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Abstract: In this paper, we provide a novel Bayesian solution to forecasting extreme quantile thresh-
olds that are dynamic in nature. This is an important problem in many fields of study including
climatology, structural engineering, and finance. We utilize results from extreme value theory to
provide the backdrop for developing a state-space model for the unknown parameters of the ob-
served time-series. To solve for the requisite probability densities, we derive a Rao-Blackwellized
particle filter and, most importantly, a computationally efficient, recursive solution. Using the filter,
the predictive distribution of future observations, conditioned on the past data, is forecast at each
time-step and used to compute extreme quantile levels. We illustrate the improvement in forecasting
ability, versus traditional methods, using simulations and also apply our technique to financial
market data.
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1. Introduction

Forecasting extreme quantiles, which is a part of extreme value (EV) analysis, is
an important problem in many applications. For example, in analyzing ocean storm
severity it is often critical to forecast an extreme quantile, such as the 99% quantile, for
the maximum wave height over a certain time period to facilitate adequate construction
design [1]. In financial risk-management, forecasting extreme quantiles, or so-called VaR
analysis, is critical for establishing adequate bank capital levels [2]. In fact, extreme value
analysis, and quantile forecasting, has found wide application in fields as varied as target
detection [3], communication systems [4], image analysis [5], power systems [6], and
population studies [7].

In this paper, which is an extension of the work presented in [8], we derive a recursive
method for Bayesian forecasting of extreme quantiles where the underlying process is
non-stationary. This differs from our previous work given our focus here is on the pre-
dictive distribution of future observations, rather than simply the model parameters, and
we also properly invert the predictive distribution to obtain efficient quantile forecasts. In
our previous work, we obtained improved parameter estimates, versus traditional meth-
ods, but our prediction ability, as measured by predictive p-values, was hampered by a
number of issues. We made a number of improvements to our previous work including
modifying the support assumptions on the observed data as well as implementing an
adaptive particle filtering algorithm both of which resulted in demonstrable improvement
in quantile forecasting.

We model the maximum of a block of data, which has an asymptotic general extreme
value (GEV) distribution [9], via a non-linear state-space model where the parameters are
driven by a hidden stochastic process with unknown static parameters. To recursively
estimate the model parameters, we utilize a particle filter (PF) [10] and, in particular, we
derive a Rao-Blackwellized particle filter (RBPF) [11] to marginalize the unknown, static
parameters. Importantly, we derive a recursive solution for the predictive state density,
which is required for the particle filter, and we design an algorithm that bears similarity to
the well-known Kalman filter [12] and is therefore readily implemented.
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The work presented here, and in [8], is an extension of some previous studies. In [13],
a deterministic trend is applied to a subset of the GEV parameters, while in [14–16], a
GEV parameter subset is dynamic with known state equation. More recently, Ref. [17]
developed a dynamic model for the tail-index and a Gaussian-mixture approximation
to linearize the estimation problem. Our work has extended these previous studies in a
number of ways. First, under a reasonable assumption, we reduce the number of GEV
parameters and model the remaining set as a vector Markov process, with unknown system
and covariance matrix. Second, we recursively compute the marginalized state density,
eliminating the need to estimate unwanted nuisance parameters and, in the process, we
derive recursive expressions for the necessary sufficient statistics. This allows for a fast, real-
time implementation without the need to batch-process observations. Lastly, we derive the
predictive distribution, for the block-maximum, that we use to forecast extreme quantiles.

The paper is organized as follows. In the next section, we formulate the problem
for the time-varying block-maximum and propose a Bayesian approach by deriving the
recursive solution for marginalizing the nuisance parameters-Rao-Blackwellization. In
Section 3, we implement our solution and derive our simplified likelihood function. We
describe our algorithm in detail and show the method’s ability to forecast extreme quantiles,
outperforming traditional methods, using simulated data. In the last section, we discuss
our results and use our approach to analyze S&P 500 stock market returns from 1928 to
2020. We also conclude the paper with ideas for further research.

2. Materials and Methods

The starting point for our analysis is a sequence of block-maximums denoted by
yk ∈ R, k = 1, · · ·N. The k’th block-maximum is the maximum of a strictly stationary time
series, st, so that

yk = max
Nk−1<t≤Nk

st, (1)

where the index t typically represents time and the k’th block consists of data with time
indices (Nk−1, Nk] and N0 = 0. An example would be in financial markets where the
underlying data is the daily return of a stock market index (e.g., S&P 500) and yk is the
largest daily return loss experienced in year k (see Figure 1). In this case, st = −rt, where
rt = (pt − pt−1)/pt−1 is the daily return defined as the percentage change in the price, pt.
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Figure 1. Annual block maximum of S&P 500 return loss (1928–2020).

Similar to the central-limit theorem, there is a limiting distribution for the normalized
block-maximum of i.i.d. random variables (RVs). The Fisher-Tippet-Gnedenko (FTG)
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theorem states that the only non-degenerate limiting distribution for the block-maximum,
is in the generalized extreme value (GEV) family [18] with shape parameter, or tail-index,
ξ. That is, the cumulative distribution function (cdf) of the block-maximum, yk, properly
normalized, converges to a distribution Hξ as (Nk − Nk−1)→ ∞ which has the Jenkinson-
von Mises representation [19],

Hξ(y) = exp(−(1 + ξy)−1/ξ). (2)

When the tail-index is positive (ξ > 0), the resulting distribution is the Fréchet
distribution with y ≥ −1/ξ. The Fréchet is the limiting distribution for many heavy-
tailed underlying random variables [20]. Upon normalization, a three parameter family
is obtained and, therefore, we asymptotically model each of the block-maximum yk ∼
Hξ,β,µ(yk) = Hξ(

yk−µ
β ), with β > 0 and support y ∈ [µ− β/ξ, ∞). We note that the FTG

theorem’s i.i.d. assumption can be relaxed to include most strictly stationary processes [21].
To capture the non-stationary effects and clustering often witnessed in real-world data

(see Figure 1), we propose to model the parameters of the GEV distribution as time-varying
and, to insure positivity for the shape and scale parameters, we define the unknown state
vector as

xk = [log(ξk), log(βk), µk]
> (3)

and the state transition equation as

xk = η+ Θxk−1 + C1/2uk, (4)

where xk ∈ R3, k ∈ N0, uk ∼ N (0, I3), η ∈ R3, and Θ, C ∈ R3×3. We assume the
matrices η, Θ, and C are unknown and the Gaussian process noise, uk, was chosen for
its analytical tractability and maximal entropy property. Modeling the state as a first-
order auto-regressive process, as in Equations (3) and (4), is similar to stochastic volatility
models [22].

We specify the observation, or measurement, equation as

yk = x3k + ex2k wk, (5)

where ex2k = βk, x3k = µk, and wk is distributed according to (2) and, hence, a function of
ex1k = ξk. Specifically, yk is a standard GEV RV that is scaled and translated and, combined,
Equations (4) and (5) form a non-linear state-space model from which we wish to make
Bayesian inferences.

The Bayesian inferences we wish to make come in the form of three probability density
functions (pdf). The first is the state filtering density p(xk|y1:k) where y1:k ≡ {y1, y2, · · · , yk}.
The second is the state predictive density p(xk+1|y1:k). Lastly, and most germane to our
goal, is the predictive distribution of the observation

p(yk+1|y1:k) =
∫

p(yk+1|xk+1)p(xk+1|y1:k)dxk+1. (6)

Since our goal is to estimate extreme quantiles, we require the cdf of this predic-
tive density,

F(yk+1|y1:k) =
∫ yk+1

−∞
p(ζ|y1:k)dζ, (7)

which we can obtain under suitable conditions as

F(yk+1|y1:k) = Exk+1|y1:k
[Hxk+1(yk+1)]. (8)

In words, the cumulative predictive distribution is the expected GEV distribution condi-
tioned on the state predictive density p(xk+1|y1:k) and our goal is to forecast ηα = F−1(α|y1:k)
or the α%-quantile.
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To accomplish our goal, we need to derive a recursive solution for the filtering density,
p(xk|y1:k), and the state predictive density, p(xk+1|y1:k). This can be done analytically for
the case of known linear state-space models with Gaussian noise. However, with a non-
linear state-space model, or non-Gaussian disturbances, a numerical approach is needed.

From standard Bayesian analysis, we can write

p(x0:k|y1:k) ∝ p(yk|xk)p(x0:k|y1:k−1), (9)

where x0:k ≡ {x0, x1, · · · , xk} is the state stream which are the state vectors from the initial
state, at time 0, up to the current state, at time k. The likelihood function, p(yk|xk), high-
lights the assumption that the current observation depends only on the current value of
the state vector. If we further assume that the state vector process is Markov, independent
of the observations, we can write

p(x0:k|y1:k) ∝ {p(yk|xk)p(xk|x0:k−1)} p(x0:k−1|y1:k−1), (10)

which is the classic Bayesian recursion equation. If we can further invoke that the state
process is first-order Markov, so that p(xk|x0:k−1) = p(xk|xk−1), then we get the integral
form of the Bayesian recursion [23],

p(xk|y1:k) ∝ p(yk|xk)
∫

xk−1

p(xk|xk−1) p(xk−1|y1:k−1)dxk−1, (11)

which can be implemented with a standard particle filter [24].
In our case, where the static parameters in the state transition equation (4) are un-

known, we can not directly implement Equations (10) or (11) since the current state depends
on its complete history through the unknown parameters. The tact we take is to derive a
Rao-Blackwellized particle filter via marginalizing p(xk, η, Θ, C|x0:k−1),∫

η,Θ,C
p(xk|η, Θ, C, x0:k−1)dP(η, Θ, C|x0:k−1), (12)

to obtain p(xk|Tk−1), where Tk−1 are a set of sufficient statistics dependent only on the state
stream up to time k− 1. In doing so, we need an efficient, recursive solution to Tk−1 so that
the filter can be implemented without the need for repeated, large matrix operations or the
need to retain the complete state history.

To start, we note that Equation (4) can be written compactly as a general linear model
for the complete state stream up to time k as

Xk = ΦHk + Uk, (13)

where Xk = [xk, xk−1, · · · , x1] ∈ Rp×k, with p being the number of state variables. The
unknown matrix Φ = [ η Θ ] ∈ Rp×p+1 and Hk = [hk, hk−1, · · · , h1] ∈ Rq×k has columns
given by h>k = [1 xT

k−1]. The noise term Uk ∈ Rp×k is a random Normal matrix whose
columns are i.i.d. N (0, C) with C unknown. For the Rao-Blackwellized particle filter, the
columns of Xk are formed by the particles from 1 to k and the columns of Hk include the
past particles from 0 to k − 1. Therefore, Ref. (13) is the state transition equation that
describes the evolution of the state stream and, in the filter, each particle stream operates
under its own version of this multivariate regression model.

The predictive density for the general linear model, with a non-informative, Jeffreys
prior [25], results in a multivariate Student-t distribution [26], which for a p-dimensional
random vector is denoted as tp(v, µ, Σ) ∝ [1 + (x − µ)TΣ−1(x − µ)/v]−(v+p)/2 with v
degrees of freedom, mean µ, and scaling matrix Σ. Using the non-informative prior,
p(Θ, Θ, C−1) ∝ |C|(p+1)/2, we can write the marginal predictive density for xk+1 as a
multivariate Student-t distribution with vk = k− 2p degrees of freedom, i.e.,

p(xk+1|Xk, Hk, hk+1) ∼ tp(vk, x̂k+1, Σ̂k+1).



Forecasting 2021, 3 733

The mean of this distribution is derived as

x̂k+1 = Sk
XH(S

k
HH)

−1hk+1 = Φ̂khk+1 (14)

and the scale matrix is

Σ̂k+1 =
1 + h>k+1(S

k
HH)

−1hk+1

vk
(Sk

XX − Φ̂kSk
XH
>
), (15)

with the matrices defined as

Sk
XX = XkX>k , Sk

XH = XkH>k , Sk
HH = HkH>k . (16)

As is, Equations (14)–(16) can be used to compute the state predictive density and to
extrapolate particles from time k to time k + 1. That said, the resulting matrix operations
are expensive computationally and a recursive solution is desired. Letting Pk = (Sk

HH)
−1,

we derived recursive expressions for the mean and the scale matrix as follows:

Kk = h>k Pk−1[1 + h>k Pk−1hk]
−1, (17)

Pk = Pk−1[I− hkKk], (18)

Φ̂k = Φ̂k−1 + (xk − x̂k)Kk, (19)

Σ̂k+1 =
vk − 1

vk

{
1 + h>k+1Pkhk+1

1 + h>k Pk−1hk

}
×
{

Σ̂k + (xk − x̂k)(xk − x̂k)
>/(vk − 1)

}
, (20)

x̂k+1 = Φ̂khk+1. (21)

These equations bear a resemblance to the recursive equations found in the Kalman
filter [27] and are readily implemented with minimum computational and memory require-
ments. The specific algorithm we use is discussed in the next section and we note that the
above procedure can likewise be used in the case of a linear observation equation with
unknown observation matrix.

3. Results

To implement our solution, we first make a simplifying assumption that reduces our
state vector to xk = [log(ξk), log(βk)]

>. Recall that for the GEV distribution, with ξ > 0,
the support for the observation is y ∈ [µ− β/ξ, ∞), where we have dropped the subscript
k for simplicity. To eliminate the parameter µ, we constrain Hξ,β,µ(y0) = α0 allowing us to
solve for µ = −H−1

ξ,β,y0
(α0). This is a generalization of the constraint used in [8] where the

support was y ∈ [0, ∞) or α0 = y0 = 0 resulting in µ = β/ξ. The main issue in the previous
study was that small values for the parameter ξ resulted in a substantial portion of the left
tail with negligible probability since H−1

ξ,β,β/ξ(α)→ ∞ as ξ → 0+ ∀ α > 0 resulting in sub-
par prediction performance. While the parameter estimates in [8] were quite reasonable,
and outperformed the maximum likelihood (ML) method, quantile estimates were biased.

Under our support constraint, we can write

µ = y0 −
β

ξ

[
(− ln(α0))

−ξ − 1
]

(22)

and the now two-parameter GEV distribution is

Hξ,β(y) = exp

[
−
(

ξ

β
(y− y0) + (− ln(α0))

−ξ

)−1/ξ
]

(23)
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with support y ∈ [y0 − β
ξ (− ln(α0))

−ξ , ∞). The likelihood function, p(y|x), can then be
written as

p(y|x) = d
dy

Hξ,β(y) =
1
β

Hξ,β(y)
(

ξ

β
(y− y0) + (− ln(α0))

−ξ

)−(1+ξ−1)

, (24)

where the substitutions ξ = ex1 and β = ex2 can readily be made.
Armed with the likelihood in Equation (24) and the sufficient statistics, computed

recursively in Equations (17)–(21), we are ready to implement our version of the RBPF (see
Algorithm 1).

Algorithm 1 RBPF recursive implementation.
Initialization (k = 0, m = 1 : M particles):

• Generate p̃ > 2p + 1 random particles, x(m)
0: p̃ from (13) with random Φ, C.

• Compute S p̃
XX , S p̃

XH , and S p̃
HH from (16).

• Initialize Φ̂0 = S p̃
XH(S

p̃
HH)

−1, x̂1 from (14) and Σ̂1 from (15).
• Let P0 = (S p̃

HH)
−1 and vk = p̃− 2p.

• Set particle weights w(m) = 1/M and M1 = M.
Recursive Loop (k = 1 : N):

• Sample x(m)−
k ∼ tp(vk, x̂k, Σ̂k) for m = 1, · · ·Mk. (particle extrapolation)

• Compute predictive statistics: x̂k
− = ∑M

m=1 w(m)x(m)−
k

• Compute quantile estimates, p-values, and Mk (see Algorithm 2)

• Systematically resample particles, x(m)−
k → x(m)+

k , using p(yk|xk) in (24)

• Compute contemporaneous statistics: x̂k
+ = ∑M

m=1 w(m)x(m)+
k

• Compute Kk from (17). Update Pk−1 → Pk via (18) and Φ̂k−1 → Φ̂k via (19)
• Update to Σ̂k+1 from (20) and x̂k+1 from (21)
• k = k + 1, vk = vk + 1, and repeat loop

In Algorithm 1, estimates for ξk and βk are produced by a weighted sum of the particles
x(m)+

k available after processing the observation, yk, at time k. To illustrate the performance
of the algorithm, we simulated the stochastic GEV parameters from an uncoupled, mean-
reverting, AR(1) process as follows

log ξk = (1− 0.95)× log(0.45) + 0.95 log ξk−1 + 0.1 u1,k, (25)

log βk = (1− 0.9)× log(0.012) + 0.9 log βk−1 + 0.1 u2,k, (26)

where u1,k and u2,k are independent N (0, 1). The process was chosen with ξ̄ = 0.45 and
β̄ = 1.25% to be representative of time-series encountered in heavy-tailed phenomena such
as financial markets and we refer the reader to [8] for representative simulation examples.

We produced 225 samples for each simulation run and we initialized the filter with
M1 = 1024 particles. At each point in time we computed estimates for the GEV parameters
ξ̂k and β̂k. We also computed the maximum likelihood (ML) estimates for the GEV parame-
ters from (24) and used at least 25 observations (k ≥ 25) before reporting estimation errors.
For each of the 100 simulation runs, we computed a root-mean-square (RMS) error for the
parameter estimates, across time, and shown in Figure 2 are the histograms for the RMS
errors for both the RBPF and ML method. We can see the RBPF method outperforms with
an average RMS error for ξ̂ of 0.11 vs. 0.17 for the ML method. Similarly, the average RMS
error for β̂ was 0.32% vs. 0.41% for the ML method.
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Figure 2. Histogram of RMS errors for RBPF vs ML for 100 simulation runs.

One of the improvements we made to our original algorithm was to use systematic
resampling of the existing set of particles versus standard multinomial resampling which
improves the filter’s performance. The other improvement was to adapt the number of
particles based on an assessment of the filter’s predictive performance as in [28] although
we modified their method so that new particles, if needed, are generated from the initial
prior distribution. Finally, the quantile estimates, η̂α = F̂−1(α|y1:k) for α ∈ [0, 1], based
on averaging Hxk+1(.) over the particles that approximate the predictive state distribution,
were improved. In particular, we computed an estimate of the predictive distribution, via
approximating Equation (8), versus using Exk+1|y1:k

[H−1
xk+1

(α)]. Algorithm 2 provides the
details of the method used for quantile estimation, computing p-values, and to adapt the
number of particles in the filter.

To test our approach, we examined the predictive performance of our method, outlined
in Algorithm 2, versus the maximum likelihood. We applied a chi-square test as described
in [29]. At each time k, we effectively partitioned the support of the predictive cdf estimate,
F̂(yk+1|y1:k) into B equiprobable buckets. For the ML method, we did the same using
the ML estimates of the GEV parameters as “truth”. We then compared the(k + 1)st
observation, yk+1, to each bucket interval to find its location and to create an empirical
frequency distribution. If the model is true, this frequency distribution will be a sample
estimate of a uniform distribution and the statistic D is approximately chi-square with
B− 1 degrees of freedom (See Algorithm 2 for details).

For our test, we chose B = 20 intervals and shown in Figure 3 are the frequency
distributions for the entire 100 runs. We note that, in total, there were 20,000 sets of
quantiles forecasted and each forecast was based solely on past data. More importantly,
each prediction was based on a varied amount of past data. For example, in each simulation
run, the first set of quantile forecasts were based on just 25 observations (y1:25) and the last
forecasts were based all that run’s observations except the last (y1:224). We see that the RBPF
method has a more uniform frequency distribution compared to the ML. The ML, similar
to our previous work in [8], tended to under-estimate the 5% quantile, leading to more
observations than expected. More importantly, the extreme quantiles were overestimated
leading to less observations exceeding those thresholds. While one might argue that the
bias to higher thresholds, for those extreme quantiles, is at least being “conservative”, it is
clearly more beneficial to having a more accurate cdf and quantile forecast, particularly
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since these quantile forecasts are typically used to compute exceedance probabilities over
multi-block periods.

Algorithm 2 Compute quantile estimates, p-values, and Mk.
Initialization (prior to Recursive Loop)
• Set αj = j/B for j = 0, · · · , B (B = # buckets)
• Create y-grid: ỹ = 0 : ystep : ymax and set [ξ̂−k , β̂−k ]

T = exp(x̂k
−).

• Initialize counter C(j) = 0 for j = 1, · · · , B
Within Recursive Loop ( k ≥ Npred )

• Compute predictive CDF: F̂(ỹ|y1:k) = ∑M
m=1 w(m)Hξ̂−k ,β̂−k

(ỹ).

• Invert predictive CDF: ηαj = F̂−1(αj) ∀ j
• Find index j∗ such that yk ∈ [ηαj∗−1 , ηαj∗ ) for j∗ ∈ {1, · · · , B}
• Increment counter C(j∗)
• If k ≥ 2 ∗ Npred (compute p-values)

– Nc = ∑B
j=1 C(j)

– Compute χ2 statistic: D = B(Nc − 1)∑B
j=1(C(j)/Nc − 1/B)2

– Compute p-value using χ2
B−1(D) test

– If p-value < plow (double # of particles)

* Mnew = Mk −min(2Mk, Mmax)

* Initialize Mnew new particles (See Initialization in Algorithm 1)
* Mk = Mk + Mnew

– If p-value > phigh (halve # of particles)

* Randomly discard Mk −max(Mk/2, Mmin) existing particles
* Mk = max(Mk/2, Mmin)
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Figure 3. Empirical frequency distribution of observation predictions for RBPF vs ML simulation.

To further illustrate the improvement in the performance of our approach, we show
the histogram of the final p-values, for the 100 simulation runs, in Figure 4. The ML method
has about 35 of the p-values in the range of [0,0.1), compared to an expected amount of
10, and most of the p-values are less than 0.5. This indicates that one would reject the
ML method as an alternative hypothesis in most instances. In our previous work, our
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simulated p-values were worse than the ML method due to the reasons cited previously.
Our new RBPF method, derived herein, has p-values close to the expected number for
each bucket (i.e., 10), and produces quite reasonable quantile forecasts. To further see the
accuracy of forecasting extreme quantiles with the RBPF, we plotted the empirical quantile
estimate versus the predicted in Figure 5.
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Figure 4. Distribution of final p-values for RBPF vs ML simulation.

  99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9%

Predicted Quantile (%)

  99%

99.1%

99.2%

99.3%

99.4%

99.5%

99.6%

99.7%

99.8%

99.9%

E
m

pi
ric

al
 Q

ua
nt

ile
 (

%
)

Figure 5. Empirical extreme quantile estimates versus predicted for the RBPF.

As seen in Figure 5, at the predicted 99.9%-quantile, 99.87% of the observations were
below the threshold. Stated differently, 26 out of the 20,000 predictions exceeded the
forecasted 99.9%-quantile threshold, which is six more than expected. We find this to be
excellent given that many of the forecasts are made with limited data in hand. At the
99%-quantile, 0.15% additional observations exceeded our forecasts. Out of the 20,000
predictions, 200 exceedances were expected versus the 230 were observed. Our simulation
results bear out the view that our methodology not only outperforms traditional quantile
forecast methods (e.g., ML) but also our previous work in [8].
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4. Discussion

From our results, illustrated in the previous section, we see that our methodology
offers improvements in forecasting extreme quantiles, particularly when the time-series is
non-stationary. This is true in many applications, where extreme behaviour tends to cluster
in time, such as in finance, or trend over time, such as in climatology. To illustrate the
application of our approach to real-world data, we applied it the data shown in Figure 1
which are the block-maximums of daily losses, or negative returns expressed in percent,
for the S&P 500 stock market index, a widely used proxy for the overall stock market.

For completeness, we show in Figure 6 the likelihood surface for all of the data from
1928–2020 (93 years/block-maximums). While the ML estimates, using all of the data,
are ξ̂ML = 0.48 and β̂ML = 1.26%, one can see there is a large degree of uncertainty in
the GEV parameters. For example, there is considerable probability that ξ > 0.5, which
would imply an underlying time-series with infinite variance and this has implications for
financial models that rely on finite second moments (e.g., Black-Scholes). The Bayesian
approach is to use all of the information available from the data to produce posterior
densities from which to produce parameter estimates and, more importantly, to forecast.
This is particularly important when forecasting quantiles since they can be quite sensitive
to point estimates given the highly non-linear form of the GEV cdf.
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Figure 6. Likelihood surface for GEV parameters using S&P 500 block-maximums.

Shown in Figure 7 are the S&P 500 block-maximums along with quantile forecasts over
time. For the 90% quantile forecast, 8 out of 92 observed stock-market returns exceeded
the forecast, or 8.7% of the time. This is well within what one would expect. The current,
forecasted 90% quantile is 7.1% and the 99% quantile forecast is 23.8%. We should expect
to see this type of market "crash," or worse, about once a century. While the range of
the forecasted 90% quantile, from 5.6% in the 1970s to 8% post financial crisis, may seem
minimal, we do note that more extreme quantile estimates have significant variation. For
example, the 99% quantile forecast went from 18% to 25% and the 99.5% quantile went
from 25.8% to 35% over the same period. This would be of use to a financial institution
when constructing risk scenarios for stress testing their portfolios. Last year, in 2020, the
block-maximum was a 12% loss, during the covid pandemic crisis, which was at the 96%
quantile. We should expect to see at least this 12% loss about once every 25 years and it
should not be considered unusual highlighting the importance of quantile forecasting-bad
things do happen!
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Figure 7. S&P 500 max annual loss and predicted quantiles.

It is worth pointing out that the p-value based on the forecasted quantiles was a
robust 0.75 versus 0.01 for the ML method. While one must be wary in using p-values to
accept a model, we feel that the results we have shown in this paper clearly indicate an
improved method of forecasting. But much work needs to be done. For one, we simply
used block-maximums in this paper, which one can argue wastes data. We would like to
extend our approach further to use more higher-order statistics, or exceedances above a
threshold. We would also like to broaden our simulation study and apply our results to
other data sets, particularly in the area of climatology. Lastly, additional computational
efficiencies should be explored to allow real-time implementation to high-frequency data.
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Abbreviations
The following abbreviations are used in this manuscript:

cdf Cumulative denisty function
EV Extreme Value
FTG Fisher-Tippet-Gnedenko
GEV Generalized extreme value
ML Maximum likelihood
pdf Probability density function
PF Particle filter
RBPF Rao-Blackwellized particle filter
FMS Root mean square
RV Random variable
S&P Standard and Poor
VaR Value at Risk
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