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Abstract: The present paper considers the problem of choosing among a collection of competing
electricity price forecasting models to address a stochastic decision-making problem. We propose
an event-based evaluation framework applicable to any optimization problem, where uncertainty
is captured through ensembles. The task of forecast evaluation is simplified from assessing a
multivariate distribution over prices to assessing a univariate distribution over a binary outcome
directly linked to the underlying decision-making problem. The applicability of our framework
is demonstrated for two exemplary profit-maximization problems of a risk-neutral energy trader,
(i) the optimal operation of a pumped-hydro storage plant and (ii) the optimal trading of subsidized
renewable energy in Germany. We compare and contrast the approach with the full probabilistic and
profit–loss-based evaluation frameworks. It is concluded that the event-based evaluation framework
more reliably identifies economically equivalent forecasting models, and in addition, the results
suggest that an event-based evaluation specifically tailored to the rare event is crucial for decision-
making problems linked to rare events.
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1. Introduction

Electricity Price Forecasting (EPF) has become an indispensable part of energy compa-
nies’ asset scheduling and short-term trading. With the increasing infeed of intermittent
Renewable Energy Sources (RES) and the associated elevation of uncertainty, the decision-
making problems are increasingly considered in stochastic form. Consequently, a growing
body of literature investigates probabilistic EPF (e.g., [1,2]), where the forecasts are con-
sidered probabilistic if they constitute probability distributions over future quantities or
associated characteristics such as intervals or specific quantiles (e.g., [1,3]). In the context
of EPF, it is necessary to distinguish between a forecast of the univariate distribution of
the price of an individual hour and a forecast of the multivariate distribution of the prices
of several hours. Univariate distribution forecasts are often communicated as a set of
quantile predictions (e.g., [2,4]), whereas multivariate distribution forecasts are represented
as ensemble forecasts, that is, collections of paths of future electricity prices (e.g., [5–7]).
Despite the growing attention in recent years, Ref. [5] finds that the number of studies
presenting probabilistic electricity price forecasts is still fairly limited, which is especially
true for multivariate forecasts. In addition, there remains a need for further research on the
evaluation of multivariate probabilistic predictions and the present paper contributes an
event-based evaluation approach for ensemble forecasts that extends the contemporary set
of approaches.

In other areas of the energy-related literature, the value of probabilistic forecasts and
ensemble techniques has already been recognized and remains an area of active research.
Ref. [8] provides an extensive overview of recent forecasting research around power sys-
tems and highlights the importance of the literature’s transition from deterministic to
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probabilistic forecasting methods. It finds little progress in the development of practical
error measures for probabilistic forecasts in energy and underlines the necessity of examin-
ing the economic value of forecasts. In addition, the literature on the optimal control of
renewable-based energy systems is equally increasingly turning to probabilistic predictions
and scenarios to promote the integration of renewables. A review of probabilistic solar
power forecasts and their application to system operation is given in [9], while [10] provides
the same for wind power. Both studies find a significant potential to adopt probabilistic
methods to improve power system operation. Yet, like [11], they highlight the need to
carefully weigh the advantages and disadvantages of each method against criteria such as
system costs and security of supply.

The forecasting literature has established the general evaluation paradigm of maximiz-
ing sharpness subject to calibration (e.g., [3,12]). Calibration measures the correspondence
between the forecast and the realization, whereas sharpness captures the concentration
of the distribution forecast. Calibration and sharpness can be evaluated individually, but
it is more common to assess them simultaneously using so-called proper scoring rules.
A scoring rule is considered proper if issuing the true underlying distribution as fore-
cast distribution minimizes the score in expectation. Said scores have the advantage that
they provide a single number, thus facilitating cross-model comparisons by analyzing
differences in scores and allowing the establishment of statistically significant pairwise
differences using the Diebold Mariano (DM) test.

In EPF, the Pinball Score (PS) has emerged as the most popular score (e.g., [1,13]).
It can be used to evaluate the forecast for a specific quantile. To provide an aggregate
score, it is commonly averaged across the quantiles of the predicted distribution (e.g., [2,4]).
An alternative score is the Continuous Ranked Probability Score (CRPS), which has been
considered in [14], for example. Yet, the PS and the CRPS only allow for the evaluation
of univariate distribution forecasts. A number of studies have reported averages across
hours as aggregate scores for multivariate distribution forecasts, although this approach
fails to sufficiently account for the dependence structure between the electricity prices of
individual hours. The Energy Score (ES) constitutes a proper multivariate scoring rule,
which has proven popular in other areas of energy forecasting (e.g., [15,16]). Ref. [5]
recommends its use in EPF but the ES has not really been applied yet with [6,7] constituting
exceptions. A reason may be found in the ambiguity concerning its ability to discriminate
between competing models. Using a simulation study, ref. [17] finds that the ES cannot
successfully discriminate between predictive densities with different dependence structures.
Yet, Ref. [18] does not confirm these findings. It replicates and extends the simulation study
of [17] and finds the ES to constitute the only measure that clearly separates the true model
from the alternatives. Consequently, it recommends using the ES in combination with the
DM test and to report additional scores such as the CRPS.

Some authors have noted that the above evaluation framework may not sufficiently
reflect the associated economic consequences of preferring a particular forecasting model
over another (e.g., [19–22]). Ref. [19] studies the effect of deficient price forecasts on the
profitability of a generator’s unit commitment and defines the so-called profit loss as a
measure of forgone profit due to using an inaccurate forecast rather than the realized
price. It concludes that the Mean Absolute Percentage Error (MAPE) does not sufficiently
reflect the profit loss of a specific forecasting model. In addition, the forecast user may be
interested in a particular characteristic of the distribution depending on the considered
decision-making problem. The prevailing framework is also silent on a forecasting model’s
ability to reproduce that particular characteristic of the distribution (e.g., [23]). Thus, rather
than the forecast alone, the decision-making problem to which it constitutes an input
should form the basis of forecast evaluation.

The present study considers the problem of choosing among a collection of competing
forecasting models to address a stochastic decision-making problem such as:

max
c

O(FY, c), (1)
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where Y, with multivariate distribution function FY, represents the source of uncertainty,
and c denotes the variables to be optimized. Figure 1 summarizes the considered fore-
cast evaluation approaches. Given a collection of forecasts {F̂1

Y, . . . , F̂ J
Y}, the forecast user

can fully evaluate each individual model using F̂j
Y and use the best model’s forecast

F̂∗Y to solve maxc O(F̂∗Y, c) (full probabilistic evaluation). Alternatively, the optimization
problem can be solved for each forecast F̂j

Y, and the resulting collection of objectives
{O(F̂1

Y, c∗1), . . . , O(F̂ J
Y, c∗J )} is used to evaluate the forecasting models (profit–loss-based

evaluation). The first approach has two deficiencies. First, the reliable evaluation of a
multivariate distribution forecast constitutes a challenging problem in its own right. Sec-
ond, the approach may involve the implicit assessment of a model’s ability to capture
a characteristic of the distribution irrelevant to the optimization problem at hand. Yet,
apart from being computationally expensive, the second approach does not involve the
direct evaluation of the distribution forecasts. Consequently, the present paper considers
a third approach (event-based evaluation). An event g(·) that captures the relevant char-
acteristic of the distribution is defined, where the event constitutes a mapping from the
support of the multivariate distribution to a binary outcome. The probability of the event’s
occurrence Pr(g(F̂j

Y) = 1) is derived, and the evaluation of the collection of probability
forecasts {Pr(g(F̂1

Y) = 1), . . . , Pr(g(F̂ J
Y) = 1)} allows for the identification of F̂∗Y to solve

maxc O(F̂∗Y, c). Two exemplary profit-maximization problems motivated by the daily oper-
ation of a risk-neutral energy trading company are considered, a pumped-hydro storage
plant problem and a renewable energy trading problem. We apply a probabilistic forecast-
ing scheme using ensemble forecasts and evaluate them by the aforementioned approaches.

Figure 1. Considered Forecast Evaluation Approaches.

Event-based evaluation of multivariate forecasts is not completely new to the fore-
casting literature. It has been originally proposed in the field of meteorology and applied
to wind power generation forecasts (e.g., [23]). To facilitate comparison between the full
probabilistic and event-based approaches for electricity price ensemble forecasts, we also
consider whether the proposed event-based evaluation more reliably identifies the fore-
casting model that is to be preferred from an economic perspective. To this end, we use
the ensemble forecasts to solve the stochastic decision-making problems and study the
generator’s profit loss introduced by [19]. Note that profit-loss-based evaluation constitutes
an approach in its own right (e.g., [24]) but is computationally expensive, as it requires the
solution of the underlying stochastic optimization problem, and only serves as a means of
comparison between the full probabilistic and event-based approach here.

The contributions of the present paper to the literature are the following.

1. We introduce an event-based evaluation framework for electricity price ensemble forecasts.
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2. By deriving the considered events directly from the stochastic decision-making prob-
lems, we bridge the gap between the strands of the literature concerned with full
probabilistic forecast evaluation and the economic consequences of forecast utilization.

3. Our event-based evaluation framework is applicable to any stochastic optimization
problem, where uncertainty is captured through ensembles, and thus combines the
advantages of standard probabilistic evaluation and prescriptive analytics.

4. We provide empirical evidence that the event-based evaluation framework more
reliably identifies the economically equivalent electricity price forecasting models.

It is not the purpose of the paper to present new algorithms for electricity price ensem-
ble forecast generation. We base the exposition of the proposed evaluation framework on
state-of-the-art econometric models, but other approaches such as generative adversarial
networks or MCMC methods are equally conceivable. Irrespective of the chosen approach,
the features of electricity prices such as autoregressive effects, calendar effects, time-varying
volatility, etc., should be captured by the underlying EPF model (see [25] (Section 3.4.2)).

The remainder of the paper is organized as follows: In Section 2, we present the
stochastic decision-making problems and derive the associated events that capture the
underlying characteristic of interest to the forecast user. Section 3 introduces the econo-
metric models, whereas the proposed event-based evaluation framework is presented in
Section 4. The results are presented and discussed in Section 5. Section 6 concludes, and a
nomenclature is provided thereafter.

2. Decision-Making Problems and Event Probability Forecasts

To address a particular stochastic decision-making problem, a forecast user may have
to choose among a collection of competing electricity price forecasting models. Depending
on the payoff structure of the decision-making problem, the forecast user is implicitly
interested in a specific characteristic of the underlying price distribution and would like
to choose the forecasting model that best replicates this particular feature of the data
generating process. We propose an event-based evaluation framework to assess a forecast-
ing model’s ability to capture the characteristic of interest, where an event constitutes a
mapping from the support of the multivariate price distribution to a binary outcome. The
event definitions are based on the underlying decision-making problems and thus directly
capture the characteristic of interest. It should be noted that the probability of the event’s
occurrence can be calculated from the multivariate price distribution. Thus, a forecasting
model’s ability to predict the probability of the occurrence of the event is directly linked to
its ability to replicate the feature the forecast user is implicitly interested in. In the present
study, all forecasts are communicated in the form of electricity price ensemble forecasts.
Given an ensemble forecast, each day-ahead price path is mapped to an indicator variable,
which takes a value of one if prices along the path are such that the specific event occurs.
The day-ahead probability forecast for the binary event implied by the ensemble is given
by the relative frequency of the event’s occurrence across the collection of simulated paths.
Note that we denote by Pt,h the price in hour h on day t, whereas Pt denotes the entire price
path on day t, i.e., Pt = [Pt,1, . . . , Pt,24]

′.

2.1. Pumped-Hydro Storage Plant Event

The optimal operation of a pumped-hydro storage plant for time spread arbitrage
constitutes the first decision-making problem. An RES-based energy system is associated
with increased importance of storage and flexibility options. Pumped-hydro storage plants
constitute such a flexibility option and have thus received considerable attention in the
literature (e.g., [26,27]). Ref. [26] maintains that the traditional modus operandi in thermal
dominated electricity markets has been to pump at night and to turbine around noon.
However, the economic rationale for pumped-hydro storage plants has been undermined
by the success of Photovoltaic (PV) generation in particular, as this has largely suppressed
peak electricity prices around noon. It is thus of importance for operators of pumped-hydro
storage plants to assess whether the asset’s operation will be profitable in the day-ahead
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market. The optimization problem considered in this study is based on [26] but constitutes
the discrete scenario-based version of it. The following equations describe the problem.

max
Tt,h ,St,h

M

∑
m=1

H

∑
h=1

ωmPm
t,h(Tt,h∆t,h − St,h∆t,h) (2)

s.t. Vt,h −Vt,h−1 = −Tt,h∆t,h + ηSt,h∆t,h (3)

0 ≤ Tt,h ≤ KT (4)

0 ≤ St,h ≤ KS (5)

0 ≤ Vt,h ≤ KF (6)

V0 = V0 (7)

VH ≥ V0 (8)

It is assumed that the reservoir is filled with V0 ≥ 0 at h = 0, and the expected
profits from operation of the pumped-hydro storage plant (2) are optimized subject to the
set of constraints. Pm

t,h represents the electricity price in hour h of day t associated with
electricity price scenario path m, which has a probability ωm of occurring. Equation (3)
ensures that the change in the fill level of the reservoir is equal to the sum of turbining
Tt,h and pumping St,h, accounting for the efficiency factor η. Constraints (4)–(6) ensure
that the control variables remain within the possible ranges. Since we are considering the
profitability of the time spread arbitrage, the fill level of the reservoir cannot fall below the
fill level at the beginning of the optimization period (8). The preceding thus constitutes a
simplified yet adequate representation of a pumped-hydro storage optimization problem.
Advanced formulations of the problem, more representative of the underlying technical
installation of the plant, can be found in [27,28], for example. Following [26], we consider a
pumped-hydro storage with pumping and turbining capacity of 200 MW (KS and KT), a
maximum storage level of 1000 MWh (KF) and a starting storage level of 500 MWh (V0). η
is assumed to be 0.7.

For any given day-ahead price path Pt+1, the necessary condition for a profitable

operation of the pumped-hydro storage plant is given by
(

η >
PMin

t+1
PMax

t+1

)
, where PMin

t+1 and

PMax
t+1 represent the minimum and maximum prices on day t + 1, respectively (e.g., [26]).

The event associated with the considered pumped-hydro storage optimization problem is
therefore that the efficiency condition is met, and the probability of occurrence implied by
an ensemble forecast is defined as:

ft+1 = Pr

(
η >

PMin
t+1

PMax
t+1

)
=

1
M

M

∑
m=1

1
{

η >
Pm

Min
Pm

Max

}
, (9)

where Pm
Min and Pm

Max denote the minimum and maximum price along ensemble path m
for day t + 1, respectively. The event is referred to as “pump event” in the remainder of
the paper.

2.2. Six Hours of Negative Electricity Prices Event

The optimal trading of an energy trading company under the German Renewable
Energy Sources Act constitutes the second decision-making problem. Increasing intermit-
tent RES capacity in combination with the conventional generation of limited flexibility
has raised the likelihood of negative electricity prices. These negative prices reduce the
market reference value of RES generation and subsequently increase the pay-out under the
German renewable subsidy scheme. Yet, the German Renewable Energy Sources Act (§51
EEG 2017) stipulates that subsidy payments to RES are retrospectively withheld in case of
six or more consecutive hours with negative electricity prices, as negative prices indicate
that there is excess production and there is no economic or environmental benefit perceived
in subsidizing excess production. Operators and energy traders are therefore incentivized
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to cut infeed in these hours and do have an incentive to correctly forecast the occurrence of
six or more consecutive negative electricity prices. The considered energy trader owns a
wind power plant that falls under the German subsidy scheme and must decide whether to
sell the electricity on the day-ahead or the intraday market. Additionally, the plant can also
be shut down. The following equations describe the energy trader’s optimization problem.

max
yt,h ,zt,h

M

∑
m=1

H

∑
h=1

ωm(Pm
t,h + (1− I6h,m

t,h )Rt,h)yt,hEt,h

+ ωm(PID,m
t,h + (1− I6h,m

t,h )Rt,h)zt,hEt,h (10)

s.t. 0 ≤ yt,h ≤ 1 (11)

0 ≤ zt,h ≤ 1 (12)

yt,h + zt,h ≤ 1 (13)

The energy trader maximizes their expected profits (10) deciding on the share of
production Et,h to sell on the day-ahead market (yt,h) and to sell on the intraday market
(zt,h). Pm

t,h represents the day-ahead electricity price in hour h of day t associated with

electricity price scenario path m, and PID,m
t,h denotes the associated price on the intraday

market. The probability of scenario path m occurring is ωm. If the considered hour does not
belong to a block of six or more consecutive hours of negative prices (I6h,m

t,h = 0) the trader
also receives a subsidy Rt,h (EUR/MWh). Yet, if the considered hour is part of a block of
six or more consecutive hours of negative prices, no subsidy is paid. Constraints (11)–(13)
ensure that the individual shares of production lie between zero and one and do not sum
to more than one. It should be noted that we intentionally abstract away from wind power
forecasting errors and assume that Et,h denotes both the wind power production forecast
and the respective realized production. We consider a wind power plant with a capacity of
5 MW that is paid Rt,h equal to the difference between the plant’s guaranteed remuneration
and the monthly German reference market value as published by the German Transmission
System Operators (TSOs). Thus, Rt,h is constant over all hours h and days t of a given
month. The hourly production of the wind power plant is obtained by scaling down
historical German wind onshore production to an installed capacity of 5 MW.

The event associated with the optimal trading problem is the occurrence of six or more
consecutive hours of negative prices. Let g(.) denote a function that maps a given price
path Pt+1 to {0, 1}, depending on whether such a block of negative prices is realized. The
probability of occurrence implied by an ensemble forecast is defined as:

ft+1 = Pr(g(Pt+1) = 1) =
1
M

M

∑
m=1

g(Pm
t+1), (14)

where Pm represents ensemble price path m for day t + 1. The event is referred to as the
“6h-negative event” in the remainder of the paper.

3. Electricity Price Ensemble Forecasts

The electricity price ensemble forecasts are based on two well-documented models
from the literature. In the naive model, the electricity price of a particular hour h on day t
is equal to the price of the same hour the week before, if t constitutes a Monday, Saturday
or Sunday, or it is equal to the price of the same hour the day before for all other days
(e.g., [29,30]). Recall that Pt,h constitutes one element of the entire price path Pt.

Pt,h =

{
Pt−7,h, t ∈ {Mon, Sat, Sun}
Pt−1,h, t /∈ {Mon, Sat, Sun}

(15)
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The second model belongs to the class of so-called expert models and is directly taken
from [31]. It characterizes the electricity price of a particular hour h on day t as a function
of autoregressive terms, non-linear terms, the price of the last hour of the preceding day
and dummy variables that capture calendar information. Note that we deliberately do not
capture all of the features presented in [25], using this model.

Pt,h = βh,0 + βh,1Pt−1,h + βh,2Pt−2,h + βh,3Pt−7,h

+ βh,4PMax
t−1,h + βh,5PMin

t−1,h

+ βh,6Pt−1,24 + ∑
i=1,...,6

βh,6+iDi
t + εt,h

(16)

We estimate the parameters of the expert model using the Ordinary Least Squares
(OLS) estimator (mean regression) and the Quantile Regression (QR) estimator with τ = 0.5
(median regression). Additionally, a Support Vector Regression (SVR) with the same
explanatory variables is considered. The hyperparameters of the SVR are selected using the
analytic approach of [32]. Thus, the presented results of the SVR could be further improved
by careful tuning of the hyperparameters, which is beyond the scope of the present work.
It should be noted that the parameters of the forecasting models are recalibrated at every
timestep over the out-of-sample period.

The hourly day-ahead price forecasts are calculated from each individual model and
random disturbances are added to generate an ensemble of simulated hourly day-ahead
price paths. The present study considers two approaches to generate said disturbances.
They are either drawn from a multivariate Student’s t-distribution, which has been fitted
to the sample of residuals, or derived using residual-based bootstrapping. It should be
noted that we fit both a multivariate Student’s t-distribution as well as a multivariate
normal distribution, as the limiting case of the former, to the residuals. We subsequently
consider whichever achieves the higher likelihood and refer to it as multivariate Student’s
t-distribution. The non-parametric bootstrapping algorithm is also multivariate in the
sense that it returns a vector of 24 residuals of a particular day to preserve the intraday
correlation structure. The various combinations of econometric models, estimation tech-
niques and simulation approaches provide eight different specifications, the details of
which are summarized in Table 1. Note that corresponding ensemble forecasts of intraday
electricity prices are required to address the optimal trading problem of the energy trading
company. They are generated from the day-ahead forecast ensembles by adding random
disturbances bootstrapped from a sample of historical deviations between day-ahead and
corresponding intraday prices. The probability predictions implied by each ensemble
forecast are subsequently derived as outlined above.

Table 1. Specification Overview.

N-B Ex-B QREx-B SVREx-B

Naive Expert Expert Expert
- OLS QR (τ = 0.5) SVR

Bootstrap Bootstrap Bootstrap Bootstrap

N-t Ex-t QREx-t SVREx-t

Naive Expert Expert Expert
- OLS QR (τ = 0.5) SVR

Student’s t Student’s t Student’s t Student’s t

4. Forecast Evaluation

The predicted electricity prices are communicated in the form of ensemble forecasts,
that is, a collection of M possible day-ahead electricity price paths. They are first evaluated
using both the CRPS and the ES in combination with the DM test. Since the evaluation is
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based on the price forecasts directly, the approach is referred to as the full probabilistic ap-
proach. The probability of an event’s occurrence implied by an individual electricity price
ensemble forecast constitutes the basis of the proposed event-based evaluation framework.
Thus, the task of forecast evaluation is simplified from assessing a multivariate distribution
over continuous outcomes to assessing a univariate distribution over a binary outcome.
Furthermore, to facilitate comparison between the full probabilistic and event-based ap-
proach, we use the ensemble forecasts to solve the stochastic decision-making problems
and study the generator’s profit loss.

Despite the simplification offered by our approach relative to the full probabilistic
approach, both belong to the class of statistical evaluation approaches in the sense of
relying on proper scoring rules, albeit for different underlying distributions. A limitation of
our framework is thus the theoretical non-optimality of the evaluation, as it does not make
use of the full informational content of the distribution forecasts. It does, however, allow
us to directly link the forecasts to the decision-making problems, to which they constitute
an input, and therefore extends the contemporary set of evaluation approaches.

4.1. Full Probabilistic Evaluation

For a univariate distribution forecast FPt,h , the CRPS is defined as:

CRPSt,h(FPt,h , Pt,h) = E
∣∣Λt,h − Pt,h

∣∣− 1
2
E|Λt,h − Λ̃t,h|, (17)

where Pt,h denotes the price realization. Λt,h denotes a random variable with distribution
FPt,h and Λ̃t,h is an i.i.d. copy of Λt,h.

Similarly, for a multivariate distribution forecast FPt the ES is defined as:

ESt(FPt , Pt) = E(‖Λt − Pt‖2)−
1
2
E
(
‖Λt − Λ̃t‖2

)
, (18)

where Pt denotes the price path realization. Λt denotes a multivariate random variable
with distribution FPt and Λ̃t is an i.i.d. copy of Λt. ‖ · ‖2 represents the L2 norm. Note that,
in the context of the present paper, the expected values are estimated by the respective
sample means and that the values for Λt,h, Λ̃t,h, Λt and Λ̃t are taken from the ensemble
forecasts (see [18] for further details).

To establish conclusions on statistically significant deviations in forecasting accuracy
between any two models, as indicated by differences in their CRPS and ES, the DM test
is applied (e.g., [31,33]). Given the score values of models A and B, namely, ΓA

t and ΓB
t ,

the loss differential series is defined as ∆A,B
t = ‖ΓA

t ‖1 − ‖ΓB
t ‖1, where ‖ · ‖1 denotes the L1

norm. The DM test allows considering whether the expected value of the loss differential
series is zero, which is indicative of the forecasts from both models being equally accurate.
We test the one-sided null hypothesis H0 : E

(
∆A,B

t

)
≤ 0 and report the p-values for all

pairwise comparisons between the forecasting models. If the null hypothesis of the test for
models A and B is rejected, it is concluded that the forecasts of model B are significantly
more accurate.

4.2. Event-Based Evaluation

A series of implied day-ahead probability forecasts ft is derived for each ensemble
forecast. In addition, the corresponding event indicator series xt is observed. To evaluate
forecasting accuracy, one may compare the predicted probabilities with the realizations of
the event. The average of the squared deviations over the out-of-sample period lends the
Quadratic Probability Score (QPS). Further insights on the deficiencies of the considered
forecasting models can be obtained using the decompositions of the score. The QPS-based
approach is, however, not well suited for the evaluation of probability predictions for rare
events. To reliably evaluate probability predictions of rare events, techniques developed
for the evaluation of binary classifiers are also considered.
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The QPS is defined as the expected value of the squared deviation between probability
forecast ft (see (9) and (14)) and realization xt. The expected value is again estimated by
the sample mean.

QPSt( ft, xt) = E
(
( ft − xt)

2
)

(19)

The QPS constitutes a proper, negatively oriented score that takes values between zero
and one, where zero denotes perfect forecast accuracy. Since it evaluates accuracy over the
entire range of probabilities, the QPS is a global measure of forecast accuracy. Again, the
DM test is used to establish statistically significant deviations between the QPS values of
any two models.

An understanding of the deficiencies of the considered forecasting models can be
obtained through a decomposition of the QPS. The Murphy Decomposition (MD) gives the
QPS as sum of three terms:

QPS( f , x) = x̄(1− x̄)︸ ︷︷ ︸
UNC

+
1
T

J

∑
j=1

Tj( f̄ j − x̄j)
2

︸ ︷︷ ︸
CAL

−
(

1
T

J

∑
j=1

Tj(x̄j − x̄)2

︸ ︷︷ ︸
− 1

T

J

∑
j=1

Tj

Tj

∑
t=1

( ftj − f̄ j)
2 +

1
T

J

∑
j=1

Tj

Tj

∑
t=1

(xtj − x̄j)( ftj − f̄ j)
2

)
︸ ︷︷ ︸

GRESO

(20)

It should be noted that the formulation above is due to [34]. The MD requires the
evaluation of conditional means of the event indicator series given the forecasts. To this
end, one can assign them to J predefined bins of probability, but the effect of binning
needs to be accounted for in the derivation of the MD (e.g., [34]). The Uncertainty (UNC)
term represents the uncertainty a forecaster faces when issuing the forecast. It is given by
the variance of the event indicator series xt, which is unobserved at the time of forecast
issuance. The notion of Calibration (CAL), captured by the second term, represents the
correspondence between conditional mean observation and conditioning forecast; that is,
the correspondence between the mean of the event indicator series and forecasts within
a particular bin. Any deviation from perfect calibration (CAL = 0) increases the QPS
above uncertainty and is referred to as the level of miscalibration. On the contrary,
Generalized Resolution (GRESO), the third term, reduces the QPS. Its first component
represents the relation between the conditional mean observation and the unconditional
mean observation, that is, how well a particular forecasting model distinguishes a particular
probability case from relative frequency and attaches different probabilities to different
realizations. Following [34], we combine this component with two within-bin terms that
adjust the MD for the effect of binning. The present study considers two approaches to
binning, both of which lend a series of partitions of the unit interval with the number of
subintervals ranging from 1 to 10. The first approach simply divides the unit interval into
the specified number of subintervals of equal size. The second approach utilizes a slightly
altered version of the constrained k-means algorithm of [35]. It clusters the probability
predictions of all models for a particular event, but the constraint set is such that at least
five observations of each model fall within each cluster. The bin boundaries are derived
from the respective midpoints between the cluster centroids. We find that, when using
the binning-robust form of the MD, the differences between the decompositions under
the two binning approaches are negligible. Some gains in accuracy are uncovered for
constrained k-means binning when the non-robust decomposition is used, but our results
are unaffected.

The equal weighting scheme employed in the calculation of the QPS implies that
it does not distinguish between the frequent and nonfrequent realization of an event.
Yet, when forecasting probabilities of a rare event, an event that occurs on less than five
per cent of forecasting occasions (e.g., [36]), then regularly predicting its non-occurrence
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correctly will lead to a low QPS, despite a potential failure to predict its occurrence, which
may be of primary interest. Consequently, the QPS-based approach is not ideal for the
evaluation of rare event probability forecasts, as the influence of the frequent realization on
the evaluation measure should be minimized. To this end, one can consider the techniques
for the evaluation of binary classifiers.

A discrete classifier for a binary outcome is a model that directly predicts an event’s
occurrence or non-occurrence rather than probabilities of occurrence. The accuracy of said
classifier over the out-of-sample test set can be summarized in a so-called contingency
table, which illustrates the correspondence between forecasts and realizations (cf. Table 2).

Table 2. Contingency Table.

xt+1 = 1 xt+1 = 0

ft+1 = 1 True Positives (TP) False Positives (FP)
ft+1 = 0 False Negatives (FN) True Negatives (TN)

PO NE

To analyze the performance of the discrete classifier, define the True Positive Rate
(TPR) and False Positive Rate (FPR), which denotes the proportion of observations where
the event was predicted and did occur (TPR = TP

PO ) and the proportion of observations
where it was predicted but did not occur (FPR = FP

NE ), respectively. One can subsequently
plot the FPR against the TPR in a two-dimensional space, referred to as Receiver Operating
Characteristic (ROC) space. A discrete classifier is represented by a single point in the ROC
space with the point of optimality given by (0, 1). By focusing solely on the cases, where
the event was forecast to realize, it constitutes a better approach for the evaluation of a rare
event’s probability predictions, especially when its occurrence is of primary concern to the
forecast user.

The approach, however, requires the forecasts from a probabilistic classifier to be
transformed to discrete forecasts, taking values of zero or one. Said transformation can
be achieved by specifying a probability threshold, where the event is predicted when a
probability lies above it. By varying the threshold, one can trace out the ROC curve of a
probabilistic classifier. ROC curves themselves constitute a tool of classifier evaluation and
exhibit the nice property of being invariant to class distribution. Yet, although it is possible
to compare prediction models on the basis of their corresponding ROC curves, it is more
common to calculate the Area under Receiver Operating Characteristic Curve (AUROC) as
a scalar measure of aggregate performance. Since the AUROC always constitutes a subarea
of the unit square, it lies strictly between 0 and 1.

One established shortcoming is that ROC curves may cross, implying that one curve
and hence one model may exhibit a larger AUROC, although the alternative model may
exhibit a better performance, as indicated by a higher ROC curve, over the majority of
the range of classification thresholds. Ref. [37] derives another fundamental deficiency
of the AUROC as measure of forecasting performance. It shows that a comparison of
AUROC values amounts to comparing the forecasting models using metrics that themselves
depend on the models, essentially meaning that the comparison uses a different metric per
model. To address said problem of evaluation, Ref. [37] proposes the so-called H-Measure,
which the present study reports alongside the AUROC to evaluate forecasting accuracy for
rare events.

4.3. Profit–Loss-Based Evaluation

To compare the priced-based and event-based approach for electricity price forecast
ensembles, we consider whether the event-based evaluation more reliably identifies the
forecasting model that is to be preferred from an economic perspective. The ensemble
forecasts are used to solve the stochastic decision-making problems, and the electricity
trader’s profit loss as introduced by [19] is studied.
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The profit loss associated with forecasting model A is the difference between profit
under perfect foresight, that is, knowing the actual realized price path of day t and the
profit achieved from basing all decisions on the forecast ensemble of forecasting model A.
It is defined as:

PLA
t = Πt(Pt)−ΠA

t

({
Pt, PA,1

t , . . . , PA,M
t

})
, (21)

where the realized profit ΠA
t is a function of both the realized price path Pt and the individ-

ual paths of the ensemble forecast PA,1
t , . . . , PA,M

t . The DM test can also be considered by
defining the loss differential series based on profit loss, i.e., ∆A,B

t = ‖PLA
t ‖1 − ‖PLB

t ‖1.

5. Empirical Results and Discussion

To illustrate the applicability of the proposed event-based evaluation framework for
electricity price ensemble forecasts, we conduct an out-of-sample forecasting study on
German day-ahead electricity prices. The considered sample ranges from 1 January 2016 to
31 December 2019 with the last 730 days being used as an out-of-sample test set.

For each day of the out-of-sample test set and each model specification in Table 1,
an electricity price ensemble forecast consisting of 1000 paths of 24 electricity prices is
generated using a rolling window of 731 days. The ensemble forecast constitutes the
predicted multivariate day-ahead price distribution, which is first evaluated using the
full probabilistic approach. Each ensemble forecast is subsequently used to calculate
the profit loss by solving the stochastic decision-making problems and to derive the
implied probability of the associated events’ occurrence. These constitute the basis for the
aforementioned profit–loss-based and event-based forecast evaluation. The forecasting
study is performed on a MacBook Pro with 2 cores, a 2.7 GHz processor as well as 16 GB
RAM, and the execution times for the individual tasks are reported in Table 3. Whereas the
generation of ensemble forecasts exhibits the longest execution time, the reported results
underscore the much higher computational cost of profit–loss-based evaluation relative to
both full probabilistic and event-based evaluation.

Table 3. Execution Time.

Task Execution Time [min]

Price Forecast and Simulation 53.34
Full Probabilistic Evaluation 0.85
Event-based Evaluation 2.64
Profit–Loss-based Evaluation 20.11

The results of the full probabilistic evaluation of the ensemble forecasts are shown in
Table 4, where we report the average of both the CRPS and the ES over the out-of-sample
period. Note that each of the reported Tables 4–8 is directly linked to one of the forecast
evaluation approaches summarized in Figure 1. In Table 4, one can observe that the expert-
based specifications (Ex-B, QREx-B, SVREx-B, Ex-t, QREx-t and SVREx-t) outperform
the naive specifications (N-B and N-t), whereas the SVR-based models outperform the
mean- and median-regression models. In addition, the bootstrapped-based specifications
exhibit marginally lower scores than the t-based specifications among the expert models.
SVREx-B constitutes the best overall model and has a slightly lower CRPS and ES values
than SVREx-t.
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Table 4. Full Probabilistic Evaluation: Continuous Ranked Probability and Energy Score.

Score N-B Ex-B QREx-B SVREx-B

CRPS 176.56 118.28 116.47 115.25
ES 42.32 28.88 28.44 28.07

Score N-t Ex-t QREx-t SVREx-t

CRPS 176.76 118.55 116.73 115.31
ES 42.32 28.93 28.50 28.09

In Figure 2, we summarize the results of all considered DM tests. In each of the six
panels, a square displays the p-value of a pairwise test of equal predictive performance
against the alternative hypothesis that the model in the row predicts significantly less
accurately than the model in the corresponding column. White squares indicate that no
significant difference in forecasting performance can be uncovered, whereas green squares
indicate significant deviations in forecasting performance at the 10, 5 and 1 per cent levels
of significance, with lighter green implying a more significant difference.

The results of the CRPS-based and ES-based DM tests are shown in the first row of
Figure 2 and confirm the preceding discussion based on Table 4. All expert models exhibit
significantly lower scores than the naive models, as do the SVR-based models in comparison
to the mean- and median-regression models. Yet, the overall best model (SVREx-B) does not
significantly outperform the second-best model (SVREx-t). Interestingly, the conclusions
for the pairwise DM tests based on either the CRPS or ES are identical, lending support to
the literature’s approach to average univariate scores of marginal distributions to assess
multivariate distribution forecasts.

The present study proposes an event-based evaluation framework for electricity price
ensemble forecasts, the basis of which are the implied probabilities of occurrence of a
binary event associated with the stochastic decision-making problems. The time series of
the implied day-ahead probabilities across events and models for 2019 are displayed in
Figure 3. The colored lines trace out the implied probabilities, whereas the dashed grey
vertical lines indicate the realization of the respective event. Clearly, the considered pump
event constitutes a rather common event in 2019. On the contrary, the 6h-negative event
rarely realized. In fact, with 15 occurrences over the out-of-sample period, it falls within
the rare event definition of [36]. Figure 3 indicates that the predicted probabilities vary
both across time and models. For example, the specifications based on the naive electricity
price model structurally assign higher probabilities to the occurrence of the pump event
over the year. Similarly, the expert-based specifications assign much lower probabilities to
six consecutive hours of negative prices than the naive-based specifications. In addition,
it seems that the models predict the realization of the rare event rather well, which is,
however, misleading. Closer inspection reveals that the realization of the rare event is
predicted for the day after its occurrence, the reason being that the prices, which are such
that the event occurs, subsequently form the basis for the day-ahead prediction and thus
assign a high probability to the event’s occurrence.

The QPS values are reported in Table 5, and the corresponding results of the QPS-based
DM test are shown in the second row of Figure 2. It should be noted that the expert-based
specifications exhibit significantly lower QPS values than the naive specifications for both
events. For the pump event, the QR-based specifications achieve lower QPS values than the
remaining expert-based specifications. QREx-t constitutes the overall best model and has a
slightly lower QPS than QREx-B and SVREx-B. Yet, the results of the DM test show that
QREx-t does not statistically significantly outperform them, whereas it does for all other
considered specifications. Similarly, QREx-B fails to significantly outperform both SVR-
based models. We find the overall level of the QPS to be lower for the 6h-negative event
than for the pump event, which illustrates the influence of the frequent realization of the
rare event on the evaluation measure. Since the models generally assign low probabilities to
the day-ahead occurrence of the event, their respective scores are low. SVREx-B constitutes
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the overall best model, but no significant difference in predictive performance can be
uncovered for the SVR-based models in comparison to the QR-based models.

Table 5. Event-based Evaluation: Quadratic Probability Score.

Event N-B Ex-B QREx-B SVREx-B

Pump (Frequent) 0.0606 0.0573 0.0533 0.0539
6h-Negative (Rare) 0.0310 0.0162 0.0156 0.0149

Event N-t Ex-t QREx-t SVREx-t

Pump (Frequent) 0.0609 0.0581 0.0532 0.0547
6h-Negative (Rare) 0.0301 0.0161 0.0156 0.0150

The MD provides further insights into the deficiencies of the considered forecasting
models. Figure 4 shows the QPS and its respective components from the MD for both
events. It should be noted that the uncertainty component, being derived from the event
indicator series over the out-of-sample period, is the same across all models for a given
event. For the pump event, all considered specifications succeed in reducing uncertainty. In
addition, the SVR-based and QR-based models achieve higher generalized resolution than
all other models, implying that they are more able to distinguish between the respective
cases of the event. As the QR-based models exhibit the lowest level of miscalibration,
they achieve the lowest QPS values overall. Interestingly, the SVR-based models achieve
higher levels of generalized resolution but only at the cost of higher miscalibration. For the
6h-negative event, we find that the naive specifications increase the QPS above uncertainty,
due to substantial miscalibration. Conversely, the expert-based specifications succeed in
reducing the uncertainty. Within that class, the SVR-based models together with QREx-t are
the least miscalibrated with slightly higher generalized resolutions, implying that, overall,
the issued forecasts correspond well with the realization of the event and that the models
are most effective in using the provided information to distinguish cases of occurrence and
non-occurrence of the event.

In contrast to the QPS, both the AUROC and the H-Measure are positively oriented
measures of forecasting accuracy, focusing on the event’s occurrence. The respective values
per model are provided in Tables 6 and 7. It should be noted that all AUROC values are
larger than 0.5, implying that all models perform better than random class guessing. For
both events, the naive specifications exhibit the lowest AUROC and H-Measure among
all considered models, underscoring the results derived from the QPS comparisons. For
the pump event, the SVR-based models exhibit the highest AUROC, whereas SVREx-t
and QREx-t exhibit the highest H-Measure. The results are thus somewhat different to the
results based on the QPS, where both QR-based models perform best. Yet, the pairwise
DM tests show that the QR-based models fail to significantly outperfom at least one of the
SVR-based models, and thus the SVREx-t model simply predicts the event’s occurrence
more reliably. For the 6h-negative event, Ex-B achieves both the highest AUROC and
H-Measure values with SVREx-B and QREx-B constituting the respective second-best
models. In addition, each specification with bootstrap-based simulation outperforms its
t-distribution-based simulation counterpart. This constitutes a surprising result, given
that Ex-B exhibits the highest QPS among the expert-based specifications. It suggests
that an evaluation procedure that fails to account for the frequent realization provides
misleading conclusions when forecasting probabilities for rare events. In particular, the
finding suggests that Ex-B exhibits a higher QPS value overall, as it structurally assigns
higher probabilities to the occurrence of the rare event (see lower panel of Figure 3) but
that it also exhibits a higher hit rate when the event actually occurs.
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Figure 2. p-Values of pairwise DM Tests: (a) CRPS-based DM Tests for Electricity Price Forecasts;
(b) ES-based DM Tests for Electricity Price Forecasts; (c) QPS-based DM Tests for Pump Event;
(d) QPS-based DM Tests for 6h-Negative Event; (e) Profit–Loss-based DM Tests for Pump Event;
(f) Profit–Loss-based DM Tests for 6h-Negative Event.
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Figure 3. Probability Forecast and Realization Time Series for Events: (a) Probability Forecast
Time Series per Model for Pump Event; (b) Probability Forecast Time Series per Model for 6h-
Negative Event.

To compare the full probabilistic and event-based evaluation approach and to assess
whether one is to be preferred by the forecast user, the forecast models are also evaluated
based on profit loss. The profit loss values are reported in Table 8, and the corresponding
results of the profit–loss-based DM tests are shown in the third row of Figure 2. For the
pump event, the profit loss is higher for the naive models, whereas it is minimized by using
the forecasts from SVREx-B and QREx-B. Yet, considering the DM test results, one finds
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that SVREx-B does not significantly outperform QREx-B and SVREx-t, which exhibits the
highest AUROC and H-Measure. Similarly, for the 6h-negative event, the results for profit
loss are comparable to the results based on the H-Measure. QREx-B and Ex-B achieve the
lowest profit loss and the pairwise DM tests uncover that both significantly outperform
at least one SVR-based models. Overall, considerably fewer significant outperformances
can be established based on profit loss, and the significant differences in quality between
the SVR-based models and the remaining expert-based models are striking. The correct
prediction of an occurrence of six consecutive hours of negative electricity prices has a
positive impact on the profitability of the energy trader, even if the considered model
overpredicts the occurrence of the event. Consequently, QREx-B and Ex-B, being the
models that predict the event’s occurrence most reliably, also constitute the models with
the lowest profit loss.

Table 6. Event-based Evaluation: AUROC.

Event N-B Ex-B QREx-B SVREx-B

Pump (Frequent) 0.8212 0.8873 0.8851 0.9006
6h-Negative (Rare) 0.7665 0.9076 0.8906 0.8934

Event N-t Ex-t QREx-t SVREx-t

Pump (Frequent) 0.8509 0.8788 0.8983 0.9079
6h-Negative (Rare) 0.7533 0.8490 0.8329 0.8737

Table 7. Event-based Evaluation: H-Measure.

Event N-B Ex-B QREx-B SVREx-B

Pump (Frequent) 0.2687 0.3143 0.3163 0.3379
6h-Negative (Rare) 0.3633 0.6068 0.5822 0.5626

Event N-t Ex-t QREx-t SVREx-t

Pump (Frequent) 0.2705 0.3131 0.3622 0.3703
6h-Negative (Rare) 0.3542 0.5045 0.5682 0.5302

For the considered sample of German electricity prices, neither the event-based ap-
proach nor the profit–loss-based approach establishes the statistically significant differences
in forecasting performance for the SVR-based models suggested by the full probabilistic
approach. The QR-based models are not clearly outperformed under the event-based and
the profit–loss-based approach for the pump event. The same result is established for the
6h-negative event based on the QPS, whereas the evaluation techniques for binary classi-
fiers and the profit–loss-based approach establish Ex-B as the best-performing model. Thus,
the event-based approach does not suggest statistically significant differences in forecasting
performance that are not in line with the economics of the stochastic decision-making
problems to which the forecasts constitute an input. The same holds for the profit–loss-
based approach, but that approach comes at a considerably higher computational costs.
As the event-based approach more reliably identifies the economically equivalent mod-
els for the studied decision-making problems, it extends the prevailing full probabilistic
approach. Yet, the conclusions are specifically established for an energy trader operating
in the German market. We leave the confirmation of the presented results for additional
decision-making problems under different price regimes to future work. In addition, the
results suggest that for decision-making problems linked to rare events, an event-based
evaluation with techniques that focus on the occurrence of the event is beneficial to an
event-based evaluation with techniques strongly influenced by the frequent realization of
the event.
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Figure 4. Murphy Decomposition for Events: (a) Murphy Decomposition Components per Model
for Pump Event; (b) Murphy Decomposition Components per Model for 6h-Negative Event.

Table 8. Profit–loss-based Evaluation: Profit Loss.

Event N-B Ex-B QREx-B SVREx-B

Pump (Frequent) 6452 4081 3879 3829
6h-Negative (Rare) 89.88 88.69 88.47 89.75

Event N-t Ex-t QREx-t SVREx-t

Pump (Frequent) 6467 4123 3944 3884
6h-Negative (Rare) 89.89 89.19 88.75 90.22
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6. Conclusions

The present paper considers the problem of choosing among a collection of competing
electricity price forecasting models to address two stochastic decision-making problems
motivated by the daily operation of a risk-neutral energy trading company. All forecasts are
communicated in the form of ensemble forecasts, that is, a collection of possible day-ahead
electricity price paths, which are generated from two established electricity price models in
combination with a bootstrap-based and a t-distribution-based simulation approach.

The ensemble forecasts are first evaluated using the predicted prices directly. Sub-
sequently, an event-based evaluation framework is introduced. To this end, an event per
decision-making problem is defined, and the day-ahead probability forecast for the binary
event implied by the ensemble is calculated and evaluated. The task of forecast evaluation
is thus simplified from assessing a multivariate distribution over prices to assessing a
univariate distribution over a binary outcome directly linked to the underlying stochastic
decision-making problem.

While we demonstrate the applicability of the proposed event-based evaluation frame-
work with electricity prices, it is also applicable to any stochastic optimization problem,
where uncertainty is captured through ensembles (see Figure 1). It is basing the consid-
ered events directly on the stochastic decision-making problems to which the predicted
distribution constitutes an input that represents the novelty of our approach. It thus com-
bines the advantages of standard probabilistic evaluation as well as prescriptive analytics
and bridges the gap between the strands of the forecasting literature concerned with full
probabilistic forecast evaluation and the economic consequences of forecast utilization.

We test our event-based approach with an out-of-sample forecasting study on German
day-ahead electricity prices. It is found not to uncover the statistically significant differences
in forecasting performance suggested by the full probabilistic approach and therefore
extends it. In addition, the results suggest that an event-based evaluation specifically
tailored to the rare event is crucial for decision-making problems linked to rare events.
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Nomenclature

Expression Explanation
max Maximization Operator
O(·) Objective Function
c Decision Variable
Y Multivariate Random Vector
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FY Cumulative Distribution Function of Vector Y
F̂i

Y Model i Forecast of FY
F̂∗Y Optimal Forecast of FY
g(·) Event defined as Mapping from FY to {0, 1}
Pr(·) Probability
∑ Sum Operator
Pt, h Power Price in Hour h on Day t
Pt Power Price Path on Day t
PMin

t Minimum Power Price on Day t
PMax

t Maximum Power Price on Day t
m Index of Power Price Simulation Path
ωm Probability of Power Price Path m
Pm

t,h Power Price in Hour h on Day t along Path m
Pm

Min Minimum Power Price on Day t along Path m
Pm

Max Maximum Power Price on Day t along Path m
∆t,h Length of Time Interval t, h
Tt,h Turbining Capacity in Hour h on Day t
St,h Generation Capacity in Hour h on Day t
η Efficiency Factor
KT Maximum Turbining Capacity
KS Maximum Generation Capacity
KF Maximum Storage Capacity
Et,h Production in Hour h on Day t
yt,h Share sold on Day-Ahead Market in Hour h on Day t
zt,h Share sold on Intraday Market in Hour h on Day t
I6h,m
t,h 6h-Negative Event Indicator for Hour h on Day t along Path m

Rt,h Subsidy in EUR/MWh
Di

t Dummy for Day of Week i for Day t
CRPS Continuous Ranked Probability Score
E Expectation Operator
Λ, Λ̃ Random Variable
ES Energy Score
‖ · ‖p Lp Norm
ΓA Score for Model A
∆A,B Score Differential for Model A and B
H0 Null Hypothesis
f Probability Forecast
x Event Realization Indicator
QPS Quadratic Probability Score
j Index of Probability Bin
x̄ Mean of Event Realization Indicators
Tj Number of Probability Forecasts in Bin j
x̄j Mean of Event Realization Indicators in Bin j
ftj Probability Forecast in Bin j for Day t
f̄ j Mean of Probability Forecasts in Bin j
TPR True Positive Rate
FPR False Positive Rate
PLA

t Profit Loss under Model A
Πt Profit under Perfect Foresight
ΠA

t Profit under Model A Forecasts



Forecasting 2022, 4 70

References
1. Nowotarski, J.; Weron, R. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renew. Sustain.

Energy Rev. 2018, 81, 1548–1568. [CrossRef]
2. Uniejewski, B.; Marcjasz, G.; Weron, R. On the importance of the long-term seasonal component in day-ahead electricity price

forecasting: Part II—Probabilistic forecasting. Energy Econ. 2019, 79, 171–182. [CrossRef]
3. Gneiting, T.; Katzfuss, M. Probabilistic Forecasting. Annu. Rev. Stat. Its Appl. 2014, 1, 125–151. [CrossRef]
4. Marcjasz, G.; Uniejewski, B.; Weron, R. Probabilistic electricity price forecasting with NARX networks: Combine point or

probabilistic forecasts? Int. J. Forecast. 2020, 36, 466–479. [CrossRef]
5. Weron, R.; Ziel, F. Electricity Price Forecasting. In Routledge Handbook of Energy Economics; Soytaş, U., Sari, R., Eds.; Routledge:
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