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Abstract: High-dimensional, non-stationary vector time-series data are often seen in ground motion
monitoring of geo-hazard events, e.g., landslides. For timely and reliable forecasts from such
data, we developed a new statistical approach based on two advanced econometric methods, i.e.,
error-correction cointegration (ECC) and vector autoregression (VAR), and a newly developed
dimension reduction technique named empirical dynamic quantiles (EDQ). Our ECC–VAR–EDQ
method was born by analyzing a big landslide dataset, comprising interferometric synthetic-aperture
radar (InSAR) measurements of ground displacement that were observed at 5090 time states and
1803 locations on a slope. The aim was to develop an early warning system for reliably forecasting
any impending slope failure whenever a precursory slope deformation is on the horizon. Specifically,
we first reduced the spatial dimension of the observed landslide data by representing them as a
small set of EDQ series with negligible loss of information. We then used the ECC–VAR model
to optimally fit these EDQ series, from which forecasts of future ground motion can be efficiently
computed. Moreover, our method is able to assess the future landslide risk by computing the relevant
probability of ground motion to exceed a red-alert threshold level at each future time state and
location. Applying the ECC–VAR–EDQ method to the motivating landslide data gives a prediction
of the incoming slope failure more than 8 days in advance.

Keywords: empirical dynamic quantiles; error-correction cointegration; landslide forecast; vector
autoregresion time series

1. Introduction

Geo-hazard events, including earthquakes and landslides, can present significant
damage to the environment and society; cf. [1,2]. Developing the capability to reliably
predict the imminent occurrence of such a disaster is crucial for enhancing society’s pre-
paredness and mitigating the disaster’s impact. However, behaviors of the geological
processes underpinning such geo-hazard events are mostly complicated in both space and
time, in that the multivariate time series data collected from monitoring these processes
by modern techniques, such as interferometric synthetic-aperture radar (InSAR), are often
high-dimensional and non-stationary. To date, there exist few statistical methods capable
of analyzing high-dimensional non-stationary InSAR time series for timely and reliable
forecasts of geo-hazard events [3]. It was therefore the goal of this research to develop
an effective statistical method for modeling high-dimensional, non-stationary vector time
series and accordingly for timely forecasting with precision. The capability of the method
was tested on a real landslide dataset detailed in [4]. Briefly, the landslide dataset com-
prises 1803 time series of InSAR data on ground displacement, observed every 6 min for
5090 times and at 1803 locations.

Analyzing multivariate time series is often based on a vector auto-regression (VAR)
model framework; see Chapter 2 in [5]. A prerequisite for the parameter estimation
involved in the VAR-based analysis to be statistically consistent is that the underlying

Forecasting 2021, 3, 850–867. https://doi.org/10.3390/forecast3040051 https://www.mdpi.com/journal/forecasting

https://www.mdpi.com/journal/forecasting
https://www.mdpi.com
https://orcid.org/0000-0003-3818-0564
https://orcid.org/0000-0001-5497-292X
https://orcid.org/0000-0002-4016-1373
https://doi.org/10.3390/forecast3040051
https://doi.org/10.3390/forecast3040051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/forecast3040051
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com/article/10.3390/forecast3040051?type=check_update&version=3


Forecasting 2021, 3 851

multivariate time series be stationary. This condition is, however, not satisfied for our
landslide data which can be shown to be unit-root non-stationary with significant statistical
evidence. Therefore, we cannot use the VAR model to consistently fit the landslide data
and estimate the involved parameters directly. Instead, we resort to searching for certain
linear transformation of the data consisting of lagged time-difference operations, by which
the non-stationary landslide time series can be converted to be stationary before applying
the stationary VAR methodology. The technique underpinning such linear transformation
is the so-called error-correction cointegration (ECC) method; cf. Chapter 5 in [5].

Using ECC and VAR to analyze non-stationary vector time series can be computation-
ally infeasible if the vector dimensionality is too high, e.g., k = 1803 for the landslide data,
because the number of unknown parameters involving statistical inference will be of order
O(k2). Recently, reference [6] proposed a dimension reduction technique, called empirical
dynamic quantiles (EDQ), to represent a high-dimensional vector time series by a low-
dimensional subset of the former with negligible loss of information. The referenced subset
is made of the EDQ series with pre-specified quantile levels. For example, the 1803 landslide
time series may be represented by 11 EDQ series at levels 0.0(min), 0.1, · · · , 0.9, 1.0(max).
Details are provided later in Section 4. VAR model fitting can then be computationally
feasibly applied to analyze the small number of EDQ series just determined. Moreover,
the results from analyzing the EDQ series are readily extendable to the original high-
dimensional time series by numerical interpolation, because the EDQ technique is able to
calculate a quantile level value for each scalar time series in the original data.

In the light of all the discussion so far, we propose an ECC–VAR method to analyze
high-dimensional, non-stationary VAR time series through the corresponding EDQ series
found beforehand. The involved unknown parameters will be estimated using general
least squares (GLS) or maximum pseudo likelihood (MPL) method based on the derived
EDQ series. Once the model fit is obtained, we compute the forecasts together with their
80% forecast intervals at any future time and location, and get other statistical inference
results (e.g., goodness-of-fit statistic R2 and cointegration test outcome etc.) to demonstrate
the efficacy of our method. Moreover, we can compare the forecasts with a threshold value
determined by the domain knowledge—cf. [7]—so that the probability of the process under
observation reaching or exceeding the threshold value can be computed for each future
time. This probability, conventionally named the red alert warning probability, is easy to
understand and widely adopted for predicting the risk of an impending geo-hazard event.

This paper is organized as follows. In Section 2, we describe the landslide data
motivating our work in this paper. Next, the ECC–VAR model and its statistical inference
are developed in Section 3. The dimension reduction technique EDQ is described in
Section 4. The ECC–VAR–EDQ methodology is then demonstrated through analysis of the
landslide InSAR data via estimation and forecasting in Section 5. The forecast intervals
and probabilities of red alert warning on the landslide data are derived and presented in
Section 6 before concluding the paper in Section 7.

2. Motivational Data on Ground Motion in Landslide

Landslide, a type of common geo-hazard event, is caused by significant down-slope
movement of soil and/or rocks under the direct influence of gravity. Slope movement
occurs when forces acting down-slope (mainly due to gravity) exceed the strength of the
earth materials composing the slope. A widely used technique to determine the instability
level of a slope is InSAR, by which the precursory movement of the slope surface prior to
collapse is constantly monitored. Slope stability radar (SSR) is a mobile InSAR that can
remotely scan a slope surface and detect land movement with sub-millimeter precision
at high space-time resolutions. Details about using SSR to monitor and detect the slope
instability are given in [8–10].

The landslide data to be analyzed in this paper come from a use of SSR to monitor the
instability of a slope surface over an undisclosed area stretching 200 m wide and 40 m high.
The data comprise time series of the cumulative surface displacement along the reference



Forecasting 2021, 3 852

line-of-sight from the stationary, ground-based monitoring station to each of 1803 observed
locations (a minute area of about 4 m2 for each location) on the slope. The displacement
observations were updated every 6 min over a 3-week period, 10:07 31 May to 23:55 21
June, for 5090 updates in total; cf. [4]. Hence, we have a vector time series with dimensions
1803 and length 5090. The displacement observations and their locations are shown in
Figure 1.

Figure 1. (Left) Slope surface displacement from 31 May to 21 June with 1083× 5090 observations in total. (Right) The 1803
small areas (locations). The 11 locations highlighted in black correspond to the 11 EDQ series at quantile levels 0.0 (min), 0.1,
· · · , 0.9 and 1.0 (maximum).

Significant displacement of more than 0.5 m and up to 1.5 m, showing accelerating
slope deformation, can be found in the original data to have developed in the western side
of the slope since early June 15, with velocities reaching 75 mm/h at around t = 3576 (13:52
15 June) near the head of the landslide; cf. [4]. The actual landslide occurred at around
t = 3568 (13:02 15 June), preceded by a precursory slope deformation at around t = 1600
(5:42 7 June). It would be a remarkable achievement if one is able to forecast the occurrence
of landslide shortly after a precursory slope deformation appears (here t = 1600 is 196+
hours earlier than t = 3568). However, this cannot be achieved before an effective statistical
model is developed to characterize the dynamic system underpinning the observed data,
and neither can it before a computationally feasible procedure is constructed to perform
forecast. We show in Sections 5 and 6 that our ECC–VAR–EDQ methodology is able to
overcome these challenges.

Once landslide forecasts are obtained, the subsequent challenge is to interpret and
inform the results to the public in easy to understand language. In addition to using the
displacement and velocity forecasts, we use the red alert probability concept introduced in
Section 1 to interpret and inform the results.

3. The Error-Correction Cointegration (ECC) Approach for VAR Time Series

In this section, as introduced in [5], we outline an error-correction cointegration (ECC)
approach for analyzing unit-root non-stationary vector auto-regression (VAR, of order p)
time series data. Provided that the approach is effective in fitting the training sample data,
we can use the fitted ECC–VAR(p) model to forecast. We present a rigorous introduction
of the ECC–VAR(p) model first. We then derive the method and procedure for parameter
estimation and other statistical inference tasks for the ECC–VAR(p) model. Finally, we show
how to use the model for forecasting. Readers who are interested in only the applications
of this model just need to take Equations (1), (4), (5), (6) and (10), and the definition of EDQ,
and then jump to Section 5 and forward.
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3.1. ECC–VAR(p) Model

Let {zt, t = 1, · · · , T} be a k× 1 vector time series with zt = {z1t, z2t, · · · , zkt}>. For
each given t, zt can be treated as being collected from k locations. The vector time series zt
is said to follow a VAR(p) model if

zt = Φ0 +
p

∑
i=1

Φizt−i + at, t = 1, · · · , T (1)

where Φ0 is a k × 1 unknown vector; Φis are k × k unknown matrices for i > 0 with
Φp 6= 0; and {at} is a sequence of independent and identically distributed random vectors
with mean zero and covariance matrix Σa. Denote B as the back shift operator such that
Bzt = zt−1 and Bizt = zt−i. Then the VAR(p) model (1) can be re-written as

Φ(B)zt = Φ0 + at where Φ(B) = Ik −
p

∑
i=1

ΦiBi with Φp 6= 0. (2)

The unknown parameters involved in (2) can be estimated by a general least squares
(GLS) method when regarding (2) as similar to a multivariate linear regression equation.
However, such parameter estimators are valid and possess those large-sample asymptotic
properties in multivariate linear regression models only when the time series data under
analysis are stationary and invertible. It is well established that a VAR(p) model character-
izes stationary and invertible vector time series if and only if all solutions, with respect to
λ, of the determinant equation∣∣∣∣∣Ik −

p

∑
i=1

Φiλ
i

∣∣∣∣∣ = |Φ(λ)| = 0 (3)

are greater than 1 in modulus.
An important type of non-stationary vector time series is unit-root non-stationarity,

of which some solutions in (3) equal 1 and the rest are greater than 1 in modulus; i.e.,
|Φ(λ)| 6= 0 for |λ| ≤ 1 except |Φ(1)| = 0. A unit-root, non-stationary time series can be
converted to a stationary one by taking difference operations for certain number of times.
However, there is a danger of over-differencing, and an overly differenced time series may
not be invertible, so that the GLS estimator for VAR(p) is not valid. A sequential hypothesis
testing approach can be used to test whether or not there is a unit-root non-stationarity
against stationarity, and how many times the difference opertions should be taken to
achieve stationarity. Details can be found in, e.g., [11], for cases of univariate time series.

For vector time series, we deal with the unit-root non-stationarity by cointegration
and error-correction. The basic idea behind cointegration is to find a linear combination
between two order-d integrated, i.e., I(d), processes that yield a process with a lower order
of integration; cf. [12]. Specifically, the cointegration idea can be applied to an order-1,
unit-root, non-stationary vector time series, i.e., an I(1) process, through a difference
operation. That is, ∆zt = zt − zt−1 will be stationary if {zt} is order-1, unit-root non-
stationary. However, ∆zt is not necessarily invertible but admits an error-correction form,
as explained by [5]:

∆zt = Πzt−1 +
p−1

∑
i=1

Φ∗i ∆zt−i + c(t) + at (4)

where Π = Φ1 + · · ·+ Φp − Ik; Φ∗j = −(Φj+1 + · · ·+ Φp) with j = 1, · · · , p− 1; and c(t),
as a deterministic vector trend function of t, generalizes Φ0 in (1). Model (4) is called the
error-correction cointegration (ECC) form for zt; cf. [5].

Since ∆zt is stationary, it follows that Πzt−1 must be stationary, although zt−1 is
non-stationary. This suggests there exist k linear combinations of unit-root, k× 1 vector,
non-stationary time series zt that each becomes stationary. One needs to get more details
about these k linear combinations in order to further analyze zt. This can be achieved
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by looking into the rank of Π, denoted as r = rank(Π), which consists of three cases:
r = 0, 0 < r < k and r = k. If r = 0, Π = 0, implying ∆zt is a stationary VAR(p − 1)
time series. If r = k, it means the k linear combinations are linearly independent of each
other. If 0 < r < k, the k linear combinations are determined by r linearly independent
combinations. In the latter two cases, we can write Π = αβ> with the two k× r matrices α
and β, satisfying rank(α) = rank(β) = r. Then (4) becomes

∆zt = αβ>zt−1 +
p−1

∑
i=1

Φ∗i ∆zt−i + c(t) + a(t) (5)

where β = (β1, · · · , βr) is called the cointegration matrix with β1, · · · , βr the cointegration
vectors, and α = (α1, · · · , αr) is referred to as the loading or adjustment matrix. Clearly, β and
α are not unique, although the spaces spanned by them are uniquely defined. This can be
fixed by restricting the first r rows of β to be Ir.

References [13,14] used ideas of canonical correlation analysis (CCA) to develop a
cointegration test-estimation procedure to determine the cointegration rank r and estimate
the cointegration vectors β1, · · · , βr based on model (5) and the observed vector time series
{zt}. A test statistic derived for the cointegration test is essentially a likelihood ratio statistic
in the form of either a trace statistic or a maximum eigenvalue statistic. Once r is determined
from the cointegration test, the cointegration matrix β = (β1, · · · , βr) can be consistently
estimated using the eigenvectors corresponding to the eigenvalues involved in the trace
or maximum eigenvalue statistic. Details can be found in the aforementioned references.
In practice, one can use R function ca.jo() in package urca to perform the cointegration
test-estimation of r and β. The estimators of r and β are denoted as r̂ and β̂ = (β̂1, · · · , β̂r̂),

respectively. Writing yt−1 = β̂
>

zt−1; and by the ECC form (5), the observed vector time
series zt can be asymptotically characterized by the following ECC(r̂)-VAR(p) model:

∆zt = αyt−1 +
p−1

∑
i=1

Φ∗i ∆zt−i + c(t) + at (6)

which is a stationary process. Then the unknown parameters α, Φ∗i s, etc., can be consistently
estimated by the general least squares (GLS) method. See [14] for details.

3.2. Making Statistical Inferences from the ECC–VAR Model

For simplicity of presentation, assume c(t) = c0, an unknown constant vector indicat-
ing zt’s deterministic drift. The ECC(r̂)-VAR(p) model (6) now becomes

∆zt = αyt−1 +
p−1

∑
i=1

Φ∗i ∆zt−i + c0 + at

which can be expressed in a multivariate linear regression form

∆z>t = x>t Γ + a>t , or in matrix form Z = XΓ + A (7)

where x>t = (1, y>t−1, ∆z>t−1, · · · , ∆z>t−p+1) is a [k(p − 1) + r̂ + 1] × 1 column vector of

observations, and Γ = [c0, α, Φ∗1 , · · · , Φ∗p−1]
> is a [k(p− 1) + r̂ + 1]× k unknown matrix

parameter to be estimated. Furthermore, Z = [∆zp+1, · · · , ∆zT ]
> is a (T − p)× k response

observation matrix, X = [xp+1, · · · , xT ]
> is the (T − p)× [k(p− 1) + r̂ + 1] design matrix

and A = [ap+1, · · · , aT ]
> is a (T − p)× k error or residual matrix.

In practice, fitting (7) can simply be carried out by fitting k multiple linear regression
models separately by the GLS method. Using matrix differentiation, it is easy to show that
the GLS estimator of Γ is

Γ̂ = (X>X)−1(X>Z) or vec(Γ̂) = (Ik ⊗ [(X>X)−1X>])vec(Z) (8)
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where ⊗ is the Kronecker product. It can also be shown that

cov(vec(Z)) = Σa ⊗ IT−p and ĉov(vec(Γ̂)) = Σ̂a ⊗ (X>X)−1

with Σ̂a = [(T − p) − (k(p − 1) + r̂ + 1)]−1Z>(I − X(X>X)−1X>)Z. The confidence
interval for any element of Γ or function of Γ can be accordingly computed from these
results. Moreover, the coefficient of determination of model (7) can be calculated as

R2 = 1− SSres

SStotal
= 1− tr([Z− X Γ̂][Z− X Γ̂]>)

tr(Z>(IT−p − (T − p)−11T−p1>T−p)Z)
(9)

which can be used to assess the goodness of fit of the model.
Computations of Γ̂ and the associated statistical inference results can be carried out

using the cajorls() function in R package urca. The AR order p can be best estimated by
a standard model selection criterion such as AIC or BIC, which are commonly used in time
series analysis. Details are not pursued here.

3.3. Forecasting Based on the Fitted ECC–VAR Model

The fitted ECC–VAR model (6) can be used to forecast values of ∆zt and zt at future
time t = T + h, h = 1, 2, · · · . Namely,

∆̂zT+h = Π̂ẑT+h−1 +
p−1

∑
i=1

Φ̂∗i ̂∆zT+h−i + ̂c(T + h) and ẑT+h = ∆̂zT+h + ẑT+h−1 (10)

where Π̂ = α̂β̂
>

, Φ̂∗i , and ̂c(T + h) can be calculated based on the results of cointegration
test-estimation and Γ̂. Furthermore, ̂∆zT+h−i = ∆zT+h−i and ẑT+h−i = zT+h−i if T +

h− i ≤ T. Variance of ∆̂zT+h and ẑT+h can be estimated based on ĉov(vec(Γ̂)) and the
multivariate δ-method or empirical plug-in method, from which the prediction intervals
for ∆zT+h or zT+h can be computed.

Statistical estimation, testing and forecast based on the ECC–VAR model, can be
carried out without significant computing complications if the dimension k of the data
{zt} is small. It will become computationally infeasible if k is large, when the number of
unknown parameters under estimation is of size O(k2). The landslide time series data
considered in this paper has dimensionality of 1803; therefore, some dimension-reduction
technique was needed for a feasible computational analysis.

Peña et al. [6] introduced a concept of EDQ for dimension reduction in high-dimensional
vector time series and developed a technique to find a small number of EDQ series which
are used to represent the original high-dimensional vector time series data. In the light
of the EDQ concept and technique, we obtained various statistical inferences about the
ECC(r)-VAR(p) model based on only a small number of EDQ series found from the orig-
inal data with pre-specified quantile levels. Since the EDQ series are representative of
the original data, we could use the statistical inference results about these EDQ series to
gather statistical inferences on all individual time series in the data by interpolation and
approximation. Details are provided later in the paper after the EDQ dimension-reduction
method is described next.

4. The EDQ Technique for Vector Time Series Dimension Reduction

For a k × 1 vector time series {zt = (z1t, · · · , zkt)
>, t = 1, · · · , T}, which is equiva-

lently a set of k scalar time series where k can be large, we want to choose a small subset
of those k series to describe {zt = (z1t, · · · , zkt)

>, t = 1, · · · , T} without compromising its
overall temporal dynamics, so that information drawn from this small subset is representa-
tive of {zt = (z1t, · · · , zkt)

>, t = 1, · · · , T} and also efficient. This can be achieved by using
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the empirical dynamic quantiles (EDQ) technique introduced by [6]. Given a probability
value p ∈ [0, 1], the level-p EDQ series of {zt = (z1t, · · · , zkt)

>, t = 1, · · · , T} is defined as

q(p) ≡ {q(p)
t , t = 1, · · · , T} := arg min

q={q1,··· ,qT}∈Ck

[
T

∑
t=1

(
p ∑
zit≥qt

|zit − qt|+ (1−p) ∑
zit≤qt

|zit − qt|
)]

where Ck = {{zit, t = 1, · · · , T}, i = 1, · · · , k} is the set of k scalar time series in {zt =
(z1t, · · · , zkt)

>, t = 1, · · · , T}. Note that the level p empirical quantile of {zit, i = 1, · · · , k}
for fixed t is

q∗(p)
t = arg min

q∈R

[
p ∑

zit≥q
|zit − q|+ (1− p) ∑

zit≤q
|zit − q|

]
,

and q∗(p)
t is not necessarily equal to q(p)

t for any t. Specifically, {q(p)
t , t = 1, · · · , T} is one

of the k scalar time series in {zt = (z1t, · · · , zkt)
>, t = 1, · · · , T}, and {q∗(p)

t , t = 1, · · · , T}
is not necessarily one. Hence, an EDQ series keeps the temporal dynamics in {zt =

(z1t, · · · , zkt)
>, t = 1, · · · , T}, and {q∗(p)

t , t = 1, · · · , T} does not. Let Q(p)
t be the level p

population quantile corresponding to q∗(p)
t . It is shown in [6] that

lim
k→∞

Pr

(
T

∑
t=1
|q(p)

t −Q(p)
t | < ε

)
= 1 for any ε > 0 and given T.

In practice, we use the EDQ technique to find a quantile level for each of the k time
series in {zt = (z1t, · · · , zkt)

>, t = 1, · · · , T} or equivalently Ck. Then we choose a small
number, say, m = 11, of them to construct m EDQ series q(Pm) = {(q(p1)

t , · · · , q(pm)
t )>, t =

1, · · · , T}, with the associated quantile levels 0 ≤ p1 < p2 < · · · < pm ≤ 1. Now the
aforementioned statistical inference made on {zt, t = 1, · · · , T} can be made to the m
EDQ series q(Pm) in the same way, which will return the same type of estimation and
forecast results. In addition, the results obtained from the m EDQ series can be used to
draw estimations and forecasts for any other scalar time series in {zt, t = 1, · · · , T} or Ck.
For example, for each such scalar time series, we can find its quantile level, say, p′. This
determines two of the m EDQ series of levels, say, pj and pj′ , which are the two closest to
p′. Then forecasts for the level p′ quantile series can be obtained through interpolating the
forecasts for the level pj and pj′ EDQ series.

5. Applying the ECC–VAR–EDQ Method to Analyze the InSAR Landslide Data

The InSAR landslide data shown in Figure 1 contain 1803 time series observed at
1803 min areas (each of size ∼ 4 m2) in a slope of 200 m long and 40 m high, and each
time series consists of 5090 cumulative displacement observations, recorded once every
6 min from 31 May to 21 June. As found in Section 2, the actual landslide occurred
at around t = 3568 (13:02, 15 June), preceded by a precursory slope deformation at
around t = 1600 (4:41, 7 June); and t = 3820 (14:39, 16 June) is well after the landslide.
Since an important objective of this analysis is to assess the forecasting capability of the
ECC–VAR–EDQ method, we will use the data from t = 1 to t = 1600 as the training
sample for parameter estimation and model fitting, then use the fitted model to forecast
at t = 1601 to t = 3820. Since 1803 is a very high number of dimensions, we reduced the
dimensions using the EDQ technique, by which and the training sample 11 EDQ series
at levels P(11) = (Min, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, Max), with Min = 1/1803 and
Max = 1802/1803, were determined together with their locations. These 11 EDQ series
(extended to include data at all 5090 time stamps) and their locations in the slope are
displayed in Figure 1 in black, and Table 1.
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Table 1. Positions (pixels), in 1 to 1803, of the selected 11 EDQ time series.

Quantile Level Selected Pixel Quantile Level Selected Pixel

Min 202 0.6 827
0.1 1432 0.7 672
0.2 1454 0.8 685
0.3 1392 0.9 630
0.4 1307 Max 534
0.5 995

It was confirmed that some of the 11 EDQ series are non-stationary, which is attributed
to either unit root or inside unit-circle roots of the determinant Equation (3). The type of
non-stationarity attributed to the inside unit-circle roots is also referred to as the explosive
non-stationarity; cf. [15]. To simplify the analysis, we took logarithm transformation on the
11 EDQ time series to remove the explosive non-stationarity as much as possible. That is,
define

zit = log
(

xit −min
i,t

(xit) + 0.5
)

, i = 1, · · · , 11; t = 1, · · · , 5090 (11)

where xit is the original cumulative displacement observation at time t and area (pixel) i cor-
responding to the 11 quantile levels P(11). The 11 EDQ series defined in (11) are displayed
in Figure 2. We used as the training sample the 11 EDQ series {zt = (z1,t, · · · , z11,t)

>, t =
1, · · · , 1600} to perform statistical analysis by the ECC–VAR–EDQ method in the sequel.

Figure 2. (Left) The 11 log-displacement EDQ series from t = 1 to t = 5090. (Right) The 11 log-displacement EDQ series
from the training sample t = 1 to t = 1600.

5.1. Unit Root Test and Cointegration Test for the EDQ Series

First, we ran the augmented Dickey–Fuller (ADF) unit root test for the 11 EDQ
series {zt = (z1,t, · · · , z11,t)

>, t = 1, · · · , 1600} and their first-order differences {∆zt} to see
whether they each are stationary or not. The level 1%, 5% and 10% critical values of the ADF
test statistic, obtainable from the R package urca, are −3.43,−2.86 and −2.57, respectively.
By the ADF test, the null hypothesis of unit root non-stationarity should be rejected at a
significance level if the absolute value of the computed ADF statistic is greater than the
absolute value of the corresponding critical value. The ADF unit test results for the 22 times
series in {zt} and {∆zt} are provided in Table 2, from which we see statistical evidence,
at the 1% or 5% significance level, of stationarity for 16 series, and there is no significant
evidence to reject the unit-root non-stationarity for the level-(Min, 0.6, 0.7, 0.8, 0.9, Max)
EDQ series in {zt}.
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Table 2. Unit root test results for the level/first-order difference of the 11 selected EDQ time series
(log transformed). Superscript *** indicates rejecting the null hypothesis at 1% level; ** indicates
rejecting the null hypothesis at 5% level. All these tests were conducted by including a trend term
and up to 13 lags.

Quantile Level p Pixel ID Augment Dickey−Fuller(ADF)

Min 202 −0.9334/−26.8762 ***
0.1 1432 −2.9837 **/−21.3401 ***
0.2 1454 −4.6048 ***/−21.5254 ***
0.3 1392 −3.1837 **/−17.0134 ***
0.4 1307 −3.3355 **/−17.7037 ***
0.5 995 −2.8695 **/−16.1240 ***
0.6 827 −1.7187/−14.2224 ***
0.7 672 −1.4623/−13.3679 ***
0.8 685 −1.3172/−13.9375 ***
0.9 630 −1.5063/−11.7859 ***

Max 534 −1.3808/−17.9545 ***

Next, we used ca.jo() to perform a sequence of cointegration tests based on the
trace statistic for the vector time series {zt} determined by the 11 EDQ series. The null
hypothesis of r = rank(Π) ≤ r0 was to be rejected at significance level α if the trace statistic
was greater than the level α critical value. The cointegration test results for r0 = 0 to 10 are
provided in Table 3.

Table 3. Null hypotheses, trace statistic and level-(10%, 5%, 1%) critical values of cointegration tests.

Hypothesis Statistic 10% 5% 1%

r ≤ 10 0.42 6.50 8.18 11.65
r ≤ 9 5.82 15.66 17.95 23.52
r ≤ 8 16.77 28.71 31.52 37.22
r ≤ 7 35.19 45.23 48.28 55.43
r ≤ 6 57.56 66.49 70.60 78.87
r ≤ 5 120.14 85.18 90.39 104.20
r ≤ 4 253.29 118.99 124.25 136.06
r ≤ 3 404.85 151.38 157.11 168.92
r ≤ 2 628.63 186.54 192.84 204.79
r ≤ 1 998.73 226.34 232.49 246.27
r ≤ 0 1869.85 269.53 277.39 292.65

Table 3 suggests the best estimate of the cointegration rank is r̂ = 6. Using ca.jo(),
the CCA based estimate of the cointegration vectors β, with its top 6 rows constituting a
6× 6 identity matrix, is found to be

β̂ =



1 0 · · · · · · · · · 0
...

. . . . . . . . . . . .
...

0 · · · · · · · · · 0 1
177.6742 −36.5351 −25.6465 −21.2280 −8.0301 −15.0115
−397.0240 62.0006 44.8457 36.3807 13.7202 26.0822
−538.0373 103.0722 63.2254 51.6327 12.8647 42.5018
635.1576 −109.8483 −71.2795 −57.6532 −16.9223 −46.6249
125.5005 −20.1797 −12.3700 −10.3835 −2.6405 −8.1719
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5.2. Estimating and Fitting the ECC(r)–VAR(p) Model for the EDQ Series

Given r̂ = 6 and c(t) = c0, we still need an estimate of p before we can fit the ECC(r̂)-
VAR(p) model (6) by fitting the multivariate linear regression model (7) using the least
squares method. Instead of using a model selection criterion, we used the coefficient of
determination R2 given by (9) to assess the adequacy of the model. Accordingly, p = 2 was
found to be adequate with R2 = 0.99 based on the associated multivariate linear regression
analysis. Then we used the R function cajorls() to fit an ECC(6)-VAR(2) model for the 11
EDQ series {zt} shown in the right panel in Figure 2, giving the following results:

∆̂zt = α̂yt−1 + Φ̂
∗
1∆zt−1 + ĉ0, where (12)

α̂ =



−0.0029 −0.1037 0.1410 0.0772 −0.2227 −0.0291
0.0008 −0.0694 0.0814 0.0581 −0.1458 0.0298
0.0000 0.0059 −0.0739 0.0075 0.0859 0.0586
−0.0002 −0.0099 −0.0140 −0.0060 0.0364 0.0368
0.0000 −0.0031 −0.0222 0.0067 0.0306 0.0219
0.0009 −0.0379 0.0697 0.0285 −0.1006 −0.0049
0.0011 −0.0106 0.0151 0.0138 −0.0206 0.0077
0.0011 −0.0218 0.0448 0.0181 −0.0612 −0.0026
−0.0001 −0.0082 −0.0102 0.0156 0.0192 0.0076
0.0000 0.0112 −0.0283 −0.0055 0.0552 0.0048
−0.0009 0.0079 −0.0069 −0.0081 0.0206 −0.0174



,

Φ̂
∗
1=



−0.409 −0.022 0.067 −0.227 −0.626 −0.378 0.666 0.156 −0.323 0.783 0.304
0.001 −0.632 −0.056 −0.171 −0.370 0.174 0.711 −0.303 −0.165 0.567 0.244
−0.002 0.037 −0.458 −0.091 −0.174 0.051 0.079 −0.076 −0.020 0.272 0.133
−0.001 −0.000 −0.062 −0.457 −0.106 0.169 0.127 −0.138 −0.064 0.065 0.176
−0.001 0.027 0.051 −0.152 −0.612 −0.014 0.084 −0.031 0.002 0.281 0.129
0.001 −0.143 −0.050 −0.129 −0.332 −0.353 0.437 −0.154 −0.113 0.523 0.274
0.001 −0.087 0.026 −0.163 −0.160 0.007 −0.169 0.010 −0.157 0.343 0.269
0.001 −0.134 −0.069 −0.144 −0.213 0.035 0.346 −0.466 −0.145 0.497 0.304
−0.000 −0.079 0.069 −0.154 −0.232 0.123 0.102 0.043 −0.601 0.296 0.329
−0.001 −0.003 0.019 −0.214 −0.074 −0.038 0.065 0.106 −0.167 0.124 0.013
0.001 −0.237 −0.082 0.066 −0.357 0.249 0.077 0.041 0.051 0.037 0.160


and ĉ0=(0.008,−0.0068, 0.0074,−0.003, 0.0016,−0.011,−0.0085,−0.0103,−0.0014,−0.0003, 0.0063)>.

5.3. Landslide Displacement Forecasting

Based on the fitted ECC(6)-VAR(2) model for the 11 EDQ series, we could obtain
the forecasts of ∆zt and zt for t = 1601 until t = 3820, i.e., those time states in the test
sample. Equation (10) was used for all calculations. The forecasts of the displacement
and velocity were then calculated by the formulas x̂i,T+h = eẑi,T+h + mini,t (xit)− 0.5 and
∆̂xi,T+h = x̂i,T+h − ̂xi,T+h−1, respectively. These forecasts are plotted in Figure 3.
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Figure 3. (Left) Log-displacements of the 11 selected EDQ series from t = 1 to t = 3820. (Right) Displacements of the 11
selected EDQ series from t = 1 to t = 3820. The black lines represent the forecasts and the gray lines represent the actual
observations.

6. Probabilistic Landslide Prediction via the ECC–VAR–EDQ Method
6.1. Forecast Intervals for Displacement and Velocity

In order to see the variations in the forecasts x̂i,T+h and ∆̂xi,T+h, we resorted to find
the corresponding forecast intervals. This required finding the variances of x̂i,T+h and
∆̂xi,T+h first, which can be achieved by applying the δ-method or an empirical sampling
plug-in method based on the forecasts ∆̂zi,T+h and ẑi,T+h and their variance and covariance
matrices. In fact, each component in these variance and covariance matrices could be
estimated from the predicted values of ∆zt and zt, with t = T + 1, · · · , T + h, by fitting the
multivariate linear regression model (7). For simplicity of presentation, we use Var(∆̂zit)

and Var(ẑit) to denote the estimated variances of ∆̂zit and ẑit, respectively. By asymptotic
normal approximation for GLS estimators, an approximately 80% forecast interval for ∆zit
is given as[

∆̂zit − 1.28
√

Var(∆̂zit), ∆̂zit + 1.28
√

Var(∆̂zit)
]
, t = T + 1, · · · , T + h, · · · (13)

where 1.28 is the value of 0.9 quantile of standard normal distribution Φ−1(0.9) ≈ 1.28.
Furthermore, an approximately 80% forecast interval for zit is given as[

ẑit − 1.28
√

Var(ẑit), ẑit + 1.28
√

Var(ẑit)
]
, t = T + 1, · · · , T + h, · · · (14)

Results from (13) and (14) can be used to find 80% forecast intervals for xit = ezit +
mini,t(xit)− 0.5 by either the δ-method or transformation. As an example, let us find an
approximately 80% forecast interval for xi,T+1. By the δ-method,

E(x̂i,T+1) ≈ ezi,T
(

eE(∆̂zi,T+1)
)
+mini,t(xit)−0.5 ≈ eẑi,T+1+mini,t(xit)−0.5 = x̂i,T+1 (15)

Var(x̂i,T+1) ≈ e2zi,T+2E(∆̂zi,T+1)Var(∆̂zi,T+1) ≈ e2ẑi,T+1Var(∆̂zi,T+1) (16)

Therefore, using (15) and (16), an approximately 80% forecast interval for the cumula-
tive displacement xi,T+1 can be computed from[

x̂i,T+1 − 1.28
√

Var(x̂i,T+1), x̂i,T+1 + 1.28
√

Var(x̂i,T+1)

]
.
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Similarly to (15) and (16), we can get

E(x̂i,T+h) ≈ x̂i,T+h, and Var(x̂i,T+h) ≈ e2ẑi,T+h Var(∆̂zi,T+h),

from which we can compute an approximately 80% forecast interval for xi,T+h. However,
the approximation error involved in estimating Var(x̂i,T+h) may be excessive so as to render
the interval inaccurate. We propose to compute an approximately 80% forecast interval
for xi,T+h based on a monotonic transformation of that for the log-displacement zi,T+h.
Namely, the referenced 80% forecast interval for xi,T+h is[

eẑi,T+h−1.28
√

Var(ẑi,T+h) + min
i,t

(xit)− 0.5, eẑi,T+h+1.28
√

Var(ẑi,T+h) + min
i,t

(xit)− 0.5
]
. (17)

Results from (13) and (14) can also be used to find 80% forecast intervals for velocity
vi,T+h = ∆xi,T+h at location i and time t = T + 1, · · · , T + h, · · · . To achieve this, we first
applied the δ-method to find an estimated variance of v̂i,T+h = ∆̂xi,T+h, which is

Var(v̂i,T+h) = Var(x̂i,T+h) + Var( ̂xi,T+h−1)− 2Cov
(

x̂i,T+h, ̂xi,T+h−1

)
≈ eẑi,T+h

[
eẑi,T+h − e ̂zi,T+h−1

]
Var(∆̂zi,T+h)

+e ̂zi,T+h−1
[
e ̂zi,T+h−1 − eẑi,T+h

]
Var( ̂∆zi,T+h−1)

−eẑi,T+h+ ̂zi,T+h−1Cov
(

∆̂zi,T+h, ̂∆zi,T+h−1

)
.

(18)

Then, a normal approximation based 80% forecast interval for v̂i,T+h is[
v̂i,T+h − 1.28

√
Var(v̂i,T+h), v̂i,T+h + 1.28

√
Var(v̂i,T+h)

]
. (19)

Alternatively, an approximately 80% forecast interval for vi,T+h = xi,T+h − xi,T+h−1
can be obtained by transforming that for xi,T+h and xi,T+h−1 as follows:[

eẑi,T+h−1.28
√

Var(ẑi,T+h) − e ̂zi,T+h−1+1.28
√

Var( ̂zi,T+h−1),

eẑi,T+h+1.28
√

Var(ẑi,T+h) − e ̂zi,T+h−1−1.28
√

Var( ̂zi,T+h−1)
]
.

(20)

Results of the forecasts and approximately 80% forecast intervals for the 11 EDQ series
of cumulative displacement xit and velocity vit for t from 1601 to 3820 are displayed in
the first two columns of Figures 4–6. A horizontal line indicating the red-alert velocity of
10mm/hr is added to each velocity plot there.

6.2. Probability of Future Risk of Landslide

Forecasts of the displacement and velocity and their respective 80% forecast inter-
vals plotted in Figures 4–6 show that they correctly capture the overall trends of ground
movement in terms of displacement and velocity. However, they also show the need
for improving the forecasting accuracy, and it is difficult to interpret these results for the
general public. On the other hand, interpreting the risk of an incoming landslide in terms
of a probability is much more accessible to general public. Hence, we propose to measure
this risk by a probability of the forecast ground motion velocity exceeding a red-alert level.
The risk may be alternatively evaluated by comparing the forecast displacement with a
red-alert displacement level, but it will not be pursued here due to lack of consensus about
setting the red-alert displacement level.

In field of slope failure research, it is commonly accepted that a ground motion velocity
of 10 mm per hour or 1 mm per 6 min is an alarming number indicating slope failure.
Since the cumulative displacement in our InSAR data is updated roughly every 6 min, the
referenced velocity vit is actually the change of displacement per 6 min. Therefore, we
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will compute the probability of vit exceeding 1 at location i and t = T + 1, · · · , T + h, · · · .
Calculating this probability requires at least an approximate probability distribution for
vit be available. By the asymptotic properties of the GLS estimation in multivariate linear
regression and the δ-method, it can be shown that

vit
asym.∼ N(v̂it, Var(v̂it)), equivalently

vit − v̂it√
Var(v̂it)

asym.∼ N(0, 1)

where Var(v̂it) is given in Equation (18). Now the probability of the velocity vit exceeding
the red-alert threshold level is

Pr(vit ≥ 1) ≈ 1−Φ

(
1− v̂it√
Var(v̂it)

)
, i = 1, · · · , k; t = T + 1, · · · , T + h, · · · (21)

Calculated values of Pr(vit ≥ 1) for the 11 EDQ series at t from 1601 to 3820 are
displayed in the right panels of Figures 4–6.

The probability plots in Figures 4–6 provide very accurate probability forecasting
on the impending landslide. For example, Pr(v11,t ≥ 1) > 0.5 for the level Max EDQ
series when t ≥ 3513, 5.5 h ahead of the actual landslide occurred around t = 3568; and
Pr(v10,t ≥ 1) > 0.5 for the level-0.9 EDQ series when t ≥ 3575, within 42 min after the
actual landslide. Recalling that these forecast and probability results are computed using
the observations at t from 1 to 1600, about 196.8 h before the actual landslide. Therefore, we
can conclude that our ECC–VAR–EDQ method is able to accurately predict an impending
landslide, with greater than 50% red-alert probability, more than 196 h in advance.

6.3. Landslide Prediction for All Locations

In addition to getting the probabilistic forecasting results for the 11 EDQ series, we
used the ECC–VAR–EDQ method to compute the displacement forecasts xit, the velocity
forecasts vit and the forecast probabilities Pr(vit ≥ 1) for all 1803 locations and at time t
from 1601 to 3820. The key method used is interpolation. For example, for a location with
EDQ level 0.83, all the forecasts at this location were calculated as the weighted average of
those at level 0.8 and level 0.9 EDQ locations. Namely, for t = 1601 to 3820

x̂(0.83),t = 0.7 · x̂(0.8),t + 0.3 · x̂(0.9),t

v̂(0.83),t = 0.7 · v̂(0.8),t + 0.3 · v̂(0.9),t

Pr(v(0.83),t ≥ 1) = 0.7 · Pr(v(0.8),t ≥ 1) + 0.3 · Pr(v(0.9),t ≥ 1)

An mp4 video mine_r6.mp4 is provided in Supplementary Materials which displays
the aforementioned forecasts of displacement and the red-alert probability for all 1803 loca-
tions and at time t from 1601 to 3820. Two screenshots of this video at time t = 3513 and
3568 are shown in Figures 7 and 8, respectively. The video and the screenshot show that
the displacement forecasts capture the spatiotemporal dynamics and trends of the actual
slope surface movement at all locations very well, and the red-alert probability forecasts
provide timely predictions of the landslides at all locations.
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Figure 4. Slope surface displacement (Left), velocity (Middle) and probability of triggering a red alert (Right) in the Min,
10%, 20% and 30% EDQ series. The forecast displacement and velocity are plotted in black with their estimated 80% forecast
intervals, and the corresponding observed data are plotted in gray lines. The red dashed line in each velocity plot is the
velocity alert threshold, which is 1 mm/6 min (10 mm/h), and indicates 50% probability of triggering a red alert in the
probability plots.
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Figure 5. Slope surface displacement (Left), velocity (Middle) and probability of triggering red alert (Right) for the 40%,
50%, 60% and 70% EDQ series. The forecast displacement and velocity are plotted in black with their estimated 80% forecast
intervals, and the corresponding observed data are plotted in gray lines. The red dashed line in each velocity plot is the
velocity alert threshold, which is 1 mm/6 min (10 mm/h), and indicates 50% probability of triggering a red alert in the
probability plots.
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Figure 6. Slope surface displacement (Left), velocity (Middle) & probability of triggering red alert (Right) for the 80%, 90%
& Max EDQ series. The forecast displacement and velocity are plotted in black with their estimated 80% forecast intervals,
and the corresponding observed data are plotted in gray lines. The red dashed line in each velocity plot is the velocity alert
threshold, which is 1 mm/6 min (10 mm/h), and indicates 50% probability of triggering a red alert in the probability plots.

Figure 7. Screenshot of mine_r6.mp4 at time t = 3513. The top (middle) panel displays the actual
(forecast) displacement, and the bottom panel displays the probability forecasts at all locations. The
Ns indicate the 11 EDQ locations. Results were obtained based on the data at t = 1, · · · , 1600.
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Figure 8. Screenshot of mine_r6.mp4 at time t = 3568. The top (middle) panel displays the actual
(forecast) displacement, and the bottom panel displays the probability forecasts at all locations. The
Ns indicate the 11 EDQ locations. Results were obtained based on the data at t = 1, · · · , 1600.

7. Conclusions

We have developed an ECC–VAR–EDQ method to characterize and analyze high-
dimensional, unit-root non-stationary vector time series. The model underpinning the
new method has a vector autoregression form with an error-correction cointegration
representation. We showed how to use the new method to make statistical inferences,
including parameter estimation, goodness of model fit test, forecasts and forecast intervals,
for high-dimensional non-stationary vector time series data. An advantage of our method
is that we can use a small number of EDQ series to reduce the dimension and apply an
ECC–VAR model to these EDQ series. Thus, the procedure is computationally feasible,
with negligible loss of spatial-temporal information of the data.

We inferred an ECC(6)–VAR(2)–EDQ(11) model to analyze the InSAR landslide data
observed at 1803 locations and across 5090 time states. The statistical inference results
were shown to be remarkably informative. For example, the goodness of fit statistic
R2 = 0.99 was close to 1. The results also estimated 80% forecast intervals that can be
used to calculate the probability of a possible red-alert event in the future based on the
up-to-date observations. Once this probability is higher than 50%, we can raise an early
warning alert about a probable incoming landslide. For the motivational landslide case
study in this paper, the results by our method can predict the incoming landslide more
than 8 days in advance, which means we will have enough time to prepare an effective
mitigation plan and reduce the damage caused by landslides.

Although our ECC–VAR–EDQ method has a capability for timely forecasting an
incoming landslide, there is still room for improvement. For example, the ECC approach is
only able to deal with the unit-root non-stationary vector time-series, but the real data can
be non-stationary of other types. To enable using ECC, we took a logarithm transform to
our original data, but we still found there are some sharp increases (diffusion) in those high
level quantile series, suggesting the log-transformation is successful but not ideal. Hence in
future work, we will investigate improving ECC to handle other types of non-stationarity
in high-dimensional VAR time series.
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Finally, note that most of the current landslide monitoring and forecast research are
not configured for computational scalability and as such has focused on only uni-variate
time series or low-dimensional vector time series; cf. [3]. Thus, their methods are not able
to handle spatial dependence and temporal dynamics jointly for InSAR landslide data. Our
ECC–VAR–EDQ method is able to effectively handle this spatial dependence and temporal
dynamics simultaneously in a computationally feasible way.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/forecast3040051/s1.
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