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Abstract: Exponential smoothing methods are one of the classical time series forecasting methods. It is
well known that exponential smoothing methods are powerful forecasting methods. In these methods,
exponential smoothing parameters are fixed on time, and they should be estimated with efficient
optimization algorithms. According to the time series component, a suitable exponential smoothing
method should be preferred. The Holt method can produce successful forecasting results for time
series that have a trend. In this study, the Holt method is modified by using time-varying smoothing
parameters instead of fixed on time. Smoothing parameters are obtained for each observation from
first-order autoregressive models. The parameters of the autoregressive models are estimated by
using a harmony search algorithm, and the forecasts are obtained with a subsampling bootstrap
approach. The main contribution of the paper is to consider the time-varying smoothing parameters
with autoregressive equations and use the bootstrap method in an exponential smoothing method.
The real-world time series are used to show the forecasting performance of the proposed method.
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1. Introduction

Exponential smoothing methods were published in the late 1950s [1–3], and they are
known as some of the most successful forecasting methods in the literature. There are
many exponential smoothing methods in the literature, such as the single exponential
smoothing method, Holt method, Holt-Winters method, etc. Each exponential smoothing
method is used in different situations. If data has no trend and no seasonality, a simple
exponential smoothing method is used for forecasting. If data has a linear trend and no
seasonality, the Holt method is used for forecasting. If data has both trend and seasonality,
the Holt-Winters method is used for forecasting. In the coming years, the damped trend
model was proposed by [4] if data has an over-trend. The reason why exponential smooth-
ing methods are popular in the literature is that the forecasting success of exponential
smoothing methods is superior to complicated approaches such as [5–7]. In addition to
these methods, [8] proposed a simple modification of the exponential smoothing method
named the ATA method, which is an effective and simple method to use compared with
complex approaches in recent years.

Moreover, ref. [9,10] developed state-of-the-art guidelines for the application of the ex-
ponential smoothing methodology. Ref. [11] proposed a uniformly-sampled-autoregressive-
moving-average model for a second-order linear stochastic system. Ref. [12] introduced the
optimal procedure of the Boolean Kalman filter over a finite horizon. Ref. [13] presented
a general benchmarking framework applicable to computational intelligence algorithms
for solving forecasting problems. Ref. [14] proposed a new enhanced optimization model
based on the bagged echo state network and improved by a differential evolution algorithm
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to estimate energy consumption. Ref. [15] introduced a two-stage Bayesian optimization
framework for scalable and efficient inference in state-space models.

The method proposed by [2] is one of the effective exponential smoothing methods
for forecasting data with trend. The Holt method has a forecasting equation and two
smoothing equations, which are for the level of the series and slope of the trend as given in
Equations (1)–(3).

x̂n+1 = l̂n + b̂n (1)

l̂n = λ1xn + (1− λ1)xn (2)

b̂n = λ2

(
l̂n − l̂n−1

)
+ (1− λ2)b̂n−1 (3)

In Equations (1)–(3), λ1 and λ2 are the smoothing parameters of mean level and slope,
respectively, and these parameters get values between zero and one. In these equations, the
initial values are obtained by applying simple linear regression to the series. In addition, in
these equations, trend and level update formulas are only based on a lag.

In this study, the Holt method is modified by using time-varying smoothing parame-
ters instead of fixed on time, and the smoothing parameters of mean level and slope are
obtained for each observation with first-order autoregressive models. The parameters of the
autoregressive models are estimated by using the harmony search algorithm (HSA). With
these contributions, the proposed method eliminates the initial parameter determination
problem. Moreover, the forecasts for the proposed method are obtained from sampling
distributions of forecasts.

The proposed method is applied to Istanbul Stock Exchange data sets between the
years 2000 and 2017 with different test lengths. The obtained results are compared with
many methods in the literature. The brief information for HSA is given in Section 2. The pro-
posed method is introduced, and the implementation results are given in Sections 3 and 4
respectively. The final section is for conclusion and discussion.

2. Harmony Search Algorithm

HSA algorithm was proposed by [16]. HSA is a heuristic algorithm that simulates the
notes of musicians. The principle of HSA is that the musicians in an orchestra play the
best melody harmonically with the notes they play. Just as a chromosome in the genetic
algorithm or a particle in particle swarm optimization represents a solution, a harmony
in a harmony memory represents a solution in the harmony search algorithm. In HSA,
each musician has a decision variable and each note in the memory of each musician
corresponds to a different solution of that decision variable. Each harmony consists of
different notes and each note corresponds to the decision variable. HSA aims to investigate
whether the obtained solution vector is better than the worst solution in memory. The HSA
is given below in steps in Algorithm 1.

Algorithm 1 The algorithm of HSA

Step 1. Determination of parameters to be used in HSA:
• XHM: Harmony memory;
• HMS: Harmony memory search;
• HMCR: Harmony memory considering rate;
• PAR: Pitch adjusting rate;
• n: the number of variables.
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Step 2. Creating of the harmony memory.
HM for HSA is generated as in Equation (4).

HM =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

...
...

xHMS1 xHMS2 xHMS3 xHMSn

 =


x′1
x′2

x′HMS

 (4)

Here, xij, i = 1, 2, . . . HMS ; j = 1, 2, · · · , n is expressed as a note value and is generated
randomly.

In HSA, each solution vector is denoted by x′i , i = 1, 2, · · · , HMS. In HSA, there are HMS
solution vectors. The representation of the first solution vector is given in Equation (5).

x′1 = [x11, x12, · · · , x1n] (5)

Step 3. Calculation of objective function values.
The objective function values are calculated for each solution vector generated randomly as

given in Equation (6).
x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

...
...

xHMS1 xHMS2 xHMS3 xHMSn

 =


x′1
x′2

x′HMS

 =


f
(

x′1
)

f
(

x′2
)

...
f
(

x′HMS
)
 (6)

Step 4. Improvement of a new harmony.
While the probability of HMCR with a value between 0 and 1 is to select a value from the

existing values in the HM, (1-HMCR) value is the ratio of a random value selected from the
possible value ranges. The new harmony is obtained with the help of Equation (7).

xijnew =

 xijnew ∈
{

xij; i = 1, , 2, · · · , HMS
}

ifrnd < HMCR

xijnew ∈
{[

min(xij), max(xij)
]
; i = 1, 2, . . . HMS

}
otherwise

(7)

It is decided by the PAR parameter whether the toning process can be applied to each selected
decision variable with the possibility of HMCR or not as given in Equation (8).

xijnewpitch =

{
Yes rnd < PAR
No otherwise

(8)

In Equation (8), rnd is generated randomly between U(0, 1). If this random number is smaller
than the PAR value, this value is changed to the closest value to it. If the tonalization will be
made for each xijnew decision variable and the value of xijnew is assumed to be the kth value
within the vector of the value variable, the new value of xijnew(k) is xij ← xij(k + m) , and
m ∈ {· · · ,−2,−1, 1, 2, · · ·} is the neighboring index.
Step 5. Updating the harmony memory.

If the new harmony vector is better than the worst vector in the HM, the worst vector is
removed from the memory, and the new harmony vector is included in the HM instead of the
removed vector.
Step 6. Stop condition check.

Steps 4–6 are repeated until the termination criteria are met. Possible values for HMCR and
PAR in literature are between 0.7–0.95 and 0.05–0.7, respectively [17].

3. Proposed Method

Although the Holt method is used as an efficient forecasting method, it has many
problems that are obvious and need to be resolved. The first of these problems is the
determination of initial trend and level values. The second problem of the Holt method
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is that the trend and level update formulas are only based on a lag. To avoid these
problems and increase the forecasting performance of the Holt method, the advantages
and innovations of the proposed method are given step by step as below:

• The smoothing parameters are varied from observation to observation using first-order
autoregressive equations;

• The optimal parameters of the Holt method are determined with HSA;
• The forecasts are obtained by the Sub-sampling Bootstrap method.

The algorithm of the proposed method is also given in Algorithm 2.

Algorithm 2 The algorithm of the proposed method

Step 1. Determine the parameters of the training process:
• # observation of test set: ntest;
• HMS;
• HMCR;
• PAR;
• # bootstrap samples: nbst;
• bootstrap sample size: bss.

Step 2. Select bootstrap samples from the training set randomly.
Steps from 2.1. to 2.2 are repeated nbst times. x∗t,j presents jth bootstrap time series.

Step 2.1. Select a starting point of the block (spb) as an integer from a discrete uniform
distribution with parameters [1, ntrain-bss+1].
Step 2.2. Create bootstrap time series as given in Equation (9).

x∗t,j =
{

xspb, xspb+1, . . . , xspb+bss−1

}
, j = 1, 2, . . . nbst (9)

Step 3. Apply regression analysis to determine the initial bounds for level (L(0)) and trend (B(0))
parameters by using x∗t,j bootstrap time series as the training set by using Equations (10)–(12).

X = [1 1 · · · 1; 1 2 · · · bss]′bss∗2 (10)

Y = x∗t,j =
[

xspb, xspb+1, . . . , xspb+bss−1

]
′ (11)

β̂ =

[
β̂0
β̂1

]
= (X′X)−1X′Y (12)

(L(0) ∈
[
β̂0/2, 2β̂0

]
) and trend (B(0) ∈

[
β̂1/2, 2β̂1

]
)

Step 4. HSA is used to obtain the optimal parameters of the Holt method with autoregressive
coefficients for each bootstrap time series. Steps 4.1 and 4.4 are repeated for each bootstrap time
series.
Step 4.1. Generate the initial positions of HSA. The positions of harmony are
L(0), B(0), λ1(0), λ2(0), φ11, φ12, φ21 and φ22.

L(0) and B(0) are generated from U
(

β̂0/2, 2β̂0
)

and U
(

β̂1/2, 2β̂1
)
, respectively. λ1(0),

λ2(0), φ11 and φ21 are generated from U(0, 1). φ12 and φ22 are generated from U(−1, 1). The
creation of the harmony memory for the proposed method is given in Equation (13), and the
parameters that correspond to kth harmony are given in Table 2.

HM =


x1

1 x2
1 x3

1 · · · x8
1

x1
2 x2

2 x3
2 · · · x8

2

...
...

...
...

...
x1

HMS x2
HMS x3

HMS · · · x8
HMS

 (13)
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Step 4.2. According to the initial positions of each harmony, fitness functions are calculated. The
root of mean square error (RMSE) is preferred to use as a fitness function and is calculated as
given in Equation (14).

fi = RMSEi =

√√√√ 1
bss

bss

∑
t=1

(
x∗t,j − x̂∗t,j

)2
, i = 1, 2, . . . , HMS (14)

In Equation (14), x̂[?]t,j is the output for jth bootstrap time series data and kth harmony. x̂∗t,j is
obtained by using Equations (15)–(19).

λ1(t) = φ11 + φ12λ1(t− 1) (15)

λ2(t) = φ21 + φ22λ2(t− 1) (16)

L(t) = λ1(t)x∗t,j + (1− λ1(t))(L(t− 1) + B(t− 1)) (17)

B(t) = λ2(t)(L(t)− L(t− 1)) + (1− λ2(t))(B(t− 1)) (18)

x̂∗t+1,j = L(t) + B(t) (19)

Obtain RMSE values for each harmony, and save the best harmony which has the smallest
RMSE.
Step 4.3. Improve new harmony.

HMCR shows the probability that the value of a decision variable is selected from the current
harmony memory. (1-HMCR) represents the random selection of the new decision variable from
the existing solution space. x′i shows the new harmony, obtained as in Equation (20).

x′i =

{
x′i ∈

{
xi

1, xi
2, · · · , xi

HMS } i f rand < HMCR
x′i ∈ X, otherwise

(20)

After this step, each decision variable is evaluated to determine whether a tonal adjustment is
necessary. This is determined by the PAR parameter, which is the tone adjustment ratio. The new
harmony vector is produced according to the randomly selected tones in the memory of harmony
as given in Equation (21). Whether the variables are selected from the harmonic memory is
determined by the HMCR ratio, which is between 0 and 1.

x′i =

{
x′i + rnd(0, 1) ∗ bw i f rnd < PAR

x′i otherwise
(21)

bw is a bandwidth selected randomly; rnd (0; 1) represents a random number generated
between 0 and 1.
Step 4.4. Harmony memory update.

In this step, the comparison between the newly created harmonies and the worst harmonies in
the memory is made in terms of the values of the objective functions. If the newly created
harmony vector is better than the worst harmony, the worst harmony vector is removed from the
memory, and the new harmony vector is substituted for it.

Calculate RMSE values for jth bootstrap time series data and kth harmony. Find the best
harmony which has the minimum RMSE value for jth bootstrap time series data.
Step 5. Calculate the forecasts for test data by using the best harmony for each bootstrap sample
and their statistics.

The obtained forecasts from the updated Equations for jth bootstrap time series at t time is
represented by Fi

t . Forecasts and their statistics are calculated just as in Table 1. In addition, the
flowchart of the proposed method is given in Figure 1.
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Table 1. Forecasts for bootstrap samples.

Time (t)/Bootstrap
Sample 1 2 . . . nbst Median Standard

Deviation

1 F1
1 F2

1 . . . Fnbst
1 F̂1 SE

(
F̂1)

2 F1
2 F2

2 . . . Fnbst
2 F̂2 SE

(
F̂2)

...
...

... . . . ...
...

...
ntest F1

ntest F2
ntest . . . Fnbst

ntest F̂ntest SE
(

F̂ntest)

Figure 1. The flowchart of the proposed method.

Table 2. The parameters corresponding to kth harmony.

x1
k x2

k x3
k x4

k x5
k x6

k x7
k x8

k

L(0) B(0) λ1(0) λ2(0) φ11 φ12 φ21 φ22

4. Applications

To evaluate the performance of the proposed method, the proposed method is applied
to the Istanbul Stock Exchange (BIST) data sets observed daily between the years 2000 and
2017 with different test lengths as 10 and 20. To evaluate the performance of the proposed
method, the proposed method is compared with the ATA method proposed by [8], Holt
method, fuzzy regression functions approach (FF) proposed by [18], random walk (RW),
multilayer perceptron artificial neural networks (MLP-ANN) and adaptive neural-fuzzy
inference systems (ANFIS) method proposed by [19]. For a fair comparison of the methods,
we used both statistical and computational intelligence forecasting methods. While the
random walk was used as a simple forecasting method, the Holt and ATA methods were
used as statistical forecasting methods. Moreover, MLP-ANN, ANFIS, and FF methods
were used as computational intelligence forecasting methods. In the analysis process, the
number of bootstrap samples and the bootstrap sample size is given as 100 for each data
set. The RMSE and MAPE criteria were used for the comparison of the methods. The mean
absolute percentage error (MAPE) is one of the most widely used measures of forecast
accuracy, due to its advantages of scale-independency and interpretability [20]. The use of
RMSE is very common, and it is considered an excellent general-purpose error metric for
numerical predictions [21]. Table 3 gives the all-analysis results for each data set for the
RMSE criterion when the length of the test set is 10.
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Table 3. All analysis results for each data set for RMSE criterion when the length of the test set is 10.

Data ATA Holt FF RW MLP-ANN ANFIS PP

BIST2000 279.79 296.17 310.42 286.15 343.9 619.21 278.82
BIST2001 204.84 237.69 272.31 206.5 1106.89 710.82 189.75
BIST2002 325.08 319.78 357 331.87 620.78 399.13 332.13
BIST2003 354.79 355.55 380.82 349.79 1859.21 420.75 328.25
BIST2004 315.62 315.79 390.15 325.69 1807.8 641.43 313.7
BIST2005 316.75 315.36 328.84 342.69 2071.98 559.2 304.98
BIST2006 354.03 348.58 352.07 356.81 423.98 389.3 346.98
BIST2007 768.29 734.55 673.14 734.14 897.02 550.97 728.92
BIST2008 283.99 277.2 256.98 253.67 444.74 340.41 260.52
BIST2009 505.05 483.8 558.06 551.97 3117.96 736.78 473.4
BIST2010 577.68 594.9 583.52 591.88 725.15 588.36 576.4
BIST2011 697.64 710.04 849.68 726.5 1733.88 1037.87 737.83
BIST2012 355.5 350.46 368.26 358.17 3237.45 406.68 358.15
BIST2013 1905.64 1898.61 2105.05 1922.14 4369.35 2104.39 1871.45
BIST2014 1068.36 1025.18 1177.56 1059.97 2631.25 1435.01 1036.6
BIST2015 772.84 767.71 758.89 779.07 1080.69 714.69 751.41
BIST2016 431.86 433.52 450.67 434.01 520.1 424.34 652.25
BIST2017 861.26 869.23 1113.74 911.21 3777.62 1283.75 827.15

In Table 3, the proposed method has 59% success compared with the other methods in
terms of the RMSE criterion when the test set is 10. To see the actual comparison results of
the proposed method with other methods, we compare the rank values of each method
and obtain the average rank values. For this purpose, we rank each method according to
their success status for each time series analyzed. In such a ranking, the method with the
lowest RMSE value will be named as the best method, and the rank value of it will be taken
as 1. For this purpose, all methods were calculated according to rank order considering the
RMSE criterion when the length of the test set is 10, and average rank values were obtained
as in Figure 2.

Figure 2. The average rank values of each method for RMSE criterion when the length of the test set
is 10.

From Figure 2, it is seen that the proposed method has a minimum average rank value
compared with other methods, and the proposed method is the best method for RMSE
criterion when the length of the test set is 10. In addition, Table 4 gives the all-analysis
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results for each data set for the MAPE criterion given in Equation (22) when the length of
the test set is 10.

MAPE =
1

ntest

ntest

∑
t=1

∣∣∣∣Xt − X̂t

Xt

∣∣∣∣ (22)

Table 4. All-analysis results for each data set for MAPE criterion when the length of the test set is 10.

Data ATA Holt FF RW MLP-ANN ANFIS PP

BIST2000 0.0222 0.0233 0.0268 0.0236 0.0293 0.0507 0.0223
BIST2001 0.011 0.0124 0.0161 0.0112 0.0818 0.0506 0.0103
BIST2002 0.0253 0.0241 0.0267 0.0256 0.043 0.0287 0.0256
BIST2003 0.0163 0.0163 0.0178 0.0162 0.1008 0.0208 0.0154
BIST2004 0.0099 0.01 0.0129 0.0103 0.0735 0.0241 0.0099
BIST2005 0.0068 0.0069 0.0069 0.0074 0.0519 0.0126 0.0066
BIST2006 0.0068 0.0066 0.007 0.0067 0.0082 0.0076 0.0073
BIST2007 0.0098 0.01 0.0087 0.0095 0.0138 0.008 0.0095
BIST2008 0.0082 0.0075 0.0073 0.0071 0.0154 0.0093 0.0075
BIST2009 0.0067 0.0066 0.0077 0.0076 0.0595 0.0114 0.0071
BIST2010 0.006 0.0064 0.0058 0.0063 0.0085 0.0068 0.0061
BIST2011 0.0113 0.0116 0.0137 0.0118 0.0316 0.0165 0.0119
BIST2012 0.004 0.0039 0.004 0.0039 0.041 0.0042 0.004
BIST2013 0.022 0.0219 0.0254 0.0223 0.0608 0.0258 0.0216
BIST2014 0.0092 0.009 0.0101 0.0094 0.0304 0.0118 0.0089
BIST2015 0.0083 0.0082 0.0078 0.0082 0.0109 0.0087 0.0082
BIST2016 0.0049 0.0048 0.0047 0.0048 0.0051 0.0046 0.0062
BIST2017 0.0052 0.0053 0.0076 0.0058 0.0318 0.0092 0.0049

In Table 4, the proposed method has 39% success compared with the other methods in
terms of the MAPE criterion when the test set is 10. Looking at the rank evaluation results
for the MAPE criterion when the test set length is 10 given in Figure 3, it is seen that the
proposed method is in third place among all methods.

Figure 3. The average rank values of each method for MAPE criterion when the length of the test set
is 10.

Table 5 also gives the all-analysis results for each data set for the RMSE criterion when
the length of the test set is 20. In Table 5, the proposed method has a 61% success rate.
Considering the situations where the proposed method is not the best, it stands out as the
second-best method in many time-series analyses. Moreover, the rank evaluation results
for all methods for the RMSE criterion when the length of the test set is 20 are given in
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Figure 4. In addition, Table 6 gives the all-analysis results for each data set for the MAPE
criterion when the length of the test set is 20.

Table 5. All-analysis results for each data set for RMSE criterion when the length of the test set is 20.

Data ATA Holt FF RW MLP-ANN ANFIS PP

BIST2000 680.61 680.33 713.87 682.74 2868.94 825.58 681.58
BIST2001 315.19 326.20 372.36 312.96 1030.82 540.36 296.32
BIST2002 388.51 389.17 390.47 393.48 392.16 432.21 383.70
BIST2003 313.25 339.08 456.83 311.18 2201.77 558.18 288.38
BIST2004 329.12 329.30 366.48 335.16 1479.79 554.62 319.35
BIST2005 426.84 415.74 496.57 433.66 2940.74 632.79 463.17
BIST2006 539.71 551.20 581.55 547.72 742.07 625.98 556.77
BIST2007 814.90 783.40 789.45 774.91 854.08 660.30 762.16
BIST2008 575.72 571.80 589.64 542.31 766.02 624.59 541.21
BIST2009 492.91 510.09 518.55 516.25 2794.96 623.04 492.17
BIST2010 867.04 921.85 885.97 850.14 1193.33 965.97 864.93
BIST2011 757.81 728.63 849.50 790.69 1141.08 772.13 774.14
BIST2012 592.96 564.85 605.32 544.81 5641.93 1224.80 517.44
BIST2013 1687.26 1680.69 1888.99 1709.07 2453.56 1821.80 1669.36
BIST2014 1318.63 1315.91 1323.78 1315.91 1936.51 1610.11 1318.91
BIST2015 1242.98 1263.71 1223.85 1225.07 2322.70 1189.75 1213.33
BIST2016 650.22 662.26 648.96 599.52 699.81 728.46 604.62
BIST2017 1010.73 1011.04 1165.70 1031.37 2981.64 1134.55 833.03

Figure 4. The average rank values of each method for RMSE criterion when the length of the test set
is 20.

When the analysis results given in Table 6 are examined, even in the analyses in
which the proposed method is not the best method, the proposed method often appears
to be either the second-best or third-best method. We examine rank values to verify and
highlight these results given in Figure 5.

Considering the average rank obtained from all methods, it can be said that the
proposed method for the MAPE criterion has more successful results than other methods.
As a final comment, when all analysis results are examined, it can be said from both average
rank results and analysis results that the proposed method is a more successful method
than other methods used in the comparison.
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Table 6. All-analysis results for each data set for MAPE criterion when the length of the test set is 20.

Data ATA Holt FF RW MLP-ANN ANFIS PP

BIST2000 0.0540 0.0547 0.0615 0.0557 0.3091 0.0748 0.0546
BIST2001 0.0176 0.0182 0.0212 0.0175 0.0746 0.0355 0.0178
BIST2002 0.0261 0.0263 0.0275 0.0272 0.0260 0.0311 0.0269
BIST2003 0.0145 0.0147 0.0219 0.0146 0.1216 0.0242 0.0144
BIST2004 0.0104 0.0101 0.0121 0.0108 0.0587 0.0184 0.0107
BIST2005 0.0087 0.0082 0.0097 0.0091 0.0744 0.0134 0.0096
BIST2006 0.0098 0.0102 0.0109 0.0102 0.0143 0.0124 0.0105
BIST2007 0.0113 0.0108 0.0106 0.0104 0.0127 0.0095 0.0105
BIST2008 0.0180 0.0175 0.0193 0.0164 0.0223 0.0183 0.0167
BIST2009 0.0076 0.0079 0.0080 0.0080 0.0529 0.0097 0.0074
BIST2010 0.0101 0.0112 0.0103 0.0099 0.0129 0.0125 0.0100
BIST2011 0.0118 0.0110 0.0131 0.0124 0.0188 0.0117 0.0121
BIST2012 0.0063 0.0061 0.0064 0.0058 0.0728 0.0142 0.0056
BIST2013 0.0180 0.0179 0.0206 0.0182 0.0278 0.0202 0.0180
BIST2014 0.0121 0.0121 0.0122 0.0122 0.0203 0.0151 0.0120
BIST2015 0.0140 0.0145 0.0133 0.0135 0.0285 0.0129 0.0134
BIST2016 0.0065 0.0065 0.0059 0.0058 0.0068 0.0067 0.0058
BIST2017 0.0073 0.0073 0.0088 0.0077 0.0246 0.0087 0.0065
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5. Conclusions and Discussion

Although the Holt method is used as a traditional time series forecasting method, it is
known that it has some problems, such as the determination of the initial trend and level
values and determining the trend and level update formulas. In this study, to overcome
these problems, the parameters of the Holt method are optimized by using HSA, the
smoothing parameters are varied by using first-order autoregressive equations, and the
forecasting performance is improved by using the subsample bootstrap method.

When comparing the classical Holt method and the proposed method, it is clear
that time-varying smoothing parameters and HSA provide important improvements in
the forecasting results. The proposed method produces smaller RMSE values than the
classical Holt method by about 70% in all analyses. If we compare the computation time of
the proposed method with the classical Holt method, the proposed method needs more
computation time because of using bootstrap and HSA algorithms, as expected. However,
the computation time of the proposed method is very close to computational intelligence
forecasting methods, and the computation time is not a problem for today’s personal
computers. For the BIST series, the computation time is about three minutes.



Forecasting 2021, 3 849

In future studies, different artificial intelligence optimization techniques can be used
to determine the optimal parameters of the Holt method, or the forecasts can be obtained
by different bootstrap methods.
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