseline when predicting three to four weeks ahead. This brings some insight
into the challenge of making accurate prediction in the medium term—probably due to the
need to predict, then use, policy change information. Tables A1–A4 in the Appendix B show
a comparison between our proposed SIMLR and tf-v-SIR against the models submitted to
the CDC for all the states in the US. SIMLR consistently ranks among the best performers,
with the advantage of being an interpretable model.

A deeper analysis of Tables A1–A4 shows that, in some states, the performance of
SIMLR degrades for longer range predictions. This occurs because we are monitoring only
the same three policies for all the states; however, different states might have implemented
different policies and reacted differently to them. For example, closing schools might be
a relevant policy in a state where there is an outbreak that involves children, but not as
relevant if most of the cases are in older people.

Tracking irrelevant policies might degrade the performance of SIMLR. If the status
of an irrelevant policy changes, then the dynamics of the disease will not be affected. The
model however, will assume that the change in the policy will cause a change of trend and
it will rely on the SLOW model, instead of the more accurate tf-v-SIR. Although SIMLR can
be adapted to track different policies, the policies that are relevant for a given state must be
given as an input. So while we think our overall approach applies in general, our specific
model (tracking these specific policies, etc.) might not perform accurate predictions across
all the regions. This is also a strength, in that it is trivial to adapt our specific model to track
the policies of interest within a given region.

Predictions at the country level are more complicated, since most of the time policies
are implemented at the state (or province) level instead of nationally. For making predictions
for an entire country, as well as predictions three or four weeks in advance, SIMLR first
predicts, then uses, the likelihood of observing a change in trend, at every week. In these
cases, the random variable CTt+1 no longer acts like a “switch”, but instead it mixes the
predictions of the tf-v-SIR and SLOW models, according to the probability of observing a
change in the trend.

Figure 8b shows that whenever there is a stable trend in the number of new reported
infections—which suggests there have been no recent policy changes—SIMLR relies on
the predictions of the tf-v-SIR model; however, as the number (and rate of change) of new
infections increases, so does the probability of observing a change in the policy. Therefore,
SIMLR starts giving more weight to the predictions of the SLOW model. Note this behavior
in the same figure during weeks 13–20.

One limitation of SIMLR is that it relies on conditional probabilities that are hard to
learn due to lack of data, which forced us to build them based on domain knowledge. If
this prior knowledge is inaccurate, then the predictions might be also misleading. Also,
different regions might have different “thresholds” for taking action. Despite this limitation,
SIMLR produced state-of-the-art results in both forecasting in the US as a country and at
the provincial level in Canada, as well as very competitive results in predictions at the state
level in the US.

Note that modelling SIMLR as a PGM does not imply causality. Although changes in
the observed policy influence changes in the trend of new reported cases, the opposite is also
true in reality. However, using probabilistic graphical models does makes it interpretable.
It also allows us to incorporate domain knowledge that compensates for the relatively
scarce data. SIMLR’s excellent performance—comparable to state-of-the-art systems in this
competitive task—show that it is possible to design interpretable machine learning models
without sacrificing performance.
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5. Conclusions

Forecasting the number of new COVID-19 infections is a very challenging task. Many
factors play a role on how the disease spreads, including the government policies and the
adherence of citizens to such policies. These elements are difficult to model mathematically;
however, the collected data (number of new infections and deaths, for example) are a
reflection of all those complex interactions.

Machine learning, on the other side, excels at learning patterns directly from the
data. Unfortunately, training many models from scratch can require a great deal of data,
especially to learn complex patterns, such as the evolution of a pandemic.

We proposed SIMLR, a methodology that uses machine learning (ML) techniques
to learn a model that can set, and adjust, the parameters of mathematical model for
epidemiology (SIR). SIMLR augments that SIR model by incorporating expert knowledge
in the form of a probabilistic graphical model. In this way, human experts can incorporate
their believes in the likelihood that a policy will change, and when. By combining both
components we substantially reduce the data that machine learning usually requires to
produce models that can make accurate predictions.

Importantly, besides providing state-of-the-art predictions in terms of MAPE in the
short and medium term, the resulting SIMLR model is interpretable and probabilistic.
The first means that we can justify the predictions given by the algorithm—e.g., “SIMLR
predicts 1000 cases for the next week due to a change in the government policies that will
decrease the transmission rate“. The second means we can produce probabilistic values—so
instead of predicting a single value, it can predict the entire probability distribution—e.g.,
the probability of 100 cases next week, or of 200 cases or of 1000, etc.

This paper demonstrated that a model that explicitly models and incorporates government
policy decisions can accurately produce one- to four-week forecasts of the number of COVID-19
infections. This involved showing that an SIR model with time-varying parameters is enough
to describe the complex dynamics of this pandemic, including the different waves of infections.
We expect that this approach will be useful not only for modelling COVID-19, but other
infectious diseases as well. We also hope that its interpretability will leads to its adoption by
researchers, and users, in epidemiology and other non-ML fields.
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Appendix A. Code Availability

The code for reproducing the main results of this manuscript are publicly available at:
https://github.com/rvegaml/SIMLR, accessed on 7 December 2021.

There are six jupyter notebooks on that repository. All the experiments were run using
an e2-standard-4 (4 vCPUs, 16 GB memory) computer in the Google Cloud Platform.

• CDC_models.ipynb: It contains the code used to compile the predictions of the models
submitted to the CDC. The dataset required to run this script was not included due to
the size, but it is publicly available.

• Comparison_CDC.ipynb: It contains the code to create the graphs that compare
SIMLR with the models submitted to the CDC. It uses the files created by the previous
notebook.

• Model_Canada_Provinces.ipynb: It contains the data to predict the number of cases 1
to 4 weeks in advance in the 6 biggest provinces in Canada.

• Model_US_Country.ipynb: Similar to the previous one, but for the predictions on US
at the country level.

• Model_US_States.ipynb: Similar to the previous one, but for the predictions on US at
the state level.

• SIR_Simulations.ipynb: Code to create the simulated SIR, and to show how a simple
SIR model with time-varying parameters can describe the complexities of the COVID-19
dynamics.

The provided repository in addition contains the in-house developed python library
MLib. This library contains custom code for inference in probabilistic graphical models.

Appendix B. Additional Tables

Table A1. Comparison of MAPE between different models across all the states in the US 1 week in
advance. The number in parenthesis represents the standard deviation of the MAPE.

1 Week

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 20(16) 19(16) 20(12) 21(15) 20(12) 1/16

Alaska 16(13) 18(15) 17(15) 18(10) 15(14) 4/15

Arizona 21(18) 25(19) 22(21) 18(16) 18(16) 3/16

Arkansas 20(18) 21(29) 24(29) 19(19) 19(19) 13/16

California 15(11) 20(15) 13(10) 13(10) 13(10) 1/16

Colorado 15(15) 19(11) 16(12) 13(8) 13(8) 2/16

Connecticut 17(12) 19(10) 17(11) 23(17) 17(11) 1/16

Delaware 20(14) 18(14) 19(13) 15(11) 15(11) 4/16

Washington DC 23(15) 19(13) 23(15) 15(10) 15(10) 8/16

Florida 12(11) 13(7) 12(8) 9(7) 9(7) 2/16

Georgia 16(12) 16(13) 16(14) 16(15) 16(15) 3/16

Hawaii 27(22) 23(15) 25(17) 18(13) 18(13) 13/15

Idaho 16(11) 16(10) 14(10) 14(10) 14(10) 2/16

Illinois 13(12) 17(10) 12(9) 12(8) 12(9) 1/17

Indiana 11(10) 17(10) 15(10) 13(11) 13(11) 3/17

Iowa 23(18) 21(15) 22(15) 20(22) 20(14) 5/16

Kansas 16(15) 20(15) 18(12) 21(14) 18(12) 1/16

Kentucky 16(11) 16(8) 15(9) 12(9) 12(9) 2/16

Louisiana 24(17) 23(22) 24(22) 21(19) 21(19) 3/16

Maine 17(15) 19(15) 18(15) 14(11) 14(11) 2/16

https://github.com/rvegaml/SIMLR
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Table A1. Cont.

1 Week

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Maryland 14(12) 15(12) 13(12) 11(7) 11(7) 2/16

Massachusetts 15(10) 16(11) 13(9) 14(10) 13(9) 1/16

Michigan 15(10) 20(10) 16(11) 19(11) 16(11) 1/16

Minnesota 19(17) 21(16) 20(14) 15(12) 15(12) 4/16

Mississippi 19(16) 17(16) 19(15) 16(12) 16(12) 5/16

Missouri 20(14) 19(13) 21(15) 12(38) 11(36) 14/16

Montana 19(17) 21(12) 19(15) 35(104) 18(13) 2/16

Nebraska 20(18) 20(16) 20(15) 18(13) 18(13) 5/16

Nevada 18(17) 20(15) 20(15) 15(11) 15(11) 5/16

New Hampshire 18(14) 18(13) 16(14) 17(11) 16(14) 1/16

New Jersey 11(10) 13(10) 11(9) 14(10) 11(9) 1/16

New Mexico 15(10) 20(12) 15(11) 15(11) 15(11) 2/16

New York 12(9) 14(10) 13(8) 11(9) 11(9) 2/16

North Carolina 12(10) 14(10) 13(9) 12(9) 12(9) 2/16

North Dakota 22(22) 23(24) 23(23) 16(13) 16(13) 8/16

Ohio 12(9) 16(10) 13(10) 11(8) 11(8) 2/16

Oklahoma 22(23) 24(25) 23(24) 15(11) 15(11) 13/16

Oregon 19(13) 18(13) 18(13) 13(10) 13(10) 4/16

Pennsylvania 13(11) 15(12) 15(11) 11(8) 11(8) 3/17

Rhode Island 14(11) 17(11) 13(11) 23(15) 13(11) 1/16

South Carolina 16(13) 16(11) 16(13) 12(8) 12(8) 7/16

South Dakota 18(12) 17(14) 17(11) 15(10) 15(10) 2/16

Tennessee 18(15) 19(15) 22(16) 18(12) 18(13) 12/16

Texas 24(22) 23(28) 25(29) 20(18) 20(21) 7/16

Utah 14(14) 17(11) 16(13) 11(10) 11(10) 7/16

Vermont 25(20) 20(15) 21(14) 21(15) 21(14) 1/16

Table A2. Comparison of MAPE between different models across all the states in the US 2 weeks in
advance. The number in parenthesis represents the standard deviation of the MAPE.

2 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 32(27) 32(30) 32(27) 30(19) 30(24) 3/16

Alaska 30(32) 30(25) 27(25) 28(22) 27(24) 2/15

Arizona 41(32) 46(37) 38(36) 32(28) 32(28) 4/16

Arkansas 39(56) 40(61) 45(61) 32(43) 30(28) 14/16

California 22(20) 41(31) 24(21) 25(19) 24(21) 1/16

Colorado 31(28) 30(19) 33(26) 24(19) 24(19) 11/16

Connecticut 27(25) 29(18) 29(26) 33(18) 29(26) 1/16

Delaware 26(19) 26(19) 26(19) 20(16) 20(16) 5/16

Washington DC 34(22) 26(16) 34(23) 23(13) 23(13) 8/16

Florida 20(14) 22(11) 20(13) 14(10) 14(10) 3/16

Georgia 25(18) 31(19) 27(19) 22(20) 22(20) 4/16

Hawaii 41(38) 32(30) 39(36) 29(23) 28(23) 7/15
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Table A2. Cont.

2 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Idaho 25(24) 27(20) 24(23) 24(16) 24(23) 1/16

Illinois 23(18) 31(19) 27(19) 23(16) 23(16) 3/17

Indiana 27(21) 31(23) 31(23) 24(22) 23(16) 13/17

Iowa 36(45) 33(21) 33(26) 34(32) 31(24) 3/16

Kansas 32(28) 35(29) 33(30) 24(17) 24(17) 5/16

Kentucky 26(22) 28(14) 25(22) 19(15) 19(15) 7/16

Louisiana 31(35) 31(39) 31(39) 29(24) 29(24) 3/16

Maine 34(28) 31(27) 34(30) 23(18) 23(18) 6/16

Maryland 24(18) 26(19) 23(18) 22(16) 22(16) 3/16

Massachusetts 26(18) 28(19) 25(19) 24(16) 24(16) 2/16

Michigan 33(22) 35(19) 33(20) 31(16) 27(16) 4/16

Minnesota 40(34) 39(32) 41(35) 28(23) 28(23) 10/16

Mississippi 26(23) 32(25) 31(24) 22(18) 22(18) 11/16

Missouri 32(30) 29(26) 31(27) 18(41) 13(38) 14/16

Montana 34(29) 35(20) 36(28) 30(25) 26(18) 13/16

Nebraska 29(22) 32(20) 30(20) 27(14) 27(14) 3/16

Nevada 31(22) 37(25) 33(26) 23(18) 23(18) 5/16

New Hampshire 29(23) 32(18) 30(24) 28(16) 28(16) 2/16

New Jersey 19(14) 23(13) 19(14) 25(13) 19(14) 1/16

New Mexico 29(23) 36(20) 30(24) 25(21) 25(21) 4/16

New York 24(18) 24(15) 24(18) 21(13) 21(13) 4/16

North Carolina 22(14) 26(18) 25(18) 17(14) 17(14) 6/16

North Dakota 42(39) 41(42) 48(44) 32(24) 31(20) 13/16

Ohio 25(22) 30(19) 29(24) 20(15) 20(15) 10/16

Oklahoma 34(30) 34(32) 37(31) 25(21) 25(21) 13/16

Oregon 29(24) 28(18) 30(24) 18(15) 18(15) 10/16

Pennsylvania 29(19) 27(16) 31(19) 19(14) 19(14) 9/17

Rhode Island 21(17) 29(19) 24(17) 30(19) 24(17) 1/16

South Carolina 27(19) 26(20) 27(21) 18(13) 18(13) 13/16

South Dakota 30(26) 30(28) 32(25) 27(20) 27(20) 4/16

Tennessee 30(24) 29(26) 34(27) 24(19) 24(19) 12/16

Texas 38(49) 35(52) 38(51) 26(26) 25(34) 8/16

Utah 27(29) 30(20) 32(27) 20(19) 20(19) 10/16

Vermont 29(24) 26(22) 28(25) 29(25) 27(23) 3/16

Table A3. Comparison of MAPE between different models across all the states in the US 3 weeks in
advance. The number in parenthesis represents the standard deviation of the MAPE.

3 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 40(43) 42(41) 34(36) 34(27) 34(27) 2/16

Alaska 36(41) 37(35) 32(35) 39(36) 32(35) 1/15

Arizona 49(44) 70(59) 59(60) 42(35) 42(35) 6/16

Arkansas 49(52) 54(69) 53(70) 40(38) 37(26) 12/16

California 41(49) 67(53) 48(50) 34(29) 34(29) 6/16
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Table A3. Cont.

3 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Colorado 50(54) 39(26) 39(27) 31(27) 31(27) 5/16

Connecticut 38(42) 39(24) 40(35) 39(21) 39(21) 2/16

Delaware 39(36) 34(28) 39(35) 30(23) 30(23) 5/16

Washington DC 48(44) 32(23) 35(33) 26(20) 26(20) 5/16

Florida 33(26) 34(20) 29(20) 19(14) 19(14) 3/16

Georgia 41(27) 47(26) 39(27) 29(22) 29(22) 5/16

Hawaii 64(79) 41(38) 54(61) 34(28) 34(28) 6/15

Idaho 38(39) 40(31) 35(35) 34(26) 33(25) 4/16

Illinois 38(29) 40(31) 40(28) 33(26) 32(21) 5/17

Indiana 40(33) 44(38) 42(34) 35(33) 32(23) 11/17

Iowa 45(48) 43(34) 42(33) 47(41) 41(38) 2/16

Kansas 47(47) 51(46) 45(43) 31(20) 31(20) 5/16

Kentucky 38(39) 38(25) 31(23) 25(18) 25(18) 5/16

Louisiana 36(41) 48(58) 46(58) 38(28) 38(28) 4/16

Maine 50(39) 43(41) 46(39) 33(27) 33(27) 5/16

Maryland 34(36) 36(33) 37(37) 32(25) 32(25) 5/16

Massachusetts 38(34) 40(28) 38(30) 33(23) 33(23) 2/16

Michigan 49(35) 48(27) 45(24) 43(22) 39(24) 3/16

Minnesota 55(54) 51(51) 51(50) 40(35) 40(37) 6/16

Mississippi 43(38) 47(41) 46(38) 29(23) 29(23) 12/16

Missouri 36(29) 39(39) 39(39) 23(47) 19(43) 12/16

Montana 51(46) 42(32) 40(34) 40(31) 34(21) 7/16

Nebraska 42(33) 44(33) 43(33) 37(26) 37(26) 4/16

Nevada 41(35) 55(42) 47(44) 34(25) 34(25) 6/16

New Hampshire 43(38) 42(24) 38(22) 34(21) 34(21) 3/16

New Jersey 27(24) 31(20) 25(17) 34(16) 25(17) 1/16

New Mexico 46(47) 52(29) 42(32) 33(32) 33(32) 8/16

New York 37(35) 33(18) 30(28) 29(17) 29(17) 2/16

North Carolina 32(21) 36(28) 32(24) 22(15) 22(15) 4/16

North Dakota 61(67) 61(54) 66(67) 50(36) 45(28) 12/16

Ohio 43(42) 41(31) 38(31) 28(19) 28(19) 5/16

Oklahoma 51(50) 46(47) 49(48) 33(22) 33(22) 12/16

Oregon 47(49) 39(23) 35(26) 28(21) 28(21) 2/16

Pennsylvania 46(40) 37(23) 38(23) 27(17) 27(17) 5/17

Rhode Island 27(26) 37(31) 32(28) 39(21) 32(28) 1/16

South Carolina 36(25) 35(28) 33(28) 23(15) 23(15) 3/16

South Dakota 44(41) 47(40) 43(40) 40(29) 40(29) 3/16

Tennessee 34(29) 40(35) 38(37) 31(25) 31(25) 3/16

Texas 52(54) 48(55) 44(55) 31(27) 31(27) 6/16

Utah 42(44) 43(30) 46(33) 32(24) 32(24) 10/16

Vermont 44(29) 37(21) 41(28) 39(24) 38(24) 3/16
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Table A4. Comparison of MAPE between different models across all the states in the US 4 weeks in
advance. The number in parenthesis represents the standard deviation of the MAPE.

4 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 54(48) 56(52) 51(46) 40(27) 40(27) 3/16

Alaska 58(66) 50(36) 47(38) 49(32) 46(36) 2/15

Arizona 70(80) 104(103) 93(102) 65(68) 61(64) 7/16

Arkansas 59(56) 68(86) 66(87) 46(53) 45(49) 8/16

California 64(87) 95(83) 81(84) 50(47) 50(47) 7/16

Colorado 73(90) 52(26) 52(33) 41(36) 39(24) 6/16

Connecticut 60(65) 46(34) 58(49) 44(23) 44(23) 6/16

Delaware 44(47) 39(37) 46(41) 34(34) 34(34) 5/16

Washington DC 65(64) 37(30) 46(48) 35(34) 35(34) 5/16

Florida 47(46) 52(42) 47(45) 27(26) 27(26) 5/16

Georgia 48(40) 64(35) 59(33) 38(32) 38(32) 7/16

Hawaii 102(153) 55(43) 77(98) 45(43) 45(43) 6/15

Idaho 55(53) 54(41) 53(44) 41(40) 41(40) 7/16

Illinois 53(38) 51(43) 54(40) 43(37) 39(27) 5/17

Indiana 56(51) 61(55) 56(54) 45(49) 44(33) 6/17

Iowa 61(72) 55(46) 53(46) 55(56) 50(45) 2/16

Kansas 66(68) 68(69) 59(58) 43(26) 43(26) 5/16

Kentucky 50(49) 47(39) 43(36) 34(23) 34(23) 5/16

Louisiana 48(49) 68(66) 64(67) 44(35) 44(35) 7/16

Maine 69(64) 56(55) 62(59) 43(40) 43(40) 6/16

Maryland 51(71) 45(45) 53(61) 42(43) 42(43) 6/16

Massachusetts 49(52) 50(40) 47(45) 45(38) 45(38) 2/16

Michigan 62(67) 56(36) 51(37) 53(32) 51(44) 2/16

Minnesota 74(87) 65(61) 64(62) 55(51) 47(41) 5/16

Mississippi 52(49) 62(52) 59(51) 38(43) 38(43) 6/16

Missouri 48(45) 54(57) 54(57) 32(47) 28(44) 9/16

Montana 70(72) 53(40) 55(39) 52(48) 42(36) 9/16

Nebraska 53(43) 57(46) 56(45) 47(31) 47(35) 5/16

Nevada 67(54) 77(61) 71(65) 41(43) 41(43) 8/16

New Hampshire 52(50) 50(30) 43(33) 40(25) 40(25) 2/16

New Jersey 45(62) 36(24) 40(54) 43(24) 38(23) 3/16

New Mexico 69(80) 73(39) 65(48) 46(48) 45(29) 7/16

New York 48(43) 41(22) 39(31) 37(25) 33(22) 4/16

North Carolina 41(33) 48(41) 45(36) 29(22) 29(22) 6/16

North Dakota 79(112) 83(77) 94(93) 72(63) 60(53) 9/16

Ohio 60(58) 54(44) 52(44) 35(31) 35(31) 6/16

Oklahoma 81(92) 61(67) 70(81) 42(32) 42(40) 9/16

Oregon 63(65) 49(33) 43(35) 39(27) 39(27) 2/16

Pennsylvania 63(54) 47(29) 47(30) 35(27) 35(27) 5/17

Rhode Island 37(39) 46(45) 42(43) 44(27) 42(43) 1/16

South Carolina 45(31) 49(37) 49(36) 28(21) 28(21) 8/16

South Dakota 51(47) 64(46) 62(45) 54(40) 52(30) 9/16

Tennessee 48(48) 58(49) 58(50) 43(31) 43(31) 5/16
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Table A4. Cont.

4 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Texas 63(62) 59(67) 58(67) 37(34) 37(34) 6/16

Utah 55(70) 56(44) 58(50) 40(36) 40(36) 7/16

Vermont 56(67) 41(26) 49(55) 45(27) 41(26) 4/16
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