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Abstract: Temperature is the most used meteorological variable for a large number of applications
in urban resilience planning, but direct measurements using traditional sensors are not affordable
at the usually required spatial density. On the other hand, spaceborne remote sensing provides
surface temperatures at medium to high spatial resolutions, almost compatible with the needed
requirements. However, in this case, limitations are represented by cloud conditions and passing
times together with the fact that surface temperature is not directly comparable to air temperature.
Various methodologies are possible to take benefits from both measurements and analysis methods,
such as direct assimilation in numerical models, multivariate analysis, or statistical interpolation.
High-resolution thermal fields in the urban environment are also obtained by numerical modelling.
Several codes have been developed to resolve at some level or to parameterize the complex urban
boundary layer and are used for research and applications. Downscaling techniques from global or
regional models offer another possibility. In the Milan metropolitan area, given the availability of
both a high-quality urban meteorological network and spaceborne land surface temperatures, and
also modelling and downscaling products, these methods can be directly compared. In this paper,
the comparison is performed using: the ClimaMi Project high-quality data set with the accurately
selected measurements in the Milan urban canopy layer, interpolated by a cokriging technique with
remote-sensed land surface temperatures to enhance spatial resolution; the UrbClim downscaled data
from the reanalysis data set ERA5; a set of near-surface temperatures produced by some WRF outputs
with the building environment parameterization urban scheme. The comparison with UrbClim and
WRF of the cokriging interpolated data set, mainly based on the urban canopy layer measurements
and covering several years, is presented and discussed in this article. This comparison emphasizes
the primary relevance of surface urban measurements and highlights discrepancies with the urban
modelling data sets.

Keywords: urban meteorology; LST; cokriging; UrbClim; WRF-BEP

1. Introduction

In the current climate change situation, cities represent one of the most relevant
environments, mainly because a large percentage of human population lives in urbanized
areas: more than 56% already in 2020, with a still growing trend and a projection up to 68%
in 2050 (United Nations Department of Economic and Social Affairs—Population Dynamics:
World Urbanization Prospects 2018 (https://population.un.org/wup/), last accessed on
7 January 2022). Therefore, large quantities of energy and pollution are produced, which
exacerbate the well-known urban heat island (UHI) phenomenon and severely affect
inhabitant wellness. This is especially true during heat wave (HW) episodes [1], when
UHI adds its effect to the already-elevated temperatures caused by the synoptic weather
situation. Nevertheless, UHI has several diversified aspects, depending on regional climate,
topographic characteristics, urban shape, and urban metabolism. It is then clear that a
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good observational knowledge of urban meteorology and climatology is an essential part
of every effort in urban resilience plans worldwide.

On the other hand, atmospheric processes in the urban atmosphere are difficult to han-
dle, essentially because they are dominated by turbulence of the more complex boundary
layer and by the large gradients of surface characteristics. Both aspects imply the necessity
of meteorological high-resolution spatial and temporal observations, land use and land
cover details, and specific complex modelling techniques. A general review of all these
items is given in [2].

In cities, near-surface meteorological measurements are affected by a number of un-
avoidable disturbances. Therefore, they usually hardly meet the WMO (World Meteorologi-
cal Organization (https://public.wmo.int/), last accessed on 10 January 2022) requirements
for correct (meso-) synoptic measurements [3]. Thus, in most cases classification for urban
meteorological sensors is in WMO Class 4 or more often Class 5 with the largest estimated
uncertainties, while classical climatological stations must be in Class 1. Nevertheless, it
must be noted that in cities the observational target is the local- and microscale charac-
terization of the urban atmosphere, as affected by nearby buildings and other urbanistic
features. Therefore, even if classified in WMO Class 5 where the temperature uncertainties
are estimated to be up to 5 ◦C, they are necessary, and the WMO specifies this need with the
suffix “s” (i.e., “special”): specific cautions must be taken into consideration for correct and
representative measurements. Technical and methodological requirements are given by [4],
where particular attention is paid to siting and sensor exposure: the former is intended
as the station position relative to the main urban characteristics and boroughs (urban
mesoscale), the latter as the exact location of each sensor relative to nearby disturbing
details as shadows and reflections, radiating walls, greeneries, parks, aquifers, and so on.
Both aspects are an essential part of the measurement representativeness.

The relevance of UHI effects on both energy production and human wellness makes
temperature the most important among all the meteorological essential climatic variables
(ECVs) (ECVs are defined by GCOS: https://gcos.wmo.int/en/essential-climate-variables,
last accessed on 10 January 2022). For urban applications, especially in adaptation and
mitigation plans, temperature is needed by local authorities and engineering and archi-
tectural professionals at a spatial resolution comparable to boroughs and single buildings
or building blocks (i.e., at the order of a few tenths of meters and even less) [5]. Fur-
thermore, it must be stressed that also vertical gradients are relevant because of the 3D
nature of urbanized environments [2]: meteorological and climatological measurement
targets are different if sensors are at street level, in parks, or at building tops. They must
be considered separately regarding different layers of the urban atmosphere. Even their
representativeness is different, as well as their potential applications: measurements at
street level are more directly related to human wellness, but their horizontal representa-
tiveness is very limited. On the other hand, measuring at building top level (the upper
part of the urban canopy layer (UCL)) produces data that are representative of a larger area
and requires much fewer measuring points for a satisfactory description of the city: in this
case, applications are obviously quite different. It is also evident that detailed metadata
of the observational network stations, relating to both siting and exposure, are of utmost
relevance. Well-planned (in terms of urban layer, siting, and exposure), well-managed (in
terms of calibration and maintenance procedures), and well-described meteorological net-
works (metadata) can then produce climatological data with much lower uncertainties [6].
Evidently, the sustainability of the measuring network is a major problem too, especially
considering long-lasting applications and climatological purposes. Even considering the
opportunities recently offered by low-cost sensors and Internet of Things solutions, the
observational requirements depending on spatial resolution are hardly to be met, for both
logistical and economical aspects: it is not always easy to find a suitable and practicable
location for sensors, and their quantity must be limited to a reasonable number.

Classical near-surface measurements can be integrated by remote-sensed data: in
situ measuring points are necessarily limited in number, while remote sensing allows for

https://public.wmo.int/
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monitoring a large area with a generally elevated spatial resolution. Moreover, spaceborne
sensors are becoming more and more frequent, and their data are often easily accessible. In
this case, the observational frequency is poor, severely limited by orbital characteristics of
the orbiting platforms: in the best case, no more than one or two measurements per day are
possible, and often repetition occurs after several days. In the specific case of temperature
measurements, one other aspect is relevant. The temperature range at the earth surface
limits measurements in the thermal infrared (IR) around the 10 µm wavelength, where
radiation is strongly absorbed only by condensed water, and around the maximum of
the radiation intensity emitted by the earth surface. Therefore, only situations without
clouds are practically open to remote sensing of temperature from space. Furthermore,
the radiation sensed comes essentially from the earth surface: the derived temperature is
then the land surface temperature (LST), not directly comparable to the near-surface air
temperature (Ta), measured “in situ”. LST computation needs a lot of auxiliary variables,
and different methods have been described [7]: LST data are directly provided for a few
spaceborne observational platforms too. There are several ways to take advantage of both
air temperature direct measurements and remote-sensed LST. In general, the results are in
the form of gridded fields of temperature at a resolution depending mainly on the resolution
of LST data, typically about 102 ÷ 103 m, with possible downscaling at lower values.

Modelling of the urban atmosphere is obviously another way to obtain air temperature
fields in cities. Much work has been done with two different approaches: considering the
impact of single buildings or building blocks on an initially undisturbed environment and
developing an atmospheric model nesting and improving the resolution down to building
dimensions. In the former case, very high resolutions are achievable [8,9], but mesoscale
meteorological dynamics is often underestimated; in the latter, very high resolutions are
more difficult to obtain [10]. Modelling, however, requires observational data to be properly
initialized for both sensitivity analysis and results verification.

In this paper, we focus on the assessment of urban air temperature fields, achieved by
integrating high-quality near-surface measurements with high-resolution remote-sensed
LSTs in Milan and the surrounding area. The integration methodology adopted is based on
a cokriging technique (CoK) [11] and was described in a previous article [12], where direct
correlations between near-surface air temperatures and LST, inverse distance weights, and
ordinary kriging have also been considered and discussed. As a consequent continuation
of that work, in the present paper the computed gridded fields of air temperature in the
UCL and the related uncertainties are compared with other available temperature data sets
based on reanalysis downscaling and with some urban modelling results. A summary of
the temperature data set obtained for Milan and the adopted CoK methodology is shortly
described in Section 2. Section 3 analyzes the results of the UrbClim (climate variables for
cities in Europe from 2008 to 2017 (https://cds.climate.copernicus.eu/), last accessed on
10 January 2022) (in the following: UrC) air temperature data set based on a downscaling
of ERA5 (ECMWF Reanalysis v5 (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-
reanalysis-v5), last accessed on 13 December 2021); also, some outputs of WRF model
runs for the same area are compared. The overall results are then shortly discussed in
Section 4, highlighting discrepancies between models and observations. Finally, in Section 5
conclusions are summarized and further developments outlined.

2. Materials and Methods
2.1. Improving the Observational Air Temperature Resolution

A realistic and affordable urban meteorological network has a number of measurement
points of the order of a few tens and has a typical density of 1 station per 10 km2. This
is enough to resolve the urbanized environment at the urban mesoscale, for instance, to
outline the UHI morphology and dynamics. However, it is obviously inadequate for a more
detailed description at the building and building-block scale. Moreover, the observational
target must be specified, and the network layout must be coherently set up. For an urban
mesoscale characterization, the upper part of the UCL is a reasonable solution, while for a

https://cds.climate.copernicus.eu/
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more detailed monitoring, also the lower UCL should be considered as in the case of urban
squares, green areas, and parks or aquifers inside the city, according to the local climatic
zone (LCZ) classification [13].

Several cities are nowadays monitored by such networks [14,15]. In Milan, the weather
network of Fondazione OMD (Fondazione Osservatorio Meteorologico Milano Duomo
(https://www.fondazioneomd.it/), last accessed on 10 January 2022) Network), specifically
designed for urban applications and climatological purposes [16], has been operating
continuously for a decade and has so far collected a database of minima, maxima, and mean
values over 10 min and of the most relevant ECVs: it consists of about 20 automatic weather
stations (AWSs) distributed in the larger metropolitan area (1575 km2), 8 AWSs sited in
Milan downtown (50 km2). The FOMD Network monitors the weather variables at the
roof level of buildings (upper UCL), it is managed with metrological criteria and calibrated
with high-quality international standards, and it is characterized by total homogeneity
of AWS siting and of hardware and software [17]. Laboratory and in-field measurement
uncertainties have also been evaluated [18]. The Milan FOMD subnet has allowed, therefore,
a much-improved description of Milan UHI relative to previous studies [19,20].

The FOMD Network database, limited to 2016–2019 and short-time periods in 2014
and 2015, is used as the basic reference for the urban air temperature Ta. The city of Milan
(Figure 1) has an almost center-symmetric configuration, covering an area of 181.8 km2

with a population of 1.4 million (2020) and a relatively high density of 7.7 × 103 km−2.
The city center is at latitude 45◦ 28′ N and longitude 9◦ 11.5′ E in the central–western part
of the flat valley of Po River in Northern Italy, with the Alps northwards and westwards,
the Apennines to the south, and a smooth and small elevation gradient oriented from the
higher (140 m above mean sea level) northern–northwestern region to the lowland in the
south–southeast. The larger metropolitan area (1575 km2 and 3.3 × 106 inhabitants) has a
mixed composition of smaller towns and industrial and agricultural lands, and it extends
from the more than 250 m elevated region in the northwest to the less than 60 m a.m.s.l.
plane in the southeast.

The FOMD Network is suitable for a description of the weather and climate in the
Milan metropolitan area. However, it is not dense enough to represent in detail the temper-
ature at the urban microscale, as required by public administrators and professionals in a
number of applications, such as urban planning, energy, and building design. Therefore,
we accurately selected and added to the analysis further operational weather stations
managed by the Regional Environmental Protection Agency (ARPA Lombardia (Lom-
bardy Regional Environmental Protection Agency [https://www.arpalombardia.it/Pages/
Meteorologia/Osservazioni-e-Dati/Dati-in-tempo-reale.aspx]), last accessed on 13 De-
cember 2021) and by a citizen–scientist weather observers’ association (MeteoNetwork
(https://www.meteonetwork.it/rete/livemap/), last accessed on 13 December 2021), con-
nected with similar associations abroad and actively collaborating with academic and
research institutions. Selection criteria were based on operational continuity, data relia-
bility (we performed an accurate independent validation based on automatic checking
and cross-reference), and siting characterization. Figure 1 gives a synoptic view of the
resulting overall network, and Table 1 lists coordinates and altitudes above mean sea level
of the AWSs.

There are different possibilities to integrate the classical “in situ” measurements with
remote-sensed data from spaceborne platforms, which provide thermal IR observations at
a resolution varying from 1 km to a few tens of a meter. The satellite data considered for
this study were the land surface temperatures (LSTs) directly provided by ESA (European
Space Agency (https://www.esa.int/Applications/Observing_the_Earth), last accessed
on 13 December 2021) in the framework of the EU Copernicus (Copernicus (https://www.
copernicus.eu/), last accessed on 13 December 2021) initiative, based mainly on operational
measurements by Sentinels 3A and 3B, and LST data by NOAA (National Oceanic and
Atmospheric Administration (https://www.noaa.gov/), last accessed on 13 December
2021) and USGS (United States Geological Survey (https://earthexplorer.usgs.gov/), last

https://www.fondazioneomd.it/
https://www.arpalombardia.it/Pages/Meteorologia/Osservazioni-e-Dati/Dati-in-tempo-reale.aspx
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accessed on 13 December 2021), based mainly on Landsat 8 sensors. Correlation, kriging,
and cokriging interpolation methods were tested using Ta and LST data for the Milan area,
and their results were compared, as already described in [12]. Correlation between Ta and
LST was found to be not sufficiently performing from a meteorological/physical point of view
for monitoring and climatological purposes, being relatively good in some cases but practically
absent in others. Best results were obtained with kriging and cokriging interpolation methods.
The cokriging method (CoK), implemented on a regular grid of square cells of 100 m side
that cover the metropolitan area of Milan, proved to be particularly suitable. It allows us to
“model” the interpolation of AWSs’ Ta according to the LST of each square cell.

The methodology finally adopted is based on the cokriging technique [21,22]: the
reference Ta was taken as the primary variable, and the satellites’ LST as the secondary one.
The CoK interpolation, obtained after best fitting of the semivariograms and minimizing
the covariances, generated a gridded air temperature field at the higher resolution of the
secondary variable LST, but keeping a good part of the characteristics and quality of the
primary one (i.e., measurements of Ta at the top of UCL). We also performed a statistical
estimation of the interpolation uncertainty: in all the analyzed situations, we obtained
a statistical uncertainty well under 2 ◦C and in most cases under 1 ◦C. Interpolation
uncertainty is comparable with the AWSs’ Ta uncertainties due to calibration, siting, and
exposure of sensors and to maintenance procedures. Specific development and application
of this cokriging methodology to the Milan area and the FOMD Network database are
detailed in [12].

Table 1. Automatic weather stations (AWS) of the 3 different networks in and around Milan: FOMD
(Fondazione Osservatorio Meteorologico Milano Duomo), ARPA (Regional Environmental Protection
Agency of Lombardy), MeteoNetwork (MN): citizen–scientists’ meteorological association.

No. Name Longitude E
WGS84 (◦)

Latitude N
WGS84 (◦)

Altitude
m.s.l. (m) Owner/Manager AWS

1 Milano Città Studi 9.229652 45.479995 171 FOMD Vaisala WXT520

2 Milano Bovisa 9.163837 45.502578 150 FOMD Vaisala WXT520

3 Milano Centro 9.194909 45.459641 135 FOMD Vaisala WXT520

4 Milano San Siro 9.125377 45.478607 198 FOMD Vaisala WXT520

5 Milano Sud 9.200497 45.431289 129 FOMD Vaisala WXT520

6 Milano Bocconi 9.187711 45.450826 147 FOMD Vaisala WXT520

7 Milano Bicocca 9.211582 45.510169 143 FOMD Vaisala WXT520

8 Milano Sarpi 9.175951 45.479822 141 FOMD Vaisala WXT520

9 Gaggiano 9.033883 45.406186 129 FOMD Vaisala WXT520

10 Magenta 8.883972 45.466300 159 FOMD Vaisala WXT520

11 Rho 9.039521 45.529664 184 FOMD Vaisala WXT520

12 Cinisello Balsamo 9.211591 45.555619 167 FOMD Vaisala WXT520

13 Seregno 9.198415 45.652056 241 FOMD Vaisala WXT520

14 Vimercate 9.368517 45.613961 208 FOMD Vaisala WXT520

15 Melzo 9.423614 45.504597 140 FOMD Vaisala WXT520

16 San Donato Milan. 9.257977 45.424985 122 FOMD Vaisala WXT520

17 Lacchiarella 9.137408 45.321406 115 FOMD Vaisala WXT520

18 Legnano 8.918795 45.595506 226 FOMD Vaisala WXT520

19 Saronno 9.049397 45.636727 228 FOMD Vaisala WXT520

20 Lodi 9.488757 45.307562 92 FOMD Vaisala WXT520

21 Vigevano 8.859299 45.318034 117 FOMD Vaisala WXT520
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Table 1. Cont.

No. Name Longitude E
WGS84 (◦)

Latitude N
WGS84 (◦)

Altitude
m.s.l. (m) Owner/Manager AWS

22 Osio Sotto 9.611737 45.620556 182 ARPA /

23 Rivolta d’Adda 9.520689 45.444091 102 ARPA /

24 Osnago 9.388556 45.677698 234 ARPA /

25 Cavenago d’Adda 9.562660 45.269274 67 ARPA /

26 Sant’Angelo Lodig. 9.379660 45.260667 60 ARPA. /

27 Misinto 9.066390 45.661382 247 ARPA /

28 Castello d’Agogna 8.700572 45.246801 106 ARPA /

29 Cornale 8.914145 45.040077 74 ARPA /

30 Pavia Folperti 9.164638 45.194676 77 ARPA /

31 Pavia SS 35 9.146664 45.180622 71 ARPA /

32 Voghera 9.017494 44.990273 95 ARPA /

33 Busto Arsizio R. 8.823878 45.626387 242 ARPA /

34 Somma Lombardo 8.712691 45.649537 210 ARPA /

35 Arconate 8.847322 45.548517 182 ARPA /

36 Cinisello Parco N. 9.205603 45.542665 142 ARPA /

37 Corsico 9.097411 45.436109 119 ARPA /

38 Lacchiarella 9.134517 45.324518 97 ARPA /

39 Motta Visconti 8.988563 45.281956 100 ARPA /

40 Rodano 9.353497 45.472580 112 ARPA /

41 S.Colombano L. 9.486249 45.186999 140 ARPA /

42 Milano Brera 9.189110 45.471656 122 ARPA /

43 Milano Juvara 9.222315 45.473226 122 ARPA /

44 Milano Lambrate 9.257515 45.496780 120 ARPA /

45 Milano Marche 9.190934 45.496316 129 ARPA /

46 Milano Zavattari 9.141786 45.476063 122 ARPA /

47 Landriano 9.267153 45.320594 88 ARPA /

48 Seregno Ovest 9.179034 45.653843 224 MN Davis Vantage Pro+2

49 Giussano 9.205470 45.690773 265 MN Davis Vantage Pro 2

50 Sesto S. Giovanni PN 9.209622 45.538144 141 MN Davis Vantage Pro 2

51 Lodi San Bernardo 9.520125 45.299132 78 MN Davis Vantage Pro+2

52 Monza V. Sgambati 9.261475 45.596264 180 MN Davis Vantage Pro 2

53 Mezzana Bigli 8.850000 45.070000 76 MN Davis Vantage Pro 2

54 Treviglio 9.575169 45.510036 125 MN Davis VantagePro +2

55 Lodi Viale Europa 9.494063 45.305513 80 MN Davis Vantage Pro 2

56 Saronno 9.024983 45.634373 220 MN Davis Vantage Pro 2

57 Lesmo via Po 9.307965 45.655836 241 MN Davis Vantage Pro 2

58 Milano Maxwell 9.240532 45.498166 138 MN Davis Vantage Pro 2

59 Carpiano Centro 9.270873 45.338421 105 MN Davis Vantage Pro 2

60 Monza Parco 9.286022 45.619501 180 MN Davis Vantage Pro 2

61 Trecate S. Maria 8.730000 45.420000 136 MN Davis Vantage Pro 2
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The results, mainly obtained in the framework of ClimaMi Project (https://www.
progettoclimami.it, last accessed on 10 January 2022), are medium- to high-resolution
gridded fields of air temperature together with the related uncertainties, available for
weather situations without clouds at the passing times of the used orbital platforms, in the
morning hours (around 9:00 or 10:00 UTC) or in the evening (22:00 or 23:00 UTC). They
refer to UHI and HW episodes generally occurring with anticyclonic and clear weather,
at high spatial resolution for urbanistic planning, energy, and building design: both are
relevant in Milan. UHI produces temperature differences, “urban–rural”, which in the
annual mean are of the order of 4 ◦C and have maxima up to 10 ◦C. HW episodes are
generally due to a persistent northward extension of the African subtropical high, and
they are not infrequent: the annual mean of HW days (i.e., with daily temperature maxima
over 33 ÷ 34 ◦C and minima over 23 ÷ 24 ◦C and lasting at least 2 days) is well over 10
in downtown.

The above-quoted resolution and uncertainty of the gridded fields are compatible with
the requirements by architects and engineers resulting from collaboration with professional
associations in the ClimaMi Project. Regular updates are foreseen.

2.2. Data Set of Gridded Air Temperatures for Milan Metropolitan Area

The construction of the Milan gridded temperature database related to two different
sources of information, as already previously depicted:

a. The surface meteorological database, composed of 10 min mean values obtained by:

− 21 AWSs of the FOMD Network;
− 26 AWSs of the institutional regional network managed by ARPA Lombardia;
− 14 stations of the MeteoNetwork.

Overall, 61 stations were used. In the last two cases, an accurate selection of stations
and the subsequent data validation were performed to maintain the high-quality standards
as in the first one.

b. The LST database, created by the selection of cloud-free spaceborne observations of
the Milan area by two different operational platforms:

− Sentinels 3A and 3B, managed by ESA under the EU Copernicus initiative, with
a good repetition interval of 2 days and a medium spatial resolution of 1 km
(Figure 2a);

− Landsat 8, operated by NOAA and USGS with slower repetition but a much
better resolution of 30 m (Figure 2b).

The reasons for selecting these satellite sources excluding other possibilities were
based on easy access to the provider’s databases, observational repetition, data quality,
and spatial resolution. In a future development, this data set could be extended to other
existing or planned spaceborne sensors.

Application of the specifically developed CoK algorithm produced grids of near-
surface air temperatures at spatial resolutions of 100 and 30 m (Table 2): the lower (100 m,
2 satellite passes per day) suitable for climatological analysis at urban mesoscale phenomena
as the UHI, and the higher (30 m, 1 morning satellite pass every 14 days) to be used for
a detailed description of the thermal characteristics of the urbanized environment at the
local and microscale as the post operam assessment of the microclimatic performance of
urban changes at the scale of a square or a street. Examples are shown in Figure 3 together
with their error maps.

Furthermore, in both resolution cases the obtained gridded thermal fields were clas-
sified on the basis of the seasonal morphological aspect of the UHI, as modified by local
weather circulations. Table 3 gives a simplified overview of UHI patterns and thermal
characteristics of the local weather types with respective frequencies of occurrence. Each
thermal field also has its own uncertainty field: uncertainties are in the range of 2 ◦C, when
far from AWSs, to a few tenths of a Celsius degree near measuring stations (Figure 3e).

https://www.progettoclimami.it
https://www.progettoclimami.it
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Anyway, in general, uncertainties are lower than 1 ◦C and, therefore, comparable to other
sources of uncertainty in urban field measurements.
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− Landsat 8, operated by NOAA and USGS with slower repetition but a much 

better resolution of 30 m (Figure 2b). 
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Figure 2. Examples of land surface temperatures (LST, K) in the Milan area from (a) Sentinel 3, 1
July 2019 09:51 UTC, at 1 km resolution and (b) Landsat 8, 1 July 2019 10:11 UTC, at 30 m resolution;
color scale of LST in K. The gain in resolved details is evident in (b). Coordinates are WGS84. Milan
neighborhood borders are indicated for reference.

Altogether, the useful generated fields at 100 m resolution are 62 between 2016 and
2019 (Table 2), covering winter and summer seasons, morning and evening times, and a
variety of UHI patterns and weather types. The 30 m fields (Table 2), based on Landsat 8
LST data and limited to summer situations (especially heat waves) in the same time period,
are 38 with 3 further cases in 2014 and 2015 used for comparison with WRF runs (see
Section 3.2). Among them, only a few are almost timely coincident with Sentinel 3-based
imagery at lower resolution.

Table 2. Gridded air temperature fields produced with the CoK algorithm at the horizontal resolution
of 100 m using Sentinels 3A and 3B (S3) for summer and winter and 30 m using Landsat 8 (L8) for
cloud-free summer situations. 18 episodes are characterized by heat waves (HW); all the others are
enhanced UHI situations over Milan. Only 6 episodes of HW are intercepted and none of UHI, not
yet formed in the late morning. S: Satellite.

No. Date
(d/m/y) UTC HW Sat. No. Date

(d/m-/y) UTC HW Sat. No. Date
(d/m/y) UTC HW Sat.

1 19/07/2014 10:00 L8 36 17/08/2017 21:10 S3 71 08/06/2019 10:04 L8
2 15/07/2015 10:00

√
L8 37 21/08/2017 10:04 L8 72 24/06/2019 10:04 L8

3 22/07/2015 10:00
√

L8 38 22/08/2017 20:50 S3 73 26/06/2019 09:30
√

S3
4 06/06/2016 10:10 L8 39 28/08/2017 21:30 S3 74 26/06/2019 19:30

√
S3

5 15/06/2016 10:04 L8 40 29/08/2017 21:00 S3 75 26/06/2019 20:00 S3
6 22/06/2016 21:30 S3 41 06/12/2017 10:10 S3 76 01/07/2019 09:40

√
S3

7 22/06/2016 10:10 L8 42 25/12/2017 10:20 S3 77 01/07/2019 10:11
√

L8
8 23/06/2016 21:00 S3 43 30/12/2017 21:10 S3 78 02/07/2019 10:40

√
S3

9 01/07/2016 10:04 L8 44 19/01/2018 21:00 S3 79 05/07/2019 09:40
√

S3
10 08/07/2016 10:10 L8 45 05/06/2018 10:03 L8 80 05/07/2019 21:00

√
S3

11 09/07/2016 20:50 S3 46 21/06/2018 10:04 L8 81 06/07/2019 09:10
√

S3
12 17/07/2016 20:40 S3 47 21/06/2018 10:04 L8 82 10/07/2019 10:05 L8
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Table 2. Cont.

No. Date
(d/m/y) UTC HW Sat. No. Date

(d/m-/y) UTC HW Sat. No. Date
(d/m/y) UTC HW Sat.

13 17/07/2016 10:05 L8 48 29/06/2018 21:20 S3 83 16/07/2019 20:40 S3
14 20/07/2016 09:40

√
S3 49 07/07/2018 21:10 S3 84 17/07/2019 10:10 L8

15 20/07/2016 21:00
√

S3 50 07/07/2018 10:04 L8 85 19/07/2019 21:00 S3
16 24/07/2016 10:11 L8 51 13/07/2018 09:30 S3 86 21/07/2019 09:20

√
S3

17 02/08/2016 10:04 L8 52 14/07/2018 10:10 L8 87 21/07/2019 20:50
√

S3
18 09/08/2016 10:10 L8 53 19/07/2018 21:00

√
S3 88 22/07/2019 10:00

√
S3

19 13/08/2016 20:40 S3 54 23/07/2018 10:04 L8 89 23/07/2019 21:00 S3
20 18/08/2016 10:04 L8 55 30/07/2018 10:10

√
L8 90 26/07/2019 10:00

√
S3

21 24/08/2016 21:00 S3 56 31/07/2018 20:50
√

S3 91 26/07/2019 10:05
√

L8
22 25/08/2016 10:10 L8 57 07/08/2018 09:50

√
S3 92 01/08/2019 21:00 S3

23 05/12/2016 10:00 S3 58 08/08/2018 10:03
√

L8 93 02/08/2019 10:10 L8
24 30/12/2016 20:40 S3 59 10/08/2018 21:30 S3 94 08/08/2019 21:40 S3
25 01/01/2017 10:00 S3 60 11/08/2018 21:10 S3 95 08/08/2019 20:40 S3
26 24/01/2017 10:00 S3 61 15/08/2018 10:10 L8 96 11/08/2019 10:04 L8
27 29/01/2017 21:00 S3 62 18/08/2018 21:30 S3 97 15/08/2019 21:00 S3
28 02/06/2017 10:04 L8 63 22/08/2018 21:20 S3 98 18/08/2019 10:10 L8
29 08/06/2017 21:30 S3 64 23/08/2018 20:50

√
S3 99 22/08/2019 21:00 S3

30 18/06/2017 10:04 L8 65 24/08/2018 10:04 L8 100 24/08/2019 21:10 S3
31 03/07/2017 20:40 S3 66 16/01/2019 09:50 S3 101 27/08/2019 10:04 L8
32 04/07/2017 10:04 L8 67 20/01/2019 09:40 S3 102 29/08/2019 20:40 S3
33 27/07/2017 10:11 L8 68 08/02/2019 09:50 S3 103 08/07/2108 20:50 S3
34 05/08/2017 10:04

√
L8 69 13/02/2019 20:40 S3

35 12/08/2017 10:10 L8 70 17/02/2019 20:40 S3

In the next step of analysis, mean thermal fields at 100 m were computed according to
the weather type classifications (season, time, wind speed, baric configuration, UHI shape),
obtaining for the first time an initial, high-resolution, and climatologically representative
description of the lowest level of the Milan metropolitan area atmosphere. These climatic
mean fields describe in detail the diversified morphology of the UHI in Milan and other
towns in the area (as in Table 3) and its elongations and displacements relative to the
densest urbanized city center and as a consequence of local or mesoscale pressure and
circulation patterns. These mean fields are all freely accessible at the ClimaMi web portal.

Table 3. Relative frequency of spatial distribution of temperature for the metropolitan area of Milan
at 100 m resolution for Sentinels 3A and 3B considered LST data. The “Max Temperature” column
refers to the position of the maximum relative to the city center; HW: Heat Wave.

Day Time Season Max Temperature Thermal
Weather

Relative
Frequency

Morning Summer City Center HW 84%
Morning Summer North_East HW 2%
Morning Summer North_West HW 13%

Evening Summer City Center HW 75.3%
Evening Summer North_East HW 19.4%
Evening Summer North_West HW 5.3%

Evening Summer City Center UHI 61.0%
Evening Summer East UHI 18%
Evening Summer North_West UHI 21%
Morning Winter City Center UHI 65%
Morning Winter North_East UHI 19%
Morning Winter West UHI 16%

Evening Winter City Center UHI 81%
Evening Winter East UHI 19%
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Day Time Season Max Temperature 
Thermal  

Weather 

Relative  

Frequency 

Morning Summer City Center HW 84% 

Morning Summer North_East HW 2% 

Morning Summer North_West HW 13% 

Evening Summer City Center HW 75.3% 

Evening Summer North_East HW 19.4% 

Evening Summer North_West HW 5.3% 

Evening Summer City Center UHI 61.0% 

Evening Summer East UHI 18% 

Evening Summer North_West UHI 21% 

Morning  Winter City Center UHI 65% 

Morning  Winter North_East UHI 19% 

Morning  Winter West UHI 16% 

Evening Winter City Center UHI 81% 

Evening Winter East UHI 19% 
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Figure 3. CoK interpolated field of air temperature at 26 July 2019 over the Milan metropolitan area,
10 UTC with (a,b) 100 m resolution, (c) 30 m resolution, (d,e) error maps, respectively, of (a,c). Milan
administrative borders in black with Milan downtown almost in the center of (b,c,e), just above the
center in (a,d). Temperature color scales in Celsius degrees.

2.3. Comparison with Other Data Sets

To evaluate the relevance and usefulness of the database described in the previous
section, a comparison with other similar data sets should be made. Looking for a gridded
description of the urban thermal fields, the current possibilities are offered by large-scale
model reanalysis and successive downscaling, or by high-resolution modelling adapted to
specific urban environments. In the first case, we can rely on well-established and consoli-
dated operational frameworks as those offered by NOAA and ECMWF (European Centre
for Medium-Range Weather Forecast (www.ecmwf.int), last accessed on 10 December
2021)). On the other hand, operational site-specific urban modelling is hardly available, and
generally, it is still used only for research and development. In this paper, we considered the
ECMWF downscaled reanalysis data and some runs over Milan of the weather research and
forecasting model (WRF (www.mmm.ucar.edu/weather-research-and-forecasting-model),
WRF-ARW DOI:10.5065/D6MK6B4K), both last accessed on 10 December 2021) operated
by the University of L’Aquila (www.univaq.it, last accessed on 10 December 2021), Italy.

2.3.1. Comparison with ERA5/UrbClim

The last version of reanalysis by ECMWF is ERA5 [23]. A number of meteorological
variables are obtained by the 4D-Var assimilation and analysis of the Integrated Fore-
cast System (IFS) model, version CY41R2, with 137 vertical levels, a spatial resolution of
31 km, and an uncertainty estimation measured by the spread of a 10-member ensemble.
On this basis, a downscaling was further developed by ECMWF for 100 European cities
(Milan is among them) to obtain some ECVs at a spatial resolution of 100 m × 100 m at
an hourly frequency [24]. This downscaling is the UrbClim model (UrC), which uses “a
land surface scheme describing the physics of energy and water exchange between the soil and

www.ecmwf.int
www.mmm.ucar.edu/weather-research-and-forecasting-model
www.univaq.it
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the atmosphere in the city, coupled to a 3D atmospheric boundary layer module” (cit. from Urb-
Clim_extra_documentaion_v2.pdf (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
sis-urban-climate-cities?tab=doc), last accessed on 13 December 2021). The atmospheric
boundary conditions are defined by meteorological input data, while the land surface
data influence heat flux and evaporation. UrC data are available via the Copernicus CDS
(Copernicus Climate Data Store (https://cds.climate.copernicus.eu/), last accessed on 13
December 2021) portal: Figure 4b is an example of the UrbClim product for Milan.

Unfortunately, while ERA5 has a temporal coverage since 1950 up to the present, UrC
data sets cover the time interval 2008–2017, and a direct comparison with ClimaMi CoK
thermal fields is only possible for the years 2016 and 2017. Moreover, while CoK fields
are timely defined on a 10 min basis (being computed with 10 min mean data by AWSs
nearest to the satellite pass time), UrC data are hourly: for each date, the hour selected is
the nearest to the CoK field time. Therefore, the time approximation in the comparison is
half an hour. Furthermore, the area covered by UrC for the city of Milan is much smaller
than for ClimaMi CoK interpolations: a direct comparison is given in Figure 4a. Data
were extracted from the CoK and UrC fields to combine pixel per pixel both data sets.
Differences were then computed for every CoK available time: moreover, comparison
is limited to winter and summer cloud free situations. As an example, in Figure 5 the
differences CoK interpolation minus UrC data over Milan on 3 July 2017, 21:00 UTC, are
shown in colors: negative values are up to −7 ◦C (in light blue) and positive up to +4 ◦C (in
hell red). Generally, UrbClim overestimates temperatures over the city and underestimates
outside, with a mean bias of −1.4 ◦C for this episode.

The overall Pearson correlation coefficient R, given by:

R(TC, TU) =
∑N

i=1(TC, i − TC)
(
TU,i − TU

)√
∑N

i=1
(
TC, i − TC

)2
∑N

i=1
(
TU, i − TU

)2
(1)

where TC is the CoK interpolated temperature, TU the temperature from the UrbClim data
set, and N the number of image elements (pixels), is 0.5 for the same example of Figure 5,
while the covariance:

Cov(TC, TU) =
∑N

i=1(TC, i − TC)
(
TU,i − TU

)
N

(2)

is 0.7. Data were also extracted from UrC matrices for elements coincident with
the coordinates of surface measuring stations in the Milan area covered by UrbClim.
Furthermore, to provide a better and spatially related quantification of map comparison,
the fuzzy Kappa statistics [25] and Moran’s index [26,27] were performed. In the first case,
the similarity is based on quantity and location, and the fuzziness of location is taken by
letting the fuzzy representation of a pixel be partly defined by its proximity.

The similarity of image pixels for two different temperature field values, T1 and T2, is
defined by:

S(T1, T2) = 1− |T1 − T2|
max(|T1|, |T2|)

(3)

For the fuzziness, an exponential decay with distance appears to be appropriate
considering the temperature: a radius of neighborhood of 4 and a halving distance of
2 pixels were chosen for both fields to be compared. The result statistics for overall
similarity is the average similarity over the whole area.

On the other hand, Moran’s index allows a measure of spatial (auto-) correlation based
on variances and covariances. The index is defined as:

IM =
N
W

∑N
i=1 ∑N

j=1 wij(Ti − T )
(
Tj − T

)
∑N

i=1
(
Ti − T

)2 (4)

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=doc
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=doc
https://cds.climate.copernicus.eu/
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where N is the number of samples (pixels), Ti and Tj are the variables of interest (surface
temperature in our case, measured on two different maps of the same event and over the
same region), wij is a matrix of spatial weights computed as an inverse distance function
(with wii = 0), and W is the sum of all wij.
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Figure 4. A comparison example between UrbClim and CoK interpolation for the Milan area at
22:00 UTC, 3 July 2017: (a) overlapping of the UrC field over the larger CoK interpolation area;
(b) the UrC air temperature at 2 m, downscaled from ERA5; (c) the CoK-interpolated near-surface air
temperature. Temperature color scale in K. The UHI is clearly visible in both images almost centered
over the city, but temperature range, resolution, and spatial distribution details are quite different.
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Figure 5. Discretized air temperature difference (CoK minus UrC data) over Milan at 22:00 UTC on 3
July 2017. Bluish colors are negative values up to −7 K (light blue); red are positive differences up to
+4 K (hell red). A general underestimation of the UHI by UrbClim is evident, in this case especially in
the eastern and northwestern parts of Milan.

The expected value of Moran’s I under the null hypothesis (no spatial correlation) is
given by:

E(I) = − 1
N− 1

(5)

where N is the sample number. For large samples, E(I) approaches zero: in our case, the
matrices to be compared are 285 × 202 pixels and E(I) ∼= 10−5.

The index itself varies between −1 (total anticorrelation) and +1 (perfect autocorrela-
tion) and can be used to compare different fields as a CrossMoran index: small differences
arise depending on which is considered first: we simply take the mean value. Further, Lee’s
L index [28] is a generalization for a bivariate spatial association measure, which integrates
Pearson R as a spatial bivariate association measure and Moran’s I as a univariate spatial
association measure using a spatial smoothing scalar. Considering the different resolution
of the two types of maps, a radius of 10 was chosen as a good compromise for the spatial
lag for Lee’s L, the R lagged, and the Moran statistics. A useful tool for these evaluations
was presented in [29].
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2.3.2. Comparison with the Weather Research and Forecasting Model

The weather research and forecasting model (WRF) is an open-source, well-known,
and much-used nonhydrostatic limited area model [30]. With suitable extensions, it can
also be applied for the urban environment [31]. For the city of Milan, the WRF was used for
several applications [32,33] with the building environment parameterization (BEP) urban
scheme [34] and at a resolution of 1 km or even less. We made use of some outputs (in
default configuration: BEPd) for a direct comparison with measurements in the UCL by the
7 FOMD Network weather stations located in Milan downtown. The comparison covers
two 10-day summer periods in 2014 and 2015, mainly characterized by anticyclonic weather
with only occasional cloudiness and very low winds: very favorable conditions for the
development of a strong nocturnal UHI effect.

3. Results
3.1. Comparison Results: ERA5/UrbClim

The comparison for each and all the available CoK episodes (21 cases, number limited
by the availability of useful spaceborne data) with UrC data for Milan provides the results
summarized in Table 4. The variety of meteorological and seasonal situations does not
allow a straightforward conclusion, and data are not enough for situation-based statistics.

Anyway, the mean range between minimum and maximum differences is 9.3 ◦C, while
the mean difference (“CoK minus UrC”, pixel by pixel) amounts to −2.0 ± 1.5 ◦C, showing
a small negative bias. The mean temperature differences among CoK and UrC maps vary
from−4.5 to +5.5 ◦C, with a clear prevalence of positive values in the morning and negative
ones in the evening. The mean covariance is 0.5, ranging from almost 0 up to 1.1 regardless
of daytime or season, as shown in Figure 6. The covariance is also independent of the mean
temperature (representative of the season), while the mean temperature difference between
CoK and UrC is smaller for lower temperatures (winter: −0.5 ◦C) and larger in the warmer
episodes (summer: −3.0 ◦C).

The comparison results between measurements and UrbClim are shown in Table 5:
UrC data have a mean bias “AWS minus UrC” of −2.3 ± 1.6 ◦C, while differences span
between −11.9 ◦C and +6.0 ◦C, in substantial agreement with the result obtained for CoK
data. There is anyway a large seasonal disparity, with a winter mean of only −0.5 ◦C and
a summer mean of −3.4 ◦C, once again in substantial agreement with the comparison
operated by using interpolated CoK data. In the winter episodes, the difference range is
also smaller.

The results obtained with the fuzzy and Moran statistics for the temperature fields
are summarized in Table 6, while examples of the spatial distribution of the local Lee’s
L are given in Figure 7. The CoK and UrC temperature fields appear to have a relatively
good spatial correlation over the city: both are catching the UHI effect. Nevertheless, there
are smaller regions where correlation is weak or even negative, emphasizing the marked
differences in the methods in accurately resolving the smallest-scale details.
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Table 4. Comparison statistics for CoK and UrbClim (CoK–UrC) air temperature fields for all the
available episodes. Pearson correlation coefficients in bold are nonsignificant at level p < 0.01.

No. Date
(d/m/y)

COK
UTC

Diff.
Min.
(◦C)

Diff. Mean
(◦C)

Diff.
Max.
(◦C)

Min.
Max.

Range
(◦C)

Pearson
Corr.

R
Cov. CoK

Mean T
UrC

Mean T

Mean T
diff.

CoK–UrC
HW/Season

1 22/6/2016 21:30 −9.5 −3.1 ± 1.5 2.7 12.2 0.50 1.1 25.5 ± 1.4 28.6 ± 1.6 −3.1 Summer

2 23/6/2016 21:00 −7.9 −3.0 ± 1.7 2.9 10.8 0.32 0.6 27.1 ± 1.2 28.6 ± 1.6 −1.5 Summer

3 9/7/2016 20:50 −5.6 −1.5 ± 1.4 3.2 8.8 0.19 0.2 28.2 ± 1.1 28.2 ± 1.1 0.0 Summer

4 17/7/2016 20:40 −11.5 −5.0 ± 1.7 0.5 12.0 0.31 0.6 25.3 ± 1.5 28.8 ± 1.3 −3.4 Summer

5 20/7/2016 09:40 0.0 2.5 ± 1.1 5.7 5.8 0.26 0.2 29.9 ± 0.9 25.9 ± 1.0 3.9 HW

6 20/7/2016 21:00 −5.3 −1.2 ± 1.4 3.6 9.0 0.35 0.3 27.3 ± 1.2 27.1 ± 1.2 0.3 HW

7 13/8/2016 20:40 −9.9 −6.0 ± 1.4 −1.5 8.4 0.38 0.6 22.6 ± 1.2 27.1 ± 1.4 −4.5 Summer

8 5/12/2016 10:00 −4.4 0.1 ± 2.0 4.9 9.3 −0.05 −0.1 7.0 ± 1.2 5.5 ± 1.6 1.5 Winter

9 30/12/2016 20:40 −8.0 −3.2 ± 2.2 5.0 13.0 0.45 1.4 2.0 ± 1.2 3.8 ± 2.5 −1.8 Winter

10 1/1/2017 10:00 −8.4 −2.2 ± 2.5 3.8 12.2 −0.02 −0.1 1.7 ± 1.8 2.5 ± 1.7 −0.8 Winter

11 24/1/2017 10:00 1.3 4.2 ± 1.5 8.9 7.6 −0.21 0.3 7.3 ± 1.2 1.7 ± 1.1 5.5 Winter

12 29/1/2017 21:00 −7.3 −3.6 ± 1.0 −1.0 6.3 0.60 0.7 2.1 ± 1.2 4.3 ± 1.0 −2.2 Winter

13 8/6/2017 21:30 −8.4 −4.8 ± 1.4 0.2 8.6 0.27 0.4 19.8 ± 1.1 23.1 ± 1.3 −3.3 Summer

14 3/7/2017 21:40 −7.4 −1.4 ± 1.3 3.8 11.2 0.45 0.7 25.5 ± 1.4 25.4 ± 1.1 0.1 Summer

15 17/8/2017 21:10 −8.1 −3.4 ± 1.2 2.7 10.8 0.18 0.3 26.9 ± 1.2 28.8 ± 1.3 −1.9 Summer

16 22/8/2017 20:50 −9.5 −5.6 ± 1.2 −1.0 8.5 0.54 0.8 22.7 ± 1.1 26.8 ± 1.4 −4.1 Summer

17 28/8/2017 21:30 −4.4 −1.5 ± 1.1 2.9 7.2 0.45 0.4 27.0 ± 0.8 27.0 ± 1.2 0.0 Summer

18 29/8/2017 21:00 −8.7 −4.4 ± 1.3 −0.2 8.5 0.51 0.8 25.4 ± 1.3 28.3 ± 1.3 −2.9 Summer

19 6/12/2017 10:10 −4.2 1.7 ± 2.1 7.3 11.4 0.10 0.2 7.6 ± 1.7 4.5 ± 1.3 3.1 Winter

20 25/12/2017 10:20 −1.9 1.8 ± 1.2 5.1 7.0 0.44 0.4 7.8 ± 1.3 4.6 ± 0.7 3.2 Winter

21 30/12/2017 21:10 −6.8 −3.1 ± 1.2 −0.4 6.3 0.44 0.5 2.6 ± 0.9 4.3 ± 1.2 −1.7 Winter
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Figure 6. Mean temperature difference between CoK and UrC maps and their covariance (a) in
relation to daytime and (b) as a function of mean temperature (CoK temperature as reference). While
covariances do not show any daytime and temperature dependence, temperature differences clearly
tend to be positive in morning times and colder seasons and negative in the opposite cases. Most of
the temperature differences are outside an estimated uncertainty interval of ±2 ◦C.



Forecasting 2022, 4 254

Table 5. Temperature differences (◦C) (AWS–UrC) for the subset of 17 stations in the Milan area
covered by UrbClim.

No. Date
(d/m/y) UTC

Milano
Città
Studi

Milano
Bo-
visa

Milano
Cen-
tro

Milano
S.

Siro

Milano
Sud

Milano
Boc-
coni

Milano
Bicocca

Milano
Sarpi

Cinisello
Parco
Nord

Corsico
Milano
Lam-
brate

Milano
Brera

Milano
Juvara

Milano
Marche

Milano
Za-
vat-
tari

Sesto
S. Gio-
vanni
Parco
Nord

Milano
Maxwell Mean Std.

Dev. Min. Max.

1 22/06/2016 21:30 −2.3 −3.2 −2.4 −3.2 −3.2 −2.8 −2.6 −2.7 −7.2 −8.3 −4.7 −2.5 −2.4 −4.1 −6.9 −2.2 −0.4 −3.6 2.1 −8.3 −0.4
2 23/06/2016 21:00 −1.9 −1.8 −2.8 −3.5 −3.3 −3.1 −2.0 −3.0 −6.1 −7.3 −5.4 −2.9 −2.2 −4.2 −5.6 −4.2 −4.0 −3.7 1.6 −7.3 −1.8
3 09/07/2016 20:50 −0.9 −0.6 −0.9 −2.0 −1.9 −1.4 −0.9 −0.9 −4.1 −5.1 −4.2 −0.6 −0.8 −1.2 −2.8 −1.3 −3.0 −1.9 1.4 −5.1 −0.6
4 17/07/2016 20:40 −5.0 −4.9 −4.8 −4.8 −6.0 −5.2 −5.0 −4.8 −11.9 −7.2 −9.7 −4.4 −5.0 −5.4 −6.5 −8.7 −6.3 −6.2 2.1 −11.9 −4.4
5 20/07/2016 09:40 −0.1 1.7 0.9 4.8 0.1 0.7 1.1 0.5 4.3 3.1 3.0 1.4 0.4 1.9 2.4 2.5 1.9 1.8 1.4 −0.1 4.8
6 20/07/2016 21:00 −0.3 −0.1 −0.8 −1.3 −1.8 −1.3 0.4 −0.4 −5.4 −2.4 −3.0 −0.1 −0.4 −0.1 −2.3 −1.3 −0.9 −1.2 1.4 −5.4 0.4
7 13/08/2016 20:40 −5.4 −5.2 −5.2 −6.7 −6.2 −5.8 −5.3 −5.7 −9.6 −9.5 −9.2 −4.4 −5.2 −6.8 −8.2 −7.4 −7.0 −6.6 1.6 −9.6 −4.4
8 05/12/2016 10:00 −2.0 0.9 0.1 3.3 −1.3 −0.1 0.2 0.7 1.1 0.5 −1.9 1.2 −0.4 −0.7 2.5 0.2 −1.8 0.2 1.5 −2.0 3.3
9 30/12/2016 20:40 −2.5 −5.8 −2.9 −5.4 −4.7 −3.9 −4.6 −4.1 −3.1 −6.1 −2.3 −3.5 −2.4 −4.8 −6.6 −1.9 −1.8 −3.9 1.5 −6.6 −1.8
10 01/01/2017 10:00 −1.1 0.0 −1.9 −1.7 −4.9 −3.3 0.6 −1.4 0.3 −0.7 −2.8 −2.5 −0.3 −2.6 −0.3 −0.2 −0.5 −1.3 1.5 −4.9 0.6
11 24/01/2017 10:00 2.9 4.1 3.8 6.0 2.1 3.1 3.0 4.7 6.0 4.0 5.5 2.3 2.9 1.4 4.5 4.7 4.7 3.9 1.4 1.4 6.0
12 29/01/2017 21:00 −2.3 −2.5 −2.1 −3.1 −2.3 −1.7 −2.6 −1.7 −6.5 −5.6 −5.6 −1.9 −2.0 −3.0 −3.4 −3.5 −2.9 −3.1 1.5 −6.5 −1.7
13 08/06/2017 21:30 −3.7 −4.0 −3.8 −4.1 −5.0 −4.2 −3.3 −3.8 −7.8 −6.6 −7.3 −3.7 −3.8 −4.5 −6.3 −5.8 −5.7 −4.9 1.4 −7.8 −3.3
14 03/07/2017 21:40 −0.1 −1.1 −0.3 −1.5 −2.3 −1.1 −1.4 −0.9 −7.3 −4.0 −5.2 −0.3 −0.2 −2.3 −3.6 −4.1 −2.3 −2.2 2.0 −7.3 −0.1
15 17/08/2017 21:10 −2.2 −2.1 −2.4 −2.6 −4.6 −2.9 −1.6 −1.9 −5.8 −5.9 −5.4 −2.4 −2.1 −2.9 −5.2 −3.3 −3.3 −3.3 1.5 −5.9 −1.6
16 22/08/2017 20:50 −4.4 −5.3 −4.6 −6.3 −5.9 −5.3 −4.7 −4.6 −9.5 −8.0 −7.9 −4.4 −3.9 −5.3 −7.9 −7.2 −5.9 −5.9 1.6 −9.5 −3.9
17 28/08/2017 21:30 −1.5 −1.4 −1.7 −1.7 −2.3 −1.7 −1.5 −1.3 −2.1 −3.4 −1.5 −1.3 −1.2 −1.4 −4.1 −3.2 −2.1 −1.9 0.8 −4.1 −1.2
18 29/08/2017 21:00 −3.5 −3.7 −3.3 −4.0 −3.7 −3.5 −3.6 −3.2 −8.3 −6.7 −6.7 −3.3 −3.4 −4.5 −6.3 −6.3 −4.6 −4.6 1.6 −8.3 −3.2
19 06/12/2017 10:10 0.8 2.2 2.2 2.0 0.2 1.4 2.4 1.4 2.8 2.6 2.5 −0.2 1.6 −0.5 2.3 −5.1 0.9 1.2 1.9 −5.1 2.8
20 25/12/2017 10:20 3.4 1.6 2.5 1.1 1.0 1.9 1.7 2.1 2.4 1.5 3.8 2.4 3.6 1.2 2.3 −5.9 3.7 1.8 2.2 −5.9 3.8
21 30/12/2017 21:10 −1.5 −3.4 −1.3 −4.2 −2.4 −1.7 −2.2 −2.4 −6.6 −4.1 −3.7 −1.9 −1.3 −2.6 −5.2 −6.2 −1.1 −3.0 1.7 −6.6 −1.1
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Figure 7. Spatial distribution of Lee’s L index for the comparison of CoK and UrC air temperature
fields: (a) 2016 episodes and (b) 2017 episodes. The color bar in the last picture is common to all the
images. Administrative borders omitted, area coincident as that in Figure 4, Milan downtown almost
in the center of the pictures.
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Table 6. Comparison statistics of CoK and UrC air temperature fields for the available episodes.

No. Date Time
(UTC)

Fuzzy Num.
Average

Fuzzy Global
Matching

Moran’s I
(Map1*Map2)

Mean Cross
Moran R Lagged Lee’s L

1 2016/06/22 21:30 0.99 0.20 0.96 0.48 0.6 0.51
2 2016/06/23 21:00 0.99 0.19 0.96 0.32 0.4 0.33
3 2016/07/09 20:50 1.00 0.23 0.97 0.17 0.2 0.17
4 2016/07/17 20:40 0.98 0.16 0.97 0.28 0.3 0.29
5 2016/07/20 09:40 0.99 0.18 0.99 0.25 0.3 0.26
6 2016/07/20 21:00 1.00 0.33 0.95 0.33 0.4 0.36
7 2016/08/13 20:40 0.98 0.17 0.96 0.36 0.4 0.38
9 2016/12/30 20:40 0.99 0.21 0.96 0.43 0.5 0.45

11 2017/01/24 10:00 0.98 0.17 0.97 0.41 0.5 0.43
13 2017/06/08 21:30 0.98 0.17 0.93 0.27 0.4 0.31
14 2017/07/03 21:40 0.98 0.18 0.94 0.27 0.3 0.28
16 2017/08/22 20:50 1.00 0.26 0.94 0.34 0.4 0.37
20 2017/12/25 10:20 0.99 0.23 0.99 0.44 0.5 0.45

Settings:
Radius = 4;
exp. decay

halving dist. = 2

First raster
(CoK) as
reference

Radius =10

3.2. Comparison Results: WRF

The results show an average systematic underestimation of the UCL temperatures by
the WRF: the mean bias (WRF computed minus FOMD Network measured) is −0.3 ◦C in
2014 and −2.2 ◦C in 2015 (Figure 8). Negative differences are systematically much larger
during the night hours (−1.5 and−3.4 ◦C, respectively), resulting in a clear underestimation
of the intensity of the typical nocturnal UHI effect over the city. The underestimation does
not agree with the finding in [34]: anyway, in that case, a much smaller town is considered.
During the sunlit hours, absolute values of the differences are smaller, and their sign can
be even positive (−1.0 and +0.9 ◦C, respectively, in 2014 and 2015). As a consequence,
WRF could not always account for the existence of the diurnal urban cold island, which is,
however, climatologically typical in the city of Milan [18].

The differences between both years is likely related to the marked different mean
temperatures in the city over the two 10-day periods: about 25 ◦C in 2014 with a certain
range of variability among different days and 30.5 ◦C in 2015 characterized by an almost
constant and persistent HW episode. Furthermore, the last 4 days of the 2014 period show
differences that are three times as large as in the previous days. It must be noted that the
mean hourly standard deviation among FOMD Network stations is always about 0.3 ◦C,
all the seven stations being sited in a similar urban environment and their sensors exposed
with the same criteria on top of typical buildings of almost equal height and with an almost
constant surface albedo of 0.3. Therefore, the local climate zone classification [13] for most
of them is “compact low-rise”, while only Milano Sud is “compact mid-rise”, and Bovisa
and S. Siro “open high-rise”. In fact, WRF data correlate in a similar manner to all the seven
FOMD Network stations in Milan downtown: correlation coefficients (R2) between WRF
figures and FOMD Network data are 0.84 and 0.94, respectively: in 2015 the correlation is
always significant at p < 0.01, while in 2014 the same value is found only for MI Centro;
it is not significant for two stations (MI Città Studi and MI Sud), and the other ones have
p < 0.1 or 0.5.

We compared the 2 m thermal fields from the WRF–BEP model with the ClimaMi CoK
interpolations at a high resolution (30 m, obtained by Landsat 8 LST data): Figure 9 shows
the overlapping of the two fields. From the available WRF runs, we could, unfortunately,
find only three situations coincident with the CoK ones: 19 July 2014 at 10:00 UTC, 15 July
2015 at 10:00 UTC, and 22 July 2015 at 10:00 UTC. The comparison, adapting the WRF–BEP
grid (84 × 66 pixels) onto the CoK-30 m grid (1001 × 1001 pixels), produced the differences
shown in Figure 10: the resulting mean bias (CoK minus WRF) is −0.9 ◦C, essentially
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confirming what was previously found in this section, while the mean difference range is
4.3 ◦C. More evident is the general difference gradient in longitude across the area, with
WRF underestimating temperature in the eastern part of the domain. On the other hand,
the WRF overestimation south of the city center could be related to the fact that this region
is well known to be a climatologically colder and moister area, being at a lower elevation
and with a mostly agricultural land use. More interesting is the central part of the city: in
this area, a small-scale variability is evident with a possible WRF overestimation, consistent
with the direct comparison with measurements considering that all the three episodes are
in the late morning.

We can conclude that WRF, at least in summer heat wave episodes, underestimates
night temperatures of about 3 ◦C over the city of Milan, when the UHI effect is especially
relevant, while the diurnal urban cold island could remain undetected: the results may
help to improve the models in better describing the urban canopy layer, and the city of
Milan could be used as a useful testbed.
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Figure 8. Temperature difference between WRF simulations and FOMD Network measurements in
the Milan UCL for two periods of 10 days in the month of July (a) 2014 and (b) 2015, characterized
by anticyclonic weather with no precipitation, almost no cloudiness, and very low winds (favorable
conditions for the development of a marked UHI) in 2015, while in 2014 there were some precipitation
episodes. In 2015 mean temperatures were more than 5 ◦C higher than in the same period of 2014.
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Figure 9. Overlapping of the smaller CoK field at 30 m resolution and the corresponding larger WRF
field (22 July 2015 at 10:00 UTC). Both are almost centered on Milan (city center at position 45.47◦N,
9.19◦E). Temperature scale in K.
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Figure 10. Temperature differences over the Milan area (CoK interpolations at 30 m resolution based
on LST data from Landsat 8 minus WRF–BEP analysis): (a) at 19 July 2014, 10:00 UTC; (b) 15 July
2015, 10:00 UTC; (c) 22 July 2015, 10:00 UTC. Color scales of temperature difference are in Kelvin;
administrative borders are omitted, area coincident as that in Figure 7. An E–W gradient is always
evident, as well as the WRF overestimation just south of the city center (at position 45.47◦N, 9.19◦E),
where on the contrary, there is a small-scale variability.

4. Discussion

The comparison results described in Sections 3.1 and 3.2 consistently show an un-
derestimation of the temperatures over the city of Milan by UrbClim and partly also by
WRF-BEP. The mean difference is about −2 ◦C for UrC, with a possible seasonal variation
showing smaller values in low-temperature situations in relation to warmer ones. The
mean R, omitting the two unrealistic negative values, is 0.4 ± 0.1 ◦C, showing in general
a low to moderate overall correlation. On the other hand, covariances are very variable
among the considered episodes.

A similar result is found comparing UrbClim data directly with station measurements,
where original information is not lost in the cokriging interpolation. The fuzzy statistics
applied to compare CoK and UrC thermal fields gives a good average value, while the
global matching of the maps is relatively low (0.21), showing that aside from the observed
bias, the thermal fields are characterized by some differences in spatial distribution over the
project area. Altogether, UrbClim appears to give a satisfactory general description of the
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UHI, but details even at the urban mesoscale are not well reproduced despite the declared
downscaling spatial resolution at 100 m: the spatial distribution of Lee’s L shows in general
better scores above the city than elsewhere, but is very variable and lacking in resolution.

On the contrary, ClimaMi CoK shows realistic details: it is able to reproduce detailed
differences caused by the urban texture. Moreover, being mainly based on in situ mea-
surements in the upper part of UCL, it can be taken as a reference. The result is confirmed
by the direct match with station measurements. Some bias is also present in relation to
daytime and season.

The spatial comparison with the WRF–BEP runs is based on only three episodes
and cannot be considered conclusive. Anyway, a mean bias of −0.9 ◦C appears to be
qualitatively significant. It is also consistent with the results obtained matching WRF
outputs to direct measurements over the two periods of 10 summer days, where the mean
bias is –1.3 ± 0.3 ◦C, varying from –0.1 ± 0.4 ◦C during daytime to –2.4 ± 0.3 ◦C in the
night. The spatial distribution of the differences “CoK minus WRF” shows a remarkable
longitudinal gradient (while it is of little or no interest in this context). Over the city
area, their values are small and variable, but generally positive: this agrees with the
daily variation of the differences obtained matching WRF and measurements, all the three
episodes being at 10 UTC. Evidently, a more extensive comparison is required in this case,
while also the model setup could be better designed (being in this case in default mode, as
noted before).

5. Conclusions

An almost 10-year data set of measurements in the Milan metropolitan area UCL,
mainly based on the FOMD urban meteoclimatological network and integrated with
selected data from the official ARPA Lombardia monitoring network and from the amateur
MeteoNetwork for a total of 61 AWSs, has been used to obtain medium- to high-resolution
near-surface gridded thermal fields. In the adopted cokriging algorithm, ground air
temperature by AWSs is the primary variable, while spaceborne land surface temperature
by Sentinel 3 and Landsat 8 satellites is the secondary one. The results obtained, already
usefully applied in resilience plans and projects by officials, engineers, and architects for
the Milan metropolitan area in the framework of the ClimaMi Project, were compared with
other available gridded thermal information, namely, the ERA5 downscaled reanalysis data
for European cities (UrbClim) and some WRF–BEP runs over Milan made available by a
research group at the University of L’Aquila.

The comparison, performed for the overlapping periods of available data from the
different data sets and limited to winter and summer episodes, highlights in both cases a
general agreement but also a systematic underestimation of the UHI effect over Milan. The
bias can be quantified, on average, at −2 ◦C, while the range of this underestimation can
be larger than 10 ◦C in the considered episodes. The spatial correlations, analyzed using
fuzzy and Moran’ statistics, confirms the bias and shows a large variability in performance
and location, suggesting some likely systematic trends too. Even if in this work the number
of episodes is limited by data availability, specifically for spaceborne data and the WRF
runs, the results imply the necessity to significantly improve modelling and downscaling
methods to adequately cope with the request for punctual data posed by professionals and
decision makers in order to design and effectively implement plans and projects in the
current climate change situation, which in cities is a very complex subject.

We can conclude that correctly performed observations in the challenging urban envi-
ronment remain of utmost importance, not only in monitoring the weather and the climate,
but also specifically as an unavoidable benchmark for new modelling and downscaling
products. In this case, the meteorological network extent and its affordability and oper-
ational continuity represent a major issue and require specifically dedicated resources.
Integration of citizen science data, such as amateur meteorologists’ ones, has proved to be
a benefit, but implies accurate data selection and validation. Furthermore, spatial analysis
extends the potential of point measurements in a useful manner.



Forecasting 2022, 4 260

The results obtained represent a first attempt to comparatively evaluate some different
techniques used to obtain high-resolution gridded thermal fields in the urban environment.
Further developments shall consider a wider range of observational and modelling data
sets as well as other methods of spatial analysis: further spaceborne data to improve the
time and spatial resolution and more up-to-date and site-adapted meteorological models
and spatial analysis methods.

Furthermore, other variables, such as humidity, wind, and precipitation, shall be
considered to get a more complete description of the urban environment: analysis is
already started on precipitation in the ClimaMi Project framework, while humidity and
wind are the next to be analyzed: this will be a further important step towards a complete
and detailed knowledge of the urban climate to address resilience to climate change.
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