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Abstract: Despite the large efforts made by the ocean modeling community, such as the GODAE
(Global Ocean Data Assimilation Experiment), which started in 1997 and was renamed as Ocean-
Predict in 2019, the prediction of ocean currents has remained a challenge until the present day—
particularly in ocean regions that are characterized by rapid changes in their circulation due to
changes in atmospheric forcing or due to the release of available potential energy through the
development of instabilities. Ocean numerical models’ useful forecast window is no longer than
two days over a given area with the best initialization possible. Predictions quickly diverge from
the observational field throughout the water and become unreliable, despite the fact that they can
simulate the observed dynamics through other variables such as temperature, salinity and sea surface
height. Numerical methods such as harmonic analysis are used to predict both short- and long-term
tidal currents with significant accuracy. However, they are limited to the areas where the tide was
measured. In this study, a new approach to ocean current prediction based on deep learning is pro-
posed. This method is evaluated on the measured energetic currents of the Gulf of Mexico circulation
dominated by the Loop Current (LC) at multiple spatial and temporal scales. The approach taken
herein consists of dividing the velocity tensor into planes perpendicular to each of the three Cartesian
coordinate system directions. A Long Short-Term Memory Recurrent Neural Network, which is best
suited to handling long-term dependencies in the data, was thus used to predict the evolution of the
velocity field in each plane, along each of the three directions. The predicted tensors, made of the
planes perpendicular to each Cartesian direction, revealed that the model’s prediction skills were
best for the flow field in the planes perpendicular to the direction of prediction. Furthermore, the
fusion of all three predicted tensors significantly increased the overall skills of the flow prediction
over the individual model’s predictions. The useful forecast period of this new model was greater
than 4 days with a root mean square error less than 0.05 cm·s−1 and a correlation coefficient of 0.6.
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1. Introduction

Sustained large efforts in the ocean modeling community, such as the GODAE (Global
Ocean Data Assimilation Experiment), which started in 1997 [1,2] and was renamed as
OceanPredict in 2019 [3], have been made to promote and coordinate the approach to
ocean forecasting among the international community. This large effort has seen many
achievements in terms of predictive capabilities of ocean features temperature, salinity and
sea surface height (SSH) and they are evaluated through a standard set of metrics [4]. How-
ever, the prediction of ocean currents has remained a challenge to this day—particularly in
ocean regions that are characterized by rapid changes in their circulation due to changes
in atmospheric forcing or due to the release of available potential energy through the
development of dynamical instabilities. Predictions of ocean currents in the California
current system can be found in [5], as well as other studies. This paper shows a correlation
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coefficient less than 0.3 after two days with a root mean square error (RMSE) of 7 cm·s−1

for the vertically integrated velocity component. Using mooring measurements in the
same oceanographic region as that studied in Chao et al. [5], Shulman and Paduan [6]
showed a significant decrease in the correlation coefficient and RMSE with depth between
the observation and the model analyses while assimilating the 33 h filtered high-frequency
(HF) radar surface current data. Ocean numerical models’ useful forecast window is no
longer than two days over a given area with the best initialization possible, as shown by [7]
in a dynamically active current system, such as the Loop Current (LC) in the Gulf of Mexico
(GoM). The RMSE was 10 cm·s−1 and the correlation coefficient was 0.63 for the daily
surface averaged predicted current. Ocean numerical model predictions quickly diverge
from the observational field throughout the water and become unreliable, despite the fact
that they can simulate the observed dynamics through other variables such as temperature,
salinity and SSH. Numerical methods such as harmonic analysis are used to predict both
short- and long-term tidal currents with significant accuracy. However, they are limited to
the areas where the tide was measured.

Today’s full-water column predictions primarily rely on the use of finite-difference,
finite-volume and finite-element methods to solve the primitive equation of motion in
numerical models used to simulate ocean dynamics. The outputs of these models consist
of the temporal prediction of three-dimensional fields of ocean state variables including
both components of the horizontal velocity field, namely u and v along the x and y axes of
the Cartesian coordinate system, respectively. In this study, we evaluate the application of
a deep learning (DL—[8]) model to predict the three-dimensional velocity field from in-situ
data. We demonstrate that the water column current velocity patterns can be learned by a
DL model, which can then be used to predict the layered structure of the flow field. To this
end, we show that the DL model is capable of accurately predicting the water column
velocities more than four days in advance, doubling the current state of the art prediction
window for in-situ currents. In this study, we propose a Recurrent Neural Network (RNN)
Long Short-Term Memory (LSTM) model [9] to perform predictions of ocean currents’
speed and direction, as described in Section 2. LSTM networks have outperformed fully
connected neural networks and other machine learning techniques in natural language
processing [10,11] that has many similarities with ocean current predictions, as shown by
Immas et al. [12]. RNNs have been the state-of-the-art method in modeling time series
data for the last decade. In addition, this type of network has seen an increase in real-
life applications, including but not limited to aquaculture [13], wind and solar energy
resources management [14], bio science and medical applications [15] and also in industrial
applications [16].

In a recent study by Wang et al. [17], an LSTM network was used to demonstrate
the feasibility of medium-term (3 months) predictions of the GoM’s SSH in the LC region.
The LSTM model was trained and tested with 18 years of analyzed daily SSH—“analyzed”
indicates that the model calculated SSH was corrected with in-situ and remote sensing
observations—from the Hybrid Coordinate Ocean Model (HYCOM)-GoM 1/25◦ horizontal
resolution [18]. The Loop Current (LC) and the mesoscale eddies associated with its
nonlinear dynamics are the major drivers of the upper 1000 m water column circulation
in the GoM [19]. The nonlinear dynamics of the LC is dominated by the shedding of
anticyclonic eddies called Loop Current Eddies (LCE) at irregular time intervals [20–22].
The formation of the latter is primarily caused by the growth of baroclinic instability, which
is associated with the formation of deep meanders and eddies [19,23,24]. Using metrics
set in the literature for LC forecasting, the deep learning model predicted; overall, the LC
system SSH frontal distance from reference points within 40 km nine weeks in advance.
Furthermore, the model also predicted the final separation of two consecutive LC eddies
through the SSH evolution, namely the eddies Cameron and Darwin 8 and 12 weeks in
advance, respectively, an improvement over the 5–6-week useful forecast range of state of
the art numerical models for the LC dynamics [25].
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In this study, the LSTM model is applied to the prediction of water column velocity
three-dimensional tensors. The prediction model is implemented on in-situ full water
column current measurements collected in the LC region in the GoM between 2009 and
2011. Section 2 describes the measurements and their four-dimensional structure as well
as the metrics used to assess the model’s skills. Section 3 presents the LTSM prediction
model and its implementation on the velocity data. Section 4 presents the model results
and concluding remarks are given in Section 5.

2. Method
2.1. Dataset

Long term times series of 3-dimensional velocity flow fields in the LC region are
readily available from various ocean numerical model consortia that provide free on-
line access. Such consortia include HYCOM (https://www.hycom.org (accessed on 12
September 2021) [26]), Navy Coastal Ocean Model (NCOM) (https://www.ncdc.noaa.gov/
data-access/model-data/model-datasets/navoceano-ncom-reg (accessed on 12 September
2021) [27]), or ECCO (http://www.ecco.ucsd.edu (accessed on 12 September 2021) [28]) for
example. In comparison, long term in-situ measurements of the LC system water column
are scarce.

A comprehensive observational study of the LC in the eastern GOM, including 9 tall
moorings and 7 short moorings, an array of 25 pressure-equipped inverted echo sounders
(PIES), and remote sensing, measured the water column velocity for 2.5 years, beginning
in April 2009 [29]. This array was located to cover both the east and west sides of the
LC between the West Florida Slope and the Mississippi Fan, and was also centered over
the zone where LCEs typically separate from the LC. The horizontal separation between
moorings was around 50–80 km and between the PIES sensors was around 40–50 km.
These recorded data were used to construct the measurement-based water velocity matrix
used in this study.

To create such a matrix, these observations were processed using the optimal inter-
polation, as described in [30,31]. The horizontal resolution of the resulting data array
was roughly based on the correlation length scales of recorded data, with the geostrophic
velocity profiles based on the gravest empirical method (GEM) [30,32]. The resulting
measurement-based water velocity matrix comprised 50 depth levels down to 3000 m
below the surface, and extended horizontally between 88.5◦ W to 85◦ W and 24.65◦ N to
27◦ N with a horizontal resolution between 30 and 50 km (Figure 1). However, in this
study, only the first 500 m was selected, corresponding to 26 vertical layers. The time
resolution for the velocity data was 12 h, which corresponds to 1810 data frames for each
u and v velocity component. The final matrix dimensions were of 1810 × 26 × 29 × 36.
The current velocity measurements used in this study encompass the period from May
2009 to November 2011, during which three LCEs, namely Ekman, Franklin, and Hadal,
were formed.

Figure 1. Loop Current SSH from HYCOM [33] (m) during eddy Ekman separation on 1 July 2009.
The red rectangle shows the array boundaries.

https://www.hycom.org
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/navoceano-ncom-reg
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/navoceano-ncom-reg
http://www.ecco.ucsd.edu
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2.2. 4-Dimensional Tensor Slicing

The time series of the 3-dimensional gridded velocity forms a tensor whose dimensions
must be reduced to one so it can be processed by the DL model. At each time step, a gridded
velocity cube can be sliced in layers perpendicular to the three Cartesian coordinate axes
(Figure 2). Thus, in the vertical direction (z-axis), the volume is split in horizontal layers
corresponding to each depth level of the velocity data. Each layer becomes its own time
series and can be reduced to a single dimension by EOF decomposition, as was carried
out for the SSH field in [17]. For each resulting layer and velocity component, a DL model,
trained on its own layer, is used to predict the evolution of that particular layer only.
A similar approach can be used for layers perpendicular to the x and y axes and located
at each grid point of the respective axis, as shown in Figure 2. As errors are specific
to each layer and because the tensor evolves differently in each of the directions, it is
expected that the models’ skill will vary with the direction of prediction, as explained in
the following section.

Figure 2. Velocity plane field extractions perpendicular to each of the three Cartesian coordinate
directions at each depth (z) in the vertical direction and at each grid point of the x (zonal direction)
and y-axis (meridional direction), respectively.

2.3. Volume Slicing Induced Errors

Most numerical model solutions are obtained from discretized partial differential equa-
tions solved on one or more embedded volumetric grid, such as the Arakawa C grid [34].
To solve these equations, boundary conditions are provided at the grid boundaries, where
virtual grid points are added for computational purposes. Specific boundary conditions
allow the radiation of features from within the grid to outside of it without losing the
integrity of the signal inside the grid during the outing process. This process can be tracked
in all three directions. In the case of a deep learning model, only features contained within
the grid are available to the model. There is no influence from the boundaries, which serve
to constrain the solution within the model and limit the model solution’s drift in numerical
models. Therefore, DL model forecast errors in individual layers may grow significantly
over time and ultimately change the integrity of the signal, as shown in Figure 3. This is
particularly relevant in the case of perturbation simulations, where the phase of the signal
in different layers could be changed by the errors in the individual layered predictions.
Figure 3 provides an example of what it would look like in each of the planes normal to
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each direction. Starting with the z-planes (top view), a slight phase shift in the vertical
direction will lead to the removal of the red signal in the x-plane in the region outlined by
the green shaded area and also in the y-plane the furthest on the outside. As each forecast is
sequentially reused for the next, the errors become part of the learning base. Additionally,
because horizontal motions are much larger than vertical motions in the ocean, the DL
model prediction skills will differ according to the direction of layers used for prediction.

Figure 3. Layered prediction-induced errors. (a) Top view, normal to the z-axis. (b) Lateral view
normal to the y-axis. (c) Lateral view normal to the x-axis. The green shaded area highlights the
focus area where errors are displayed. In each subplot, the left (right) image shows the observed
(predicted) field. Each color corresponds to a different vertical layer as indicated, layer 1(3) being at
the top (bottom).

To evaluate the layered prediction errors, the metrics set by GODAE OceanPredict [4]
were applied. They identify two types of errors, namely the single point error and the
structural error. These errors are quantified by the calculation of the Peak Signal to Noise
Ratio (PSNR) including RMSE and correlation coefficient (CC) (see [17] for definitions),
and Structural Similarity (SSIM), respectively. The PSNR is based on the mean square error
(MSE) [35]. Given an observed plane field Ob of size m, n and its prediction Pr, MSE is
defined as:

MSE =
1

m n

m−1

∑
i=0

n−1

∑
j=0

[Ob(i, j)− Pr(i, j)]2 (1)

The PSNR (in dB) is defined as:

PSNR = 10 · log10(
Peak2

MSE
) (2)

where Peak is the maximum value of all data points in both Ob and Pr. In image processing,
PSNR is primarily used to assess the quality of an image reconstruction. The PSNR between
two images is calculated in decibels. To compare image reconstruction quality, both the
mean square error (MSE) and peak signal-to-noise ratio (PSNR) are often utilized.

The SSIM index can be calculated in sub-regions of each layer. It is a measure of
similarity between two patterns [35].

SSIM(Ob, Pr) =
(2µObµPr + c1)(2σObPr + c2)

(µ2
Ob + µ2

Pr + c1)(σ
2
Ob + σ2

Pr + c2)
(3)

where:

• µOb and σ2
Ob are the mean and variance of Ob, respectively.

• µPr and σ2
Pr are the mean and the variance of Pr, respectively.

• σObPr is the covariance of Ob and Pr.
• c1 = (k1L)2, c2 = (k2L)2 are used to stabilize the ratio with a weak denominator.
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• L = 2#bits per gridcell − 1 is the dynamic range of the gridded velocity values.
• k1 = 0.01 and k2 = 0.03 are the default values of the two scale factors.

3. Deep Learning Prediction Model

Unlike conventional numerical models which use a set of a dynamical equations to
describe a physical system, data-driven deep learning methods rely on neural networks to
model physical systems. To achieve this, we first reduced the temporal matrix of each layer
to one dimension by applying EOFs and then implemented an LSTM network to model
the velocity field in each layer, as shown in Figure 4.

Figure 4. Single layer forecasting model flow chart.

3.1. Empirical Orthogonal Functions

EOF is a major analysis tool in oceanographic, geophysical and meteorological applica-
tions [36–38]. EOFs are used to reduce data dimensions by separating spatial components
from temporal components. The principle of this decomposition is to extract the most
dominant information with fewer dimensions [39]. It provides a dense description of
spatial data and temporal variability in terms of an orthogonal basis (eigenvectors). Each
associated eigenvalue provides a measure of the fraction of the total variance under the EOF
mode. This decomposition provides a statistical description of any dynamical processes by
projecting them onto empirical normal modes, rather than the physical or natural modes of
the system, which are process specific and therefore unable to encompass all the processes
involved in the dynamics of the system being predicted in this study. The projection of the
data onto EOF modes is called principal component (PC), which indicates the temporal
variations of the variance of it associated spatial pattern [37]. EOF decomposition is carried
out by Singular Value Decomposition (SVD), which is written as follows:

Q = UDWT (4)

where Q is an n × p matrix and D is an n × p rectangular diagonal matrix of non-negative
numbers (the singular values of Q). U is an n × n matrix, the columns of which are
orthogonal unit vectors of length n, called the left singular vectors of Q, and W is a p × p
matrix whose columns are orthogonal unit vectors of length p and called the right singular
vectors of Q. In addition, UD is the time-dependent principal components (PCs), and WT

is the spatial pattern matrix whose columns are so-called EOF modes.

3.2. Deep Learning Model: Long Short-Term Memory Network

The deep learning model selected for the prediction model is a type of Recurrent
Neural Network (RNN). RNNs are well suited for time sequence prediction, and work by
feeding the output of each neuron, along with a new input, back into itself, forming loops
within its architecture [40]. In an RNN network, a simple RNN neuron or hidden unit’s
output behavior can be modeled by Equation (5), where xn and sn are the input and state
at time n, respectively. Furthermore, Wgi and Wgs represent the input and state (recurrence)
weights and f an activation function. Note that the output can be obtained from the state
whenever it is needed.

sn = f (Wgi xn−1 + Wgs sn−1) (5)

However, the caveat of the RNN given in Equation (5) is its gradient vanishing problem
or memory loss. This occurs because RNNs are typically trained with a stochastic gradient
descent algorithm, and gradients may vanish for a multi-layer RNN due to the chain rule
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in differentiation. LSTM neural networks were designed to solve this problem [41], in
which a memory unit mn was added to avoid the disappearance of gradients. Let α and
β be constants and ⊕ denote an element-wise multiplication; then, the memory unit is
updated by the following rule:

mn = α ⊕ mn−1 + β ⊕ f (Wgi xn−1 + Wgs sn−1) (6)

The state is then related to the memory unit with an activation function. In this way,
derivatives will not vanish due to the additive relationship described in Equation (6).

3.3. Prediction Procedure

The LSTM network used in this study was previously adopted for the prediction of
SSH time series in [17,42]. In this study, two identical networks were designed to model
and predict the velocity components, u and v, respectively. After the EOF decomposition
of each velocity component, the PCs were used to train the LSTM model, which in turn
was used to predict future PCs. At the beginning of the process, the system was initialized
using random weights and then run through all the training data in chronological order,
each time adjusting the weights through the gradient descent of the loss function. Each
run through the entire training dataset is called an epoch and this step allows the model to
optimize its weights (Equation (6)), at which point the model can predict any state learned
from the data without the data at any point in time in hindcast mode.

The MATLAB Neural Network Toolbox was used to implement the LSTM network.
The Adaptive Moment estimation [43] (Adam) optimization rather than the Stochastic
Gradient Descent with Momentum [44] (SGDM) algorithm was used to update network
weights iteratively during the training phase due to the improved performance with the
former. The hyperparameters of the prediction model were manually tuned to optimize the
performance of the prediction model. The resulting hyperparameters were as follows: mini-
batch size = 128, initial learning rate = 0.03, number of hidden nodes = 100, and maximum
number of Epochs = 500. Only one LSTM layer was used because the overall performance
of the model, including the training and prediction processing time, as well as prediction
skills, degraded when more layers were added. Training and prediction were carried out
on a single NVIDIA GPU, TITAN X (Pascal compatibility) with CUDA toolkit Version 11
with a memory of 12GB. The training times for a single layer and for all layers for each
direction are provided in Table 1. Once trained, at each prediction time step, the LSTM
updates its state in accordance to its own prediction. This allows the LSTM to continue
predicting based on both the training data and future predictions.

Table 1. Training time in seconds for a single and all layers in each directional model.

Training Direction Single Layer All Layers

Z direction 25.22 s 649.43 s
Y direction 26.32 s 722.8 s
X direction 25.16 s 652.15 s

The prediction procedure can be summarized as follows: (1) The current velocity
components’ time series from time t1 to tn are reduced to their respective PCs by EOF
decomposition. (2) The PCs are used to train the LSTM model sequentially. (3) All the PCs
up to time tn are then used to predict the PCs of the velocity field at time tn + 1. For the next
prediction at time tn + 2, the predicted PCs at tn + 1 are used to retrain the LSTM model
together with the PCs corresponding to time t1 to tn, and this is repeated for all subsequent
forecasts. In addition, new data can be added at any time to the training dataset, which
will then be used to retrain the LSTM model.
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3.4. Layered Prediction Model Approach

As previously described, the water velocity dataset is a time series consisting of
two orthogonal components u and v, each of which known as a four-dimensional tensor.
To reduce the computational complexity, at each instant, the corresponding velocity cube (u
or v) is partitioned into a number of layers (or planes). For each layer, a prediction module
consisting of EOF and LSTM is trained and then used to predict the velocity field of that
particular layer. Collectively, these prediction modules form a layered prediction model.
Layered models are implemented for each spatial direction. As a consequence, they are
referred to as prediction models X (29 layers), Y (36 layers), and Z (26 layers), respectively.

4. Layered Prediction Experiments

In all three directions, each layered model was trained using 90% of the available
time series and preserving the remaining for prediction validation. Thus, the training used
1629 samples (814.5 days) from 2 March 2009 to 25 May 2011, while the testing period
started from 26 May 2011 to 23 August 2011 (90.5 days). The training and testing periods
are illustrated in Figure 5. The model prediction period was set to 7 days, which was also
the length of the sliding prediction window. This prediction period was chosen in response
to the predictive skill goal set for the LC current speed by the United States’ National
Academies of Sciences, Engineering, and Medicine (NASEM) [45].

Figure 5. Data partitioning for training and prediction experiments. T is the duration of the dataset
(1810 time samples = 905 days), F the length of the prediction window (14 samples = 7 days), and the
blue line is the testing period which includes 20 forecast sliding windows, each separated by a
12 h period.

4.1. Model Z Velocity Predictions

Model Z, or the Z directional model, consisted of 26 horizontal layers distributed
from the sea surface down to 500 m. The 7-day prediction of the model for the surface
layer velocity (layer 1 in the z-direction) is shown in Figure 6. It illustrates that the
proposed model was able to predict seven days in advance the formation of a cyclonic
eddy in the region highlighted in Figure 6. The model accurately predicted the center of
rotation, direction and strength of the velocity vectors at the surface. However, elsewhere,
the model prediction differed more significantly from the observations. To assess the
overall performance of the model, we computed the average CC, RMSE, SSIM and PSNR,
along with their standard deviations, for both u, v on each plane of each tensor and over
the twenty sliding windows (Figure 7). These quantities quickly deteriorated over 14 time
steps (7 days), which indicates the challenge of predicting LC velocity tensors compared to
SSH prediction performed using a similar LSTM structure in [17,42,46], despite the fact that
the cyclonic eddy was correctly predicted. Indeed, after 7 days, the anticyclone southwest
of the predicted cyclone exhibited a weaker circulation than the observed one, and its
northern counterpart was sustained for longer than the observed one.
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(a)

(b)

Figure 6. Predicted (top) and corresponding observed (bottom) surface velocity. (a) Twelve-hour
prediction. (b) One hundred sixty-eight-hour (7-day) prediction. The red arrows in (a) show the
region of formation of the cyclonic eddy predicted in the red highlighted areas in (b).
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Figure 7. Model Z fourteen time-step (7 days) 20-day sliding window average of CC, SSIM, PSNR, and RMSE of the velocity
fields. The unit for the horizontal axis is prediction time steps (one time step is 12 h). The error bar denotes the standard
deviation with a 95% confidence interval.

4.2. Directional Velocity Structure Prediction Dependency

We now compare the predictions of all models in each of the three Cartesian directions.
In particular, for a given directional model prediction, we compared the other two model
predictions along the same direction as the former. Figure 8 shows the comparison in
terms of CC, RMSE, SSIM and PSNR for Model X prediction and the other two models
(Models Y and Z) in the x-direction. All the metrics were calculated for fourteen time
steps and averaged over 20-day sliding windows and over all the layers of the directional
model. Model X prediction in the x-direction exhibited a higher CC and similarity index,
although the PNSR is very similar between models, especially after the seventh time step.
On the other hand, the RMSE is the highest for Model X after the sixth time step. Model Y
prediction is also better than Model Z’s prediction in the x-direction.

A similar comparison is shown for Model Y in Figure 9. The CC and the similarity
index are strikingly much higher for Model Y and than for the other two models. The PSNR
is also significantly higher and the RMSE much lower than for the other two models.
The prediction of Model Z in the y-direction was also better than the one of Model X. In the
x-directions, fewer differences were found between all three models predictions than in the
y-direction.

Figure 10 shows the comparison of the three models in the z-direction. As expected,
Model Z is better at predicting in the z-direction; however it shows a better CC than for the
other two models only after 7 days. The similarity index is much higher while the PSNR is
similar to the ones of the other model, showing no significant improvement. The RMSE
becomes lower than for the other two models after the seventh time step. Again, as for
the x-direction prediction, the differences between the three models are not as different
as they were in the y-direction. These results indicate that each model best prediction is
associated with its direction of prediction. In addition, in terms of dynamical evolution,
the most significant changes were in the y-direction (x-z planes) and better captured by the
Model Y.
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Figure 8. Fourteen time-step (7 days) 20-day sliding window average of CC, SSIM, PSNR, and RMSE of the velocity fields
in the x-direction, predicted by Model X (solid line), Model Y (dotted line), and Model Z (dashed line).

Figure 9. Same as Figure 8 but for the velocity fields in the y-direction.
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Figure 10. Same as Figure 8 but for the velocity fields in the z-direction.

4.3. Vertical Velocity Structure Prediction

Examples of the 7-day predicted flow field are shown in Figures 11–13 for Models
X, Y, and Z respectively. Figure 11 shows a vertical section of the velocity magnitude in
the x-direction for all three models at 87◦ W. It confirms the metrics results and shows
the best agreement between the flow structure of Model X and the observations in the
x-direction. Similarly, Figure 12 shows the vertical section of the velocity magnitude in the
x-direction for all three models at 25◦ N. It confirms the metrics results and shows the best
agreement between the flow structure of Model Y and the observations in the y-direction.
The same consistency between the prediction and observed flow structure is also confirmed
for Model Z in the z-direction (Figure 13). As each prediction model performs best in its
corresponding tensor orientation, we propose fusing the prediction of all three models into
one tensor.
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Figure 11. Vertical section of the velocity tensor in the x-direction at 87◦ N on day 7 of the prediction. (a) Observations;
(b) Model X prediction; (c) Model Y prediction; (d) Model Z prediction.

Figure 12. Vertical section of the velocity tensor in the y-direction at 25◦ W.
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Figure 13. Horizontal section of the velocity tensor at 100 m depth on day 7 of the prediction. (a) Observations; (b) Model X
prediction; (c) Model Y prediction; (d) Model Z prediction.

4.4. Fusion of the Models’ Predictions

As each model can best predict the evolution of the velocity field in its respective layers,
we hypothesize that the fusion of the three model predictions would yield an improved
prediction of the overall tensor over each individual one. For this purpose, a simple
fusion block was added to the prediction system, as shown in Figure 14. Although various
methods can be used to fuse all three tensors, such as unweighted or median selection-based
average, we chose to apply a three-dimensional Gaussian smoothing procedure [47] as it
provides better results than the other two. The results of the fusion process are shown for the
72 h (3-day) and 168 h (7-day) predictions in Figures 15 and 16, respectively. These figures
consist of a 3D representation of the normalized relative vorticity of the flow predicted by
each of the three individual models and by the fusion method. Despite the noise associated
with each model, the fusion approach is able to filter the noise out and deliver a tensor
field that is very similar to the observations, even for a 168 h prediction. The significant
improvement of the 3D tensor prediction by the fusion process over individual prediction
models is further demonstrated by computing the metrics RMSE, PNSR, SSIM and CC of
the various predictions (Figure 17). The fusion output showed an overall improvement
over individual predictions for all metrics over the 7-day prediction window. In particular,
the RMSE was reduced by more than 25% on day 7 of the prediction.
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Figure 14. Block diagram of the fusion approach to produce a unified volumetric prediction.

Figure 15. Three-dimensional normalized relative vorticity field of the observed and 72 h predicted
tensors. (a) Observed, (b) Model Z, (c) Model X, (d) Model Y, (e) and fusion result.
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Figure 16. The conditions are same as Figure 15 for the 168 h prediction.

Figure 17. Fusion results. (a) Mean Squared Error (MSE), (b) Correlation Coefficient (CC), (c) Peak
Signal-to-Noise Ratio (PNSR) and (d) Structural Similarity index (SSIM) between the observed
3-dimensional fields and the predictions from Models Z, X, and Y.



Forecasting 2021, 3 950

5. Conclusions

Modeling and predicting the LCS subsurface vertical structure in the GoM region is
essential to all aspects of life in the region. However, useful forecasts of the flow field by
current modeling methods do not exceed two days [5–7]. In this study, we developed a deep
learning-based prediction model that was capable of predicting some important features
of the 3D velocity fields of the LCS up to seven days in advance in a rectangular region
where the LC is most active and commonly sheds eddies (Figure 6). Overall, the fusion
model exhibited a CC > 0.5 up to 4.5 days (Figure 17). Subsurface velocity data measured
by in-situ sensors for an approximately three-year period [29] were used to train and test a
deep learning prediction method. To implement the deep learning model, we reduced the
dimensionality of the tensors of each component of the velocity field to one dimension by
applying EOF. The obtained PC vectors were used as an input variable to the LSTM model.
The prediction model was applied separately to each layer of the tensor. We defined one
tensor for each direction of the Cartesian coordinate system, which led to three prediction
models associated with each direction, respectively. Each model was composed of one
individual LSTM model per layer in each tensor and the final prediction consisted of the
final tensor made of all the layered predictions for each velocity component. The results
of this approach revealed that the prediction models associated with each of the three
directions were the best at predicting the flow field in their respective directions. The errors
across layers significantly altered the cross-layer structure of the flow. However, the fusion
of all three models’ solution with a Gaussian filter delivered an improved prediction field
over each individual predictions.

Because the number of layer models necessary to conduct the full three-dimensional
prediction is equal to the total number of grid points of the field to be predicted, the imple-
mentation of such model for real-time forecast seems unrealistic. However, multithread
and parallel computing allows for the simultaneous computation of the predictions in all
the layers in an efficient and timely manner. In addition, such dense observation arrays
are rare and spatially and temporally limited, which limits the size and number of the
layers to be predicted as well. In any case, when compared to ocean numerical model
operations, even though numerical models are much cheaper to operate, they are unable
to reliably predict the evolution of the ocean state without being constrained by ocean
observations. It is true that observing arrays are ephemeral, but when they do exist they can
be used to make forecasts that do not require numerical models, which simplifies the data
processing and streamlines the forecasting process since only one variable is used versus
the multitude of state and atmospheric variables required by ocean numerical models.
Table 1 shows that the computational time for training is less than 800 s for all layers in a
given direction. Assuming that each direction can be computed by one thread, then the
overall prediction time would be less than 800 s, which makes this approach adequate for
real-time forecasting, even at a hourly rate. HF radar ocean surface current measurements
provide a good test-bed for the application of our method, where in this case, only one
layer is predicted. The latter are now increasingly used for monitoring coastal circulation
in many areas of the coast around the world [48]. The other limitation of the deep learning
method is the duration of the measurements. Such methods’ accuracy strongly depends
on the diversity of events captured by the measurements and therefore their prediction
skills can be limited by the duration of the measurements used to create the deep learning
models. Ideally, a times series that captures the full extent of the variability in the natural
system would yield the best forecast by such methods. However, it is not explicitly clear
how prediction improvement is correlated to the duration of the measurements in this
tensor prediction method. In a point-wise prediction exercise of ocean current velocity
for unmanned underwater vehicle navigation, Immas et al. [12] showed that they could
predict with an LSTM model one month of current with one month of training data.

The layered prediction method applied in this study was originally developed by
Wang et al. [17] to predict the evolution of the SSH, a two-dimensional field. Predicting
the three-dimensional velocity fields with this two-dimensional method has revealed
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the importance of the relative changes between layers in the accuracy of the predicted
tensor. Future work will be focused on the inclusion of the relationship between individual
nodes and their surrounding nodes in the domain, in order to account for the relative
evolution between nodes. This node’s spatio-temporal connectivity could be learned
through another DL model ultimately coupled with the prediction model. We anticipate
that such multi-model approach could provide longer reliable three-dimensional forecasts
than the approach herein.
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